Identifying Unphysical Source Reconstructions

https://arxiv.org/abs/2012.04665

Jacob Maresca, Simon Dye, Nan Li 26/1/2020

UNITED KINGDOM · CHINA · MALAYSIA

Pixelised Source Reconstructions

- Unconstrained by analytic profiles
- Adapt to lens magnification/source brightness

• Fewer non-linear parameters

Nightingale & Dye 2015

Under/Over Magnified Solutions

Observation

Over-magnified

Ray Diagram

Source Reconstruction

Parameter Space

Predicted Einstein Radius (arcec)

- Under-magnified solutions exist at $\approx 0.5 \times \theta_E$
- Over-magnified solutions exist at $\approx 2 \times \theta_E$
- This suggests a route back to the 'correct' solution!

CNN Training

- Generate simulated lensed images (simple Sérsic sources)
- Produce pixelised source reconstructions for each class of solution

Observation

Source Reconstruction

Residual Map

Correct

Under-magnified

Over-magnified

Combining CNN with PyAutoLens

- Blindly model 100 strong lenses
- Ask the CNN for predictions
- Remodel with updated priors on θ_E
- Repeat

Additional Plots

recon Predicted Label

under

over

• Dual inputs

• 3 convolutional layers

Dropout

• Tested on simple sources

• Precision > 0.99 Recall > 0.99

• Tested on HUDF sources

Precision ~ 0.89 lacksquareRecall ~ 0.89

CNN Testing

