Time-Domain Cosmology with Strong Lensing IPMU workshop, Feb 2021

Phase Shifts of Lensed Gravitational Waves

Liang Dai UC Berkeley

	-

Lensing of Gravitational Waves

Diffraction integral
$$F(\omega) = \frac{\omega}{2\pi i} \int$$

Geometric (or ray-optics) regime: delay time ~ $\frac{GM_L}{c^3} \gg \frac{2\pi}{\omega}$

Geometrical (ray-optics) regime

Cosmological GW sources most likely lensed by galaxy/cluster scale lenses: geometric theory of lensing

flux magnification

$$F(\omega) \approx \sum_{I} |\mu(\boldsymbol{x}_{I})|^{1/2} e^{i \omega \tau(\boldsymbol{x}_{I})} e^{i \operatorname{sgn}(\omega) n_{I} \pi/2}$$

$$\uparrow$$
time delay Morse phase

Biased mass and redshift inferred frequency independent amplification and time delay

$$M(1+z) = M'(1+z')$$
$$\frac{\sqrt{\mu}}{d_L(z)} = \frac{1}{d_L(z')}$$

e.g. Dai, Venumadhav & Sigurdson (2017); Oguri (2018); Broadhurst, Diego & Smoot 1802.05273

Difficult to tell if any single GW event is lensed !

Morse phase shift

Morse phase

$$F(\omega) \approx \sum_{I} |\mu(\boldsymbol{x}_{I})|^{1/2} e^{i \,\omega \,\tau(\boldsymbol{x}_{I})} e^{i \,\mathrm{sgn}(\omega)}$$
$$n_{I} = \# \text{ of negative eigenvals} = \begin{cases} 0 & \min(\alpha) \\ 1 & \text{saddle poi} \\ 2 & \max(\alpha) \end{cases}$$

Binary black holes on **circular orbit** with dominant (2,2) radiation mode: degenerate with orbital phase

Dai & Venumadhav 1702.04724; Ezquiaga et al 2008.12814

$$\Delta \varphi = \frac{\pi}{4} \times \begin{cases} 0 & \text{minima} \\ 1 & \text{saddle points} \\ 2 & \text{maxima} \end{cases}$$

 $n_I \ \pi/2$

nts

minima saddle points maxima

Blandford & Narayan (1986)

What to learn from lensed BBHs?

- Probe BBH sources beyond the usual detection horizon (in particular in the era of 2G detectors)
 Buscicchio et al (2020); Mukherjee et al (2021)
- Opportunity to associate a BBH source with a host galaxy, or even localize it within the host galaxy
 Hannuksela, Collett, Caliskan & Li (2020);
 Yu, Zhang & Wang (2020)
- Probe profile of galaxy or cluster lenses complementary to lensed EM sources: central images; faint images;
- Probe lens substructure through wave diffraction effects; e.g. stellar mass objects; small-scale clustering of the Dark Matter.
 Dai, Li, Zackay, Mao & Lu (2018)
 Diego, Hannuksela, Kelly, Pagano, Broadhurst, Kim, Li & Smoot (2019)
 Oguri & Takahashi (2020)

Rate of lensing by galaxies or clusters

e.g. Dai, Venumadhav & Sigurdson (2017); Ng, Wong, Broadhurst & Li (2018); Li, Mao, Zhao & Lu (2018); Oguri (2018); Hannuksela++ (2019); Contigiani (2020);

Models of lenses and BBH population; ~ 0.01 yr⁻¹ at O1/O2; ~ 0.1 -1 yr⁻¹ at fully upgraded LIGO/Virgo; ~ O(100-1000) yr⁻¹ at 3rd gen. detectors

Search for multiple images in O1/O2

Parameter coincidence quantified by Bayes evidence ratios (excluding time, amplitude, and orbital phase) Haris et al (2018)

However, Morse phase shifts not accounted for

Independent investigation into GW170104 / GW170814

Dai, Zackay, Venumadhav, Roulet, Zaldarriaga 2007.12709

p-value ~ 0.02

p-value ~ 0.002

No greater than a factor of ~15

			۱
÷		-	
•		۲	۱
	-	1	۱
•	-	۲	۱
		-	I
			I
•	•	٦	I
			I
•	*	7	I
			I
		_	I
		٦	1
			I
			I
			۱
			I
•		-	I
•		÷	I
•		-	I
		_	I
			I
•		-	I
			I
•		-	۱
			I
			I
	=	-	۱
			I
			I
			I
			I
2	1		l
		1	l
÷		4	I
		-	I
	_		I
	-	٦	I
		-	I
			۱
•		-	ł
			۱
			I
•	-	-	۱
			۱
			۱
			۱
			۱
			l

Single-template search for sub-threshold signals

If lensing if true, there are possibly additional lensed images.

Use the **best-fit waveform** informed from GW170814 and GW170104 for a single-template search. Use extrinsic parameters informed from GW170814 and GW170104 (especially RA, DEC); this is implemented as a coherent score:

Overall ~ 10⁴ reduction in look-elsewhere effect and ~ 20% more sensitive in strain amplitude.

Somewhat surprisingly, we found one sub-threshold signal, GWC170620, with a false alarm probability **1.3%** determined empirically from time slides

 $S \propto \sum_{s \in \Pi_{\text{pair}}} \sum_{\phi_M, t_0} \int dD_L \mathcal{L}(s, \phi_M, t_0, D_L) P(D_L);$

Relative Morse phases

Morse phase manifests itself as a change in the orbital phase

$$h = F_{+}(\alpha, \, \delta, \, \psi) \, h_{+} + F_{\times}(\alpha, \, \delta, \, \psi) \, h_{+} + F_{\times}(\alpha, \, \delta, \, \psi) \, h_{+} \propto \frac{1}{2} \left(1 + \cos^{2} \iota\right) e^{2 \, i \, \varphi}$$
$$h_{\times} \propto -i \, \cos \iota \, e^{2 \, i \, \varphi}$$

Orbital phase for any *individual* event poorly constrained due to degeneracy with other extrinsic parameters.

Under lensing hypothesis, multiple events share the same extrinsic parameters, hence relative Morse phases can manifest as **apparent orbital phases differing by discrete amounts**.

$$\Delta \varphi = \frac{1}{2} \, \Delta \phi_M$$

 $(\alpha, \, \delta, \, \psi) \, h_{\times}$

Checks on GW170814, GW170104 and GWC170620

Liu, Hernandez & Creighton 2009.06539

Joint parameter estimations with Morse phase shifts accounted for

Confirmed significant coincidence in intrinsic + extrinsic parameters + Morse phases

Properties of candidate lensed images

GW170814, GW170104 and GWC170620 have network SNRs ~18, ~14, 7.8

strain amplification ratios ~ 1 : 0.4 : 0.25

flux magnification ratios ~ 1 : 1/6 : 1/15

(Absolute magnifications undetermined.)

Long time delays on the order of months; need a galaxy cluster scale lens

No comparably loud counterimages within hours of GW170814, expect for a blind "window"!

(see Broadhurst, Diego & Smoot 1901.03190)

localized to ~ 16 deg^2

Difficulty with image configuration

Three types of images: minimum (L), saddle point (S), maximum (H)

GW170104, GWC170620, GW170814 must be either L, H, H or H, L, L

S images must have been missed from n(L) + n(H) - n(S) = 1. This however is not too strange given the fraction of Hanford-Livingston coincident times

L images have (absolute) magnification factors > 1, so **at least one H image is significantly magnified** (?!) (GW170814 for L, H, H, or GW170104 for H, L, L). This is peculiar!

> $z_{S}^{\rm HLL} > 0.26$ $z_{S}^{\rm LHH} > 0.13$

Likely **zs < 0.7** because no counter image within 1 hr of GW170814.

Kneib (1993)

Einstein quad: central de-magnified H image **Radial arc**: counter S image with short delay

Lesson learned from 01/02 • Relative Morse phases are measurable! The combination of time delays,

- measurement!
 - (1) better sky localization from at least 3 detectors
 - (2) more short time-delay (hours, days) candidates
 - (3) smaller error bars on intrinsic parameters and extrinsic parameters from better sensitivity at low frequencies
 - (4) detection of distant lower-mass BBH events (much better chirp mass measurement)
 - Wang, Lo, Li & Chen 2101.08264

magnification ratios, and Morse phases tightly constrains any viable lens.

• Due to detector antenna patterns, even very loud lensed images can hide in noise. Conversely, very faint lensed images can get lucky to be detectable.

• If the triplet is a statistical fluke, we are currently limited by false alarms.

Getting more events at current measurement quality won't help. Need better

• (5) S image of high SNR signals (higher harmonics & spin-orbit precession)

The End

Detector responses play tricks

Strain amplitude response

About 4—5 hrs after GW170814, LIGO detectors became almost blind toward that direction on the sky, and Virgo was more sensitive !

Broadhurst, Diego & Smoot 1901.03190

Lesson learned: an image equally loud as GW170814 could have hidden in the Gaussian noise.

Localization From Joint PE

localized to ~ 16 deg²

Time delays ~ months require a DM halo of galaxy group or galaxy cluster scale

Galaxy group or cluster lenses can have more complicated structure.

Perhaps the peculiar image configuration not completely out of the question.