Lens models with two offset mass components and implications for H₀

Liliya L.R. Williams

(University of Minnesota)

Time-Domain Cosmology with Strong Gravitational Lensing

January 25,2021

Observations of iPTF16geu

The 1st resolved multiply imaged SNIa

Discovered in intermediate Palomar Transient Factory Sept 5, 2016 (Goobar+2017)

> $Z_{\text{lens}} = 0.2163$ $Z_{\text{source}} = 0.409$

0.3"~1 kpc

$$\mu = 67.8^{+2.6}_{-2.9}$$

Keck II/NIRC2 / - band c) (3) 0.2 (4)(1) (2) 11.05.2016 H-band Ks-band 0.2'' k) 0.2" m) 10.23.2016 HST

10.29.2016

11.12.2018

difference

Macro- & micro-lensing magnification

For a SNIa source, we know total (macro + micro) magnification of each image

Predictions of elliptical power law galaxy mass models: projected density profile: $\sum \propto r^{\alpha-2} \quad \alpha = 1$ is ``isothermal"

Elliptical power law profile model does not adequately describe the lens galaxy:

- Density profile too shallow, cannot apply to all radii
- ➤ The center of observed light and center of fitted mass are offset by 0.03" +/- 0.002"
- > Position angle of the observed light and fitted mass are misaligned by 40°

Motivation for our mass models

Images form at ~1/2 effective radius of galaxy light \rightarrow mass dominated by stars

Similar ellipticals in Virgo:

Dhar & Williams (2012) data: Kormendy+2009

Two mass components: baryons1 + baryons2, *or* DM + baryons with offset centers (Gomer & Williams 2018, Nightingale+2019) → 12 model parameters; recovery of lens mass distribution from observables is under-constrained → many solutions

Mass models with two offset components

Generate many lens mass models, all fitting image positions.

Magnifications predicted by these galaxy models (without microlensing):

Green models (incl. M1, M2, M3): primary mass component has >50% of total mass within image radius, single mass & light centroid

Williams & Zegeye (2020)

Two general features of iPTF16geu lensing galaxy can help explain properties of other galaxy quads

1 lopsidedness (dipole) *azimuthal lens structure*

2

a range of density profile slopes, including shallower than isothermal *radial lens structure*

Radial-azimuthal decomposition: Quad population \rightarrow common features of lens galaxies

Azimuthal and radial properties of lens galaxies are <u>approximately</u> reflected in azimuthal and radial properties of their quads

Model-free analysis of quads

Absolute scale of quads not important for structure $\rightarrow d_2 = D_2/D_1$, etc.

6D "phase-space" of galaxy lensing

For now, use only 2+1 D space <u>azimuthal structure:</u> a 2D projection of 3D angle space <u>radial structure:</u> D dD

 D_{min}/D_{max}

The goal is not to model individual quads, but to compare properties of observed vs. synthetic quad **populations.**

Woldesenbet & Williams (2012, 2015) Gomer & Williams (2018) For a different take on model-independent analysis of lenses, see Jenny Wagner's talk.

Elliptical lenses of any ellipticity and density slope, but without shear generate quads on a horizontal line.

Gomer & Williams (2018)

Lopsided, approximately elliptical lenses produce a quad population similar to the observed quad pop.

Gomer & Williams (2018)

Lopsided, approximately elliptical lenses produce a quad population resembling the observed quad pop.

Radial properties

To obtain large radial range of image pos. need lens models with: large ellipticity or shear

0r

shallower density profiles

Radial structure of quads is sensitive to profile slope, ellipticity and shear of lensing galaxies; not sensitive to lopsidedness

Radial properties

Gomer & Williams (2021 [under review])

also

see

To reproduce the population of observed quads, need isothermal density slopes with large-ish shear / ellipticity or

(in some systems, modeled shear is larger than the lens environment may justify)

shallower density profiles with small-ish shear / ellipticity

Conclusions & implications for the determination of H₀

Model-free analysis of quad populations (6D "phase-space") complements the information obtained from modeling of individual lenses. Unlike modeling, it tells us about common (frequently occurring) properties of lens galaxies.

Azimuthal structure of quads is very sensitive to lopsidedness vs. shear of galaxies; not sensitive to profile slope.

Radial structure of quads is sensitive to profile slope, ellipticity and shear of lensing galaxies; not sensitive to lopsidedness or deviations from ellipticity.

Based on iPTF16geu and azimuthal structure of observed quads, commonly used lens mass models, elliptical + shear, or models with co-centered two components may not fully reflect the detailed structure of lens galaxies, which is needed to accurately predict model time delays, and hence H_0 .

In general, *accurate,* ~*few%-level* determination of H_0 requires that mass models match very closely the real mass distribution of the lens galaxy. *This talk:* model-free arguments that mass models may need improvement. *Matt Gomer's talk:* model-based conclusions on the accuracy of H_0 determination.

extra slides

Time delays in SNIa iPTF16geu

∆RA, arcsec

 ΔRA , arcsec

Extended ring of SNIa host galaxy

 ΔRA , arcsec

brightest ring segment

these rings are predictions of mass models; not a fit to observations

Fundamental Surface of Quads (FSQ)

Lenses that are not double-mirror symmetric do not lie on FSQ. Instead, produce different distributions of quads around FSQ.

