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Motivation \l DES C

e We need 40 time-delay lenses and 200 /7/ \ R
non-time-delay lenses to reach "% precision
(Birrer and Treu 2020, TDCOSMO V).

e LSST is expected to discover 100s of time delay
lenses and 10,000s of non-time delay lenses
(Collett 2015, Oguri and Marshall 2010).

e Current lens modeling method relies on forward
modeling the images.

o Time-intensive
o Lens-by-lens basis

e Joint hierarchical inference over hundreds of
lenses requires an efficient, unbiased method with
a uniform approach to modeling. » Bayesian
neural networks!

(c) HE0435—-1223 (d) SDSS 1206+4332

Wong et al 2019, Shajib et al 2020 2




Lens modeling with Bayesian neural networks BNN&\\\|
applied to HO inference /// Y’ D g

e BNNs can approximate the full posterior over the target quantities, rather than
a point estimate (Denker & Lecun 1991).

e They show promising accuracy on galaxy-galaxy lenses (Hezaveh et al 2017,
Levasseur et al 2017, Wagner-Carena et al 2020). So do non-Bayesian variants
(Pearson et al 2019, Schuldt et al 2020).
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Are they good enough for cosmography?




Pipeline overview \\\\l/H
P - DESC
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/// Nark Energy Science Collaboration

1. BNN lens modeling

X &

PEMD + external shear

/

mm) p(lens model parameters, source position|
11 “BNN target parameters”

)

X

See the paper and code for implementation details!
e Simulated HST-like images (assuming follow-up)
e Training, test sets drawn i.i.d.
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Pipeline overview = D

R

2. Propagating BNN-inferred posterior into HO inference (simplified)

Setup: time delays were simulated with 0.25-day errors (very accurate) and
redshifts assumed to be known.

HO posterior for a single lens was
p(Hp|image, At) « p(Hp)p (image, At|H;) Bayes’ rule

X p(HO)/p (At|BNN target params, H)
= Time delay likelihood
xp (BNN target params|image)
i BNN-inferred posterior
d(BNN target params)
e MCMC sample over D, (equivalently, HO) jointly with the BNN target parameters

e Combine across 200 lenses



Op(")

&

7
%

7
%

9. o,
&% “%

- . e = 0.0519%

B Training distribution (implicit prior)
I BNN posterior

EZz Forward modeling posterior

1005
e = 01455

e BNN is accurate

e BNNis less precise than

)

snipeJ pis1sulg

Ysrelgad

Day (Mpe)

B 638+ 40 traditional forward modeling
o694 +35] @ ... buttakes 9 minutes per
lens instead of 3-6 hours
(20-40x speedup)

Dy (Mpe) = 8 + 024102
N S S & & > > D PSS PN 8 P O F O F L pp S @ O D> SSSS
| } PP ETTS FSFTTEINTI T I EFIE S
’ " 5 : & Day (Mpc)
Vens 0p(") & . )







~

Power of rapid ensemble inference _DES

/// Dark Energy Science Collaboration
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i 100.0% of lenses have truth within 99.7% C.1.
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e Confidence in statistical agreement with truth (70 km/Mpc/s)
e 9% average precision achieved per lens
e 0.7% precision achieved from 200 lenses, with no evidence of bias 8



Code and data releases \&\L

e Our datasets were generated using Baobab, a wrapper around Lenstronomy
that samples the parameters and renders the images.

https://github.com/jiwoncpark/baobab

e The HO inference pipeline is implemented in HOrton.

https://github.com/jiwoncpark/hOrton

hOrton - Deep Modeling of Strong Gravitational Time

Delay Lenses for Bayesian Inference of the Hubble
Constant

build 'passing coverage 74% J pypi package [ 1.0 J license MIT j astro-ph.IM arXiv:2012.00042
DOl 10.5281/zenodo.4300382 || powered by [AstroPy


https://github.com/jiwoncpark/baobab
https://github.com/jiwoncpark/h0rton

Key takeaways \ |
*DESC
/// DkE ergy Science Collaboratio

Our paper is the first to use BNNs for time delay cosmography.

v BNN lens modeling is sufficiently accurate for cosmography for individual time
delay lenses, given our model assumptions.

v When propagated into a joint HO inference over 200 lenses, the BNN lens
models enable precise (0.7%) and unbiased HO recovery.

v Our pipeline is efficient, enabling large-scale systematics tests on a 1-day
development cycle -- unfeasible for traditional forward modeling.

The method and software we present in this paper promise to become core
infrastructure in large-scale hierarchical inference for H, as the cosmology
community prepares to beat down systematics for a large sample of lenses soon to
become available.
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Bonus slides




Computational efficiency \\\l/

3. Cosmological sampling “19hr 77//4\\—1DESbC

e Evaluating the BNN lens
posterior takes <4us for 200
lenses (quick)

e MCMC sampling for HO takes
6 minutes per lens

1. Data generation

“6hr
512K training set,
5K validation set,

200 test set
(bottleneck)

. Inference
9min/lens or 1.2 day total iveline
for test set of 200 lenses PP
A complete experiment can be
performed on a 1-day
development cycle.
Compare to: 3-6hr/lens for o
traditional forward modeling 2. Training  5hr
(20 -40x speedup)* on 16GB NVIDIA Tesla
*Lenstronomy (Birrer et al 2018) benchmark P100 GPU 12



To-do list \

|
-~ DESC

Our pipeline is inherently versatile and allow extensions in many directions.

Hierarchical inference framework (Wagner-Carena et al 2020) to recover the
population prior over the BNN target parameters
o Robust to out-of-sample data
o Can incorporate information from non-time delay lenses
Complex lens models
Complex source models
Stress tests with image artifacts, e.g. cosmic rays
LSST-like image features, e.g. multiband data, PSF, noise
Simultaneously inferring redshifts
Likelihood-free inference
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The goal of cosmography places extra demands on\leﬁ\l DESC
modeling. /// St

e We require high precision on the power-law mass slope (y’), as its uncertainty
propagates directly into D_dt.
e BNN needs to predict additional parameters.
o Source position
m “mas precision desired (Birrer et al 2019)
o Lens galaxy size
m Required for velocity dispersion estimation
m This means the image should include the lens light, which is an extra
challenge for the convolutional engine (Pearson et al 2019).
o Host galaxy size
m [o capture known degeneracy with 9’
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Data generation: model assumptions \\&\L

kark Energy Science Collaboration

AN
Motivated by the Time Delay Lens Modeling Challenge (TDLMC; Ding et al 2019),
we simulate HST-like images with the assumed profiles:
External shear

Elliptical Sersic lens light ----

Elliptical Sersic host galaxy light

Point-source quasar
Detector and observation conditions:
Drizzled HST PSFs = 0”.08/pixel Th
WFC3/IR F160W band .
e . ---

15

Elliptical power-law lens (PEMD)

Sky, readout, CCD noise




The HO inference stage \l
*DESC
///kkE rgy Science Collaboratiol

Assumptions: test prior = implicit prior, flat ACDM with fixed €2_=0.3. Our HO prior =
[50, 90] (Mpc/km/s)

For each individual lens, we MCMC sample from the joint posterior. Sampling was
¢ p(Ho|At,ov,d™) ke:

k k
x p(Hy) / {At} '|Da¢(Ho), 51““ 51(ig)1,t-"'(u-)t)

(k) (k) (k) _.(k)
Xp IDAt 0)‘£1fn.s'€1ight'ht’-l'f‘,uni)

» Time delay likelihood

» Velocity dispersion likelihood

(k)
X p(élenb él'ightld 2 BNN lens pOSteI‘iOI‘

(k) (k (k) ‘
Xp( CLt)p(ran)i) (élcns flight) dr eltd,anl (3)

When combining the lenses in the test set of 200 lenses, we
e Interpret individual D_dt posteriors as KDE

e MCMC sample from the combined D_dt posterior




Time Delay Lens Modeling Challenge ) |
(TDLMC) metrics ///\D e

1 Ok

e Precision: average fractional estimated HO uncertainty p = = =
Success L 0

. . 1 . — H,
e Accuracy: average fractional bias A= —— .
Nsuccess L Hy

x 2
. 1 . — H
e Goodness: standard reduced 2 Y’ = ——— » (fi‘_f’.)

A sSuccess Ok

Note that TDLMC metrics weight each lens equally, regardless of the assigned
uncertainty.
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TDLMC metrics = l
DESC
/ // karkEnergySaenceCoIIaboratlon
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Fraction of validation lenses with truth in the volume = p¥!
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Simulated dataset and model assumptions \\\\l/h
P - ®DESC

—_—
|
/// Nark Energy Science Collaboration

Model components

Elliptical power-law lens (PEMD)
External shear

Elliptical Sersic lens light
Elliptical Sersic host galaxy light
Point-source AGN

Detector and observation conditions

e 512K simulated 64x64 HST-like images in the IR band
e Sky, readout, CCD noise

20




Individual lens k

k)
 Image d

Lens model posterior (Equation 14)

k k
p(gl(erzs’dig)ht Id(k)) ~ GMM

-
BNN lens modeling
(Section 2.3)

}

MCMC sampling to obtain
individual Da; posteriors

Individual lens k

a®

BNN lens modeling

(#)

Individual Dy, posterior (Equation 24) 5 (Section 2.4)
p(DY)1d™, AtY) | k.t ~ Lognormal w
(k) pr(k) k k
DAl 3 H(g zfelzs’ z‘(“'c)
‘ Combined H), posterior (Equation 28) :
Combining the lenses » ® @
(Section 2.5) p(Hol/{At}, {d}) Hy (9 9

Fic. 1.— Left: illustration of the Hyy inference pipeline in the form of a lowchart. Right: the dependence relation shown as a probabilistic
graphical model (PGM). Dots refer to delta functions, or fixed values; shaded ovals refer to observed values, or data; and unshaded ovals

refer to random variables.
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Parameter

Prior Description

Flat ACDM cosmology

Hy (km Mpc—! s71) U(50,90) Hubble constant

i, 0(0.3) Mass density

Mass profile

51(:;1)5, E](i’;ilt BNN-inferred lens model posterior =~ PEMD, external shear,
(see Equation source position/size

Line of sight

Kext 1—,-1; — 0 N(1,0.025) External convergence

TABLE 2

SUMMARY OF MODEL PARAMETERS THAT ENTER INTO H{ INFERENCE.
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Parameter

Distribution

Lens redshift
Source redshift

Zlens 7~ N(O.S, 0-2)
Zsre ™™ N(2, 0.4)

Lens galaxy

Elliptical power-law mass

Lens center (")
Einstein radius (")
Power-law slope

Axis ratio

Orientation angle (rad)

Tlens: Ylens ™~ N(O, 0.07)
9 ~ N(1.1,0.1)

Tens ™~ N(2-0, 0.1)

Qlens ™~ N(0-7,0.15)
‘.blens o U(—7T/2, 7F/2)

Elliptical Sersic light
Magnitude

Half-light radius (")
Sersic index

Axis ratio

Orientation angle (rad)

Mlensx ™~ U(lg, 17)
Riens« ~ N(0.8,0.15)
Nenss ™~ N(3, 055)
Jlensx ™~ N(085 0.15)
Dlensx ~ U(—7/2,7/2)

Environment

External shear modulus
Orientation angle (rad)

Yext U(O, 0.05)
dext ~ U(—m/2,7/2)

External convergence

kext ~ N(0O, 0.025)

Host galaxy

Elliptical Sersic light
Host center (")

Host magnitude
Half-light radius (")
Sersic index

Axis ratio

Orientation angle (rad)

Zsrc, Ysre ~ U(—0.2,0.2)
Msye ™~ U(25, 20)

Rsrc Lo N(035, 005)
nsre ~ N(3,0.5)

gsre ~ N(0.6,0.1)

Gsre ~ U(—7/2,7/2)

AGN

Point source
AGN magnitude

magN ~ U(22.5,20)
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Input: 64

Output size

Image
1 channel

» 32 > 16 > 8 > 4 » 2 > 1
3x3| f18x3 | [3x31 /| 3x3 (3x3] i | 8x3 [3x3]
76><47 Klbix 64 128 | \/ | 128 2/526 256 | \/ 5/122 512 _Avg FC
5 | pool D33 | Daag|D|axs | Daa|D| axa |D pool | 155
64 128 128 | 256 | 256 (512 | 512
S e fp—t. e B
X3 X3 x:. 22 X2

FiG. 3.— The ResNet101 network architecture used for the convolutional engine of the BNN. The size of the square feature maps evolves
through the layers as indicated on the top. Rectangular boxes contain convolutions of the indicated kernel size and channel number (width).
Strides of 2 are denoted as /2. Note that blue and orange boxes are two stacked convolutions. Curved arrows indicate shortcut connections;
the solid ones preserve the input feature dimension and dotted ones double the number of channels and halve the feature map resolution.
Not shown are the 1D dropout layers, which were inserted before every convolutional layer and before the final fully-connected layer. Batch

normalization and ReLU layers followed each convolution as well.
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p ( Ho|At®) d(k))

 p(Ho)p (At"") ! IHo)

o< p(Ho) [ p (At9DL(Ho), 62, el5hs <)
% Bi{ B el %)

k k k
= p ( ((i‘,xl) (gl(en)s gl(lgilt) dht(:xz, (24)

Individual HO inference

(At(")|D(")(H ikt 1(lglt R 0)

MCMC objective
(k) (k) k
P (Elens llghtld( )) (25)



p (Hol|{At}, {d}) Joint-sample HO inference

o p(Ho)p ({At}, {d}|Ho)
k k
P HO H/ t(k)lD ) flens é.l(lpjlt f:x%:)
) ¢(B) (K
XPp (glens’ glight |d( ))

k) ok k
ep(l)) d (el a0 ) 0. (27)

p (Hol{At}, {d}) o< p(Ho) [T p (A, dM|DS) (Ho))
k

(28)

Hp (At(k’), d®) IDEft)(HO)) . (29) MCMC objective
k
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== Truth = 70 km Mpc ! s™! [_] Time delay precision ceiling Bl Forward modeling posterior [l BNN-inferred posterior
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Comparison with forward modeling for 1 Iens\\\\|
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Our combined HO posterior =\
’ PP 5DESC
. === Truth=70 /// D ey ence Colibereto

Combined = 69.71)5

0.8 1

0.6 1

Density

0.4 1

§
0.2 - |
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H ‘ o
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Hy (km Mpc‘1 s~1)

0.0

e Our posterior is consistent with the truth.

e The center of our posterior only 0.28 km/Mpc/s away from 70.0, which is 0.4%
in HO and “50% of the posterior width.

e Statements beyond this level of precision will require knowing the shape of the
D_dt posterior, out to the tails.

e Even if there exists some bias within that 0.4%, in applications to real data,

errors due to other systematics would far outweigh this level of bias.
30



l d D E S C
/// kark Energy Science Collaboration

Early universe | 67.4f8:g

Planck (Planck Collaboration et al 2018)
+1.2
67.4+12

DES + BAO + BBN (Abbott et al 2018)

|Wong et al. 2020

6 time-delay lenses

|Mi||on et al. 2020|

7 time-delay lenses (6 HOLICOW + 1 STRIDES) TDCOSMO (NFW + stargjconstant M/L)

- A

TDCOSMOV.ZZbower—AI‘aW)

Birrer et al. 2020

7 time-delay lenses (+ 33 SLACS lenses in different combinations)

+5.6
74. 2—6 1
TDCOSMO-only
+5.8
73.3728
TDCOSMO+SLACS gy (anisotropy constraints from 9 SLACS lenses)
67.4143
TDCOSMO+SLACSspss (profile constraints from 33 SLACS lenses)
+4.1
67'%—3 2

TDCOSMO+SLACSspss +ru (@nisotropy and profile constraints from SLACS)
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Ho [kms=tMpc!] 31
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