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Abstract

both waves propagate in a vacuum
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Question: If a source emitted GWs and light simultaneously
and both waves propagated near a lens,
does an observer receive them at the same time?
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GWs « delayed or not (?)
studied in wave optics
if the wavelength > the Schwarzschild radius of lens

M < 1O5M® (f/Hz)_1 f: GW frequency
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phase velocity : GWs faster than light  (RT 2017)
group velocity : GWs faster than light (Morita & Soda 2019)
wave-front velocity : GWs equal to or slower than light (Suyama 2020)

m) satisfy the causality of GR

apparent superluminality of phase & group velocities

caused by interference of GWs
(Ezquiaga+ 2020)

the arrival-time lag is a real observable in the far future
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the arrival-time lag is a real observable in the far future




Introduction

(e.g. Andersson+ 2013; Rosswog 2015)

Promising sources emitting both GWs and light

B NS'NS or NS'BH merger NS: neutron star
— short gamma ray burst BH: black hole
target of ground- & space-based detectors

- Supernova
target of ground-based detectors

- Massive BH binary
may emit light if the binary is embedded in accretion disk

target of space-based detectors & pulsar timing arrays

Lensed GW signal not yet confirmed at present (Hannuksela+ 2019)



GW1 7 O 8 1 7 , zzzz Lightcurve from Fermi/GBM (10 — 50 keV)
detected in both GWs & light o L il s b dse o )AH\ '
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2. Theory

Gravitational lensing of light

I

source ' mass I observer

lens

wavelength of light << typical lens size

— geometrical optics valid



2. Theory

Gravitational lensing of light

P

source ' mass M observer

lens

Light experiences the Shapiro time delay

N 4GM 2 X Schwarzschild radius of the lens

tap o -
c3 C

N M
~ 1 sec 1O5M@

t. independent of frequency




Gravitational lensing of GWs

GWs »

source ‘ mass M observer

lens

GW wavelength > Schwarzschild radius of the lens

— wave optics should be used

—1
M < 10° M, (Hi>
7

f =~ 100 Hz for LIGO/Virgo

~ 108 Hz for pulsar timing arrays



lens plane 0., : angular source position

@ :incoming GW direction

observer

time delay along the GW path
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Lensed waveform given by the Kirchhoff diffraction integral

(Schneider, Ehlers, Falco 1992)

lensed waveform unlensed waveform
RE(f) = F(f;85)h(f)

Amplification factor

Dy, D -
P00 = Gp o T [ €0 explomifia(0,0.)




In wave optics

lens plane

%% 20

. point mass

o \ observer

lensed GWs = superposition of many GW paths




In geometrical optics

g;jjg . point mass T

source\ )/ / observer

lensed light = sum of two paths (bright & faint images)

bright image forms at minimum t4
lens plane (= shortest time delay)

» arrival-time difference Aty between GWs and the bright image
will be shown
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propagation of a monochromatic wave
In the presence of a point mass lens



phase shift for monochromatic waves (RT 2017)

Aty = tq,gws — td,light
GW phases appear in advance >0

G P

> time

solid black:wave optics

GW propagation is “superluminal”



phase shift for monochromatic waves (RT 2017)

Aty = tq,gws — td,light
GW phases appear in advance >0

G P

> time

solid black:wave optics

GW propagation is “sUpsseminal’

apparently superluminal (Ezquiaga+ 2020)



the arrival time difference defined in phase can reach

f 1
Aty ~ 0.1sec (E)

when the wavelength is comparable to the Schwarzschild radius

& the impact parameter is smaller than the Einstein radius

—1
Atgq ~ 1 msec ( ) for ground-based detectors

100Hz
—1
~ 2min ( / > for space-based detectors
mHz
f —1
~ 4 months ( 10—8Hz) for pulsar timing arrays

the time difference is more prominent for lower GW frequency



propagation of a Gaussian wave packet (Morita & Soda 2019)

N Atqg > 0

> time

solid black: wave optics

» GW packet arrives earlier than the packet of light

but the time lag Aty is smaller than that in phase velocity



propagation velocity of wave front  (Suyama 2020)

S(t) =0 S(t) # 0 (any waveform OK)
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solid black:wave optics

GWs never arrive at t <ty  (« independent of frequency)
consistent with the causality of GR



propagation velocity of wave front (Suyama 2020)

S(t) =0 S(t) # 0 (any waveform OK)
t <to t > 1o
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GWs never arrive at t <ty  (« independent of frequency)
consistent with the causality of GR



S 2020
lens plane (Suyama )

%/ —

‘ lens
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lensed GWs = superposition of many GW paths

any path cannot arrive earlier than the bright image of light
(the minimum time delay)
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This paper confirmed all the previous results by
RT 2017, Morita & Soda 2019 and Suyama 2020

Interference between lensed GW paths causes
apparent superluminal propagation of GWs
observed in phase & group velocities




Why GW phases appear in advance? (Ezquiaga+ 2020)

— interference among multiple images cause
phase modulation

superposition of

/\/\/ many signals
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Measurement of the orbital phase difference in SMBH binary

(RT 2017)
® GWs
’

° ") detector
super-massive BH ) pulsar timing arrays
(SMBH) binary (PTAS)

galaxy g
f~10"°Hz

source

Super Massive Black Hole Binaries at z=0.2-2

Future pulsar timing arrays may detect 500-1000 sources
in both GW and X-ray signals (Sesana+ 2012)

The orbital motion may be observed in both GW and x-ray detectors
— measure the orbital phase difference



Measurement of the orbital phase difference in SMBH binary

(RT 2017)
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probability that the time difference is larger than At 4
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probability that the time difference is larger than At 4

Lensing probability
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Conclusions

- Comparison of the propagation velocities of lensed GWs
(in wave optics) and lensed light (in geometrical optics)

{ GWs faster than light in phase & group velocities
GWs equal to or slower than light in wave-front velocity

RT (2017), Morita & Soda (2019), Suyama (2020), Ezquiaga+ (2020)

- The arrival time difference in phase can reach

Atq ~ 0.1s(f/Hz) ™" f : GW frequency

- Future pulsar timing arrays may detect arrival time differences by

measuring the orbital phase differences between GW/light signals
in SMBH binaries
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Arrival Time Differences of Lensed Massive Gravitational Waves
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propagation of a Gaussian wave packet



3. Measurement of the phase difference

In gravitational lensing of light, the following two lenses are common

distant galaxy star in Milky Way

lensing probability ~0.1%—1% ~ 107
lens mass ~ 10° M ~ Mg
arrival-time difference M 5 (M )
~ ~ 10 S| ——
in phase months (1012M@ (M(D

GW frequency M —1 M\ !
—7 5
(must in wave-optics 5 107" Hz (1()12M®) S’ 10°Hz (M—@>

regime )




Lensed waveform in high frequency limit

(Schneider, Ehlers, Falco 1992)

Amplification factor (given by the Kirchhoff diffraction integral)

Dy, D :
P00 = Gp 2§ [ €0 explomifia(@,0.)

In high frequency limit ft4(0,05) > 1

stationary points of the phase only contribute the integral
(i.e., the Fermat principle)

Vo tqa(0,05) =0 :> two solutions @

corresponding to bright & faint images




Constraint on the propagation speed of GWs

— a test of general relativity

1) orbital phase difference in binary

® GWs
.. ) ’

binary observer

Orbital phase differences between the GW/light signals
in a white dwarf binary can be used to constrain
the propagation speed of GWs.

(Larson & Hiscock 2000; Cutler+ 2003; Cooray & Seto 2004)



Constraint on the propagation speed of GWs

— a test of general relativity

2) short gamma-ray burst / supernova

% GWs R

source observer

Arrival-time difference between the GW/light signals from
SGRB or SN can be used to measure the velocity difference.

The intrinsic time lag of emissions is required.
(Nishizawa & Nakamura 2014; Nishizawa 2016)



(Ezquiaga+ 2020)
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group velocity
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Lensed waveform in time domain

lensed waveform unlensed waveform

1 D Ds d
Rl (1) = d?0h (t —t4(0, 86,
() = - s [ 0h(t a(6.6.)




arrival time difference defined by the group velocity

Atq(f) = tdatignt — ta.aws(f)

bright light image GWs
(independent of 1)

d
td,GWS(f)‘group — (1 | fdf) tdaGWS(f)’phase

GW time delay GW time delay
In group velocity In phase velocity




arrival time difference defined in phase

Atq(f) = td light — ta,aws(f)

bright light image GWs
(independent of 1)

Atq > 0 : GWs faster than light
(< 0) (slower)




several GW detectors now in operation or planned, over a wide frequency range
from nHz to kHz
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GWs splitted into and t>0 (green) in wave optics
If GWs arrive earlier than light, the green signal arrives at t<0
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GWs splitted into and t>0 (green) in wave optics

If GWs arrive earlier thandightthegreen signal arrives at t<0
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GWs and light arrive at the same time at t=0 I
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impact parameter normalized by
y = 0,/0,

the Einstein radius

contour plot of the arrival time difference
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Degeneracy between binary’s and lens parameters
in the lensed waveform

(Liang Dai+ 2018)

() = A0

lens model parameters (such as mass, impact parameter,
density profile) may degenerate with spin-orbit precession

or eccentricity of the binary

lensing modulates the amplitude and phase

spin-orbit precession and eccentricity similarly modulate both

while masses, aligned spin, and tidal deformability modulate
the phase only



(x107'%)

h(t)

(Ezquiaga+ 2020)
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Unveiling the wave nature of gravitational-waves with simulations

Jian-hua He*
School of Astronomy and Space Science, Nanjing University, Nanjing 210093, P. R. China and

Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University), Ministry of Education, Nanjing 210093, China

The author solved the partial derivative equation
for the lensed wave propagation in time domain
(instead of the Kirchhoff diffraction integral)

» GWs faster than light



Lensing effects on the polarization of GWs

In geometrical optics,
the polarization is parallelly transported along the null geodesic

In quasi-geometrical optics, (Harte 2019; Cusin & Lagos 2020)

the propagation equation was solved in a series of 1/A

iy (f) = hip2°(f) + hinV (f) + O(1/A%)

geometrical leading
optics correction
O(1/A)

In wave optics, 7?7



source, lens, and observer placed on straight line

observer
source

e : Einstein radius

O : angular Einstein radius



solid : Atd in phase velocity
dashed: Atd in group velocity

(Ezquiaga+ 2020)
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lens plane 0., : angular source position

souree GW path @ : incoming GW direction

observer

Dy, Dg, D,q : distances between the source, lens and observer

gravitational potential of the lens confined on the lens plane

(i.e., the thin lens approximation)



Source properties

(Abbott+ PRL 2017)

Primary mass m;
Secondary mass ms
Chirp mass .#

Mass ratio ma/m;

Total mass my

Radiated energy E..q
Luminosity distance Dy,
Viewing angle ©

Using NGC 4993 location

Combined dirrlensionless tidal
deformability A

Dimensionless tidal deformability
A(1.4M)

Low-spin priors

(|x| < 0.05)
1.36-1.60 M.,
1.17-1.36 M,

0.004
0.7-1.0

2.74 501 Mo
> 0.025M, c?

4073, Mpc

< 55°
< 28°

< 800

< 800

High-spin priors

(|x| < 0.89)
1.36-2.26 M,
0.86-1.36 M,

0.004
0.4-1.0

2.827 000 Mo
> 0.025M c?

40t?4 MpC

< 56°
< 28"

< 700

< 1400




