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ABSTRACT

The H0LiCOW collaboration inferred via strong gravitational lensing time delays a Hubble constant value of H0 = 73.3+1.7
�1.8 km s�1Mpc�1,

describing deflector mass density profiles by either a power-law or stars (constant mass-to-light ratio) plus standard dark matter halos. The mass-
sheet transform (MST) that leaves the lensing observables unchanged is considered the dominant source of residual uncertainty in H0. We quantify
any potential e�ect of the MST with a flexible family of mass models that directly encodes it and are hence maximally degenerate with H0. Our
calculation is based on a new hierarchical Bayesian approach in which the MST is only constrained by stellar kinematics. The approach is validated
on mock lenses generated from hydrodynamic simulations. We first apply the inference to the TDCOSMO sample of 7 lenses (6 from H0LiCOW)
and measure H0 = 74.5+5.6

�6.1 km s�1Mpc�1.
Secondly, in order to further constrain the deflector mass density profiles, we add imaging and spectroscopy for a set of 33 strong gravitational lenses
from the SLACS sample. For 9 of the 33 SLAC lenses, we use resolved kinematics to constrain the stellar anisotropy. From the joint hierarchical
analysis of the TDCOSMO+SLACS sample, we measure H0 = 67.4+4.1

�3.2 km s�1Mpc�1. This measurement assumes that the TDCOSMO and SLACS
galaxies are drawn from the same parent population. The blind H0LiCOW, TDCOSMO-only and TDCOSMO+SLACS analyses are in mutual
statistical agreement. The TDCOSMO+SLACS analysis prefers marginally shallower mass profiles than H0LiCOW or TDCOSMO-only. Without
relying on the form of the mass density profile used by H0LiCOW, we achieve a ⇠5% measurement of H0. While our new hierarchical analysis
does not statistically invalidate the mass profile assumptions by H0LiCOW – and thus their H0 measurement relying on those – it demonstrates
the importance of understanding the mass density profile of elliptical galaxies. The uncertainties on H0 derived in this paper can be reduced by
physical or observational priors on the form of the mass profile, or by additional data. The full analysis is available � here.
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1. Introduction

There is a discrepancy in the reported measurements of the Hub-
ble constant from early universe and late universe distance an-
chors. If confirmed, this discrepancy would have profound conse-
quences and would require new/unaccounted physics to be added
to the standard cosmological model. Early universe measure-
ments in this context are primarily calibrated with sound hori-
zon physics. This includes the Cosmic Microwave Background
(CMB) observations from Planck with H0 = 67.4 ± 0.5 km
s�1Mpc�1(Planck Collaboration et al. 2018), galaxy clustering
and weak lensing measurements of the Dark Energy Survey
(DES) data in combination with Baryon Acoustic Oscillations
(BAO) and Big Bang Nucleosynthesis (BBN) measurements, giv-
ing H0 = 67.4± 1.2 km s�1Mpc�1(Abbott et al. 2018), and using
the full-shape BAO analysis in the BOSS survey in combination
with BBN, giving H0 = 68.4 ± 1.1 km s�1Mpc�1(Philcox et al.
2020). All these measurements provide a self-consistent picture
of the growth and scales of structure in the Universe within the
standard cosmological model with a cosmological constant, ⇤,
and cold dark matter (⇤CDM).

Late universe distance anchors consist of multiple di�erent
methods and underlying physical calibrators. The most well es-
tablished is the local distance ladder, e�ectively based on radar
? E-mail: sibirrer@stanford.edu

observations on the Solar system scale, the parallax method and
a luminous calibrator to reach the Hubble flow scale. The SH0ES
team, using the distance ladder method with SNe Ia and Cepheids,
reports a measurement of H0 = 74.0 ± 1.4 km s�1Mpc�1(Riess
et al. 2019). The Carnegie–Chicago Hubble Project (CCHP) us-
ing the distance ladder method with SNe Ia and the Tip of the Red
Giant Branch measures H0 = 69.6±1.9 km s�1Mpc�1(Freedman
et al. 2019, 2020). Huang et al. (2020) are using the distance lad-
der method with SNe Ia and Mira variable stars and measure
H0 = 73.3 ± 4.0 km s�1Mpc�1.

Among the measurements that are independent of the dis-
tance ladder are the Megamaser Cosmology Project (MCP),
which uses water megamasers to measure H0 = 73.9 ± 3.0 km
s�1Mpc�1(Pesce et al. 2020), gravitational wave standard sirens
with H0 = 70.0+12.0

�8.0 km s�1Mpc�1(Abbott et al. 2017) and the
TDCOSMO collaboration1 (formed by members of H0LiCOW,
STRIDES, COSMOGRAIL and SHARP), using time-delay cos-
mography with lensed quasars (Wong et al. 2020; Shajib et al.
2020; Millon et al. 2019).

Time-delay cosmography (Refsdal 1964) provides a one-step
inference of absolute distances on cosmological scales – and
thus the Hubble constant. Over the past two decades, extensive
and dedicated e�orts have transformed time-delay cosmography

1 http://tdcosmo.org
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Fig. 1: Illustration of a composite profile consisting of a stellar component (Hernquist profile, dotted lines) and a dark matter
component (NFW + cored component (Eqn. 37), dashed lines) which transform according to an approximate MST (joint as solid
lines). The stellar component gets rescaled by the MST while the cored component transforms the dark matter component. Left: profile
components in three dimensions. Right: profile components in projection. The transforms presented here cannot be distinguished
by imaging data alone and require i.e. stellar kinematics constraints. � source

where �pl is the logarithmic slope of the profile, qm is the axis
ratio of the minor and the major axes of the elliptical profile, and
✓E is the Einstein radius. The coordinate system is defined such
that ✓1 and ✓2 are along the major and minor axis respectively.
We also add an external shear model component with distortion
amplitude �ext and direction �ext. The PEMD+shear model is one
of two lens models considered in the analysis of the TDCOSMO
sample. For the source and lens galaxies we use elliptical Sér-
sic surface brightness profiles. We add a Gaussian Point Spread
Function (PSF) with Full-Width-at-Half-Maximum (FWHM) of
000.1, pixel scale of 000.05 and noise properties consistent with the
current TDCOSMO sample of Hubble Space Telescope (HST)
images. The time delays between the images between the first
arriving image and the subsequent images are 11.7, 27.6, and
94.0 days, respectively. We chose time-delay uncertainties of ±2
days between the three relative delays. The time-delay precision
does not impact our conclusions about the MST. The inference is
performed on the pixel level of the mock image as with the real
data on the TDCOSMO sample.

In the modeling and parameter inference, we add an additional
cored mass component (Eqn 37) and perform the inference on
all the lens and source parameters simultaneously, including the
core radius Rc and the projected core density ⌃c. In the limit of a
perfect MST there is a mathematical degeneracy if we only use
the imaging data as constraints. We thus expect a full covariance
in the parameters involved in the MST (Einstein radius of the
main deflector, source position, source size etc) and the posterior
inference of our problem to be ine�cient in the regime where the
cored profile mimics the full MST (c(✓) acts as ⌃c for Rc ! 1).
To improve the sampling, instead of modeling the cored profile
c(✓), we model the di�erence between the cored component and
a perfect MST, �c = c(✓)�⌃c with �c (Eqn. 35) instead. �c is
e�ectively the component of the model that does not transform
under the MST and leads to a physical three-dimensional profile
interpretation.

Figure 2 shows the inference on the relevant lens model pa-
rameters for the mock image described in Appendix A. The input
parameters are marked as orange lines for the model without a
cored component. We can clearly see that for small core radii,
Rc, the approximate MST parameter �c can be constrained. This
is the limit where the additional core profile cannot mimic a pure
MST at a level where the data is able to distinguish between them.

For core radii Rc = 3✓E, the uncertainty on the approximate MST,
�c, is 10%. For core radii Rc > 5✓E, the approximate MST is very
close to the pure MST and the imaging information in our exam-
ple is not able to constrain �c to better than �c ± 0.4. We make
use of the expected constraining power on �c as a function of
Rc when we discuss the plausibility of certain transforms. When
looking at the inferred time-delay distance �cD�t , we see that this
quantity is constant as a function of Rc and thus the time-delay
prediction is accurately being transformed by a pure MST (Eqn.
24). Overall, we find that �c ⇡ �int is valid for larger core radii.

Identical tests with a composite profile instead of a PEMD
profile result in the same conclusions and are available � here.

2.6.2. Allowed cored mass components from physical

boundary conditions

In the previous section (2.6.1) we demonstrated that, for large
core radii, there are physical profiles that approximate a pure
MST (�c ⇡ �int). In this section we take a closer look at the
physical interpretation of such large positive and negative cored
component transforms with respect to a chosen mass profile. It is
possible that the core model itself does not require a physical in-
terpretation as it is overall included in the total mass distribution.
The galaxy surface brightness provides constraints on the stellar
mass distribution (modulo a mass-to-light conversion factor) and
the focus here is a consideration of the distribution of the invisi-
ble (dark) matter component of the deflector. Our starting model
is a NFW profile and we assess departures from this model by
using a cored component.

We apply the following conservative boundary conditions on
the distribution of the dark matter component:

1. The total mass of the cored component within a three-
dimensional radius shall not exceed the total mass of the NFW
profile within the same volume, Mcore(< r)  MNFW(< r).
This is not a strict bound, but violating this condition would
imply changing the mass of the halo itself.

2. The density profile shall never drop to negative values,
⇢NFW+core(r) � 0.

Those two imposed conditions define a physical interpretation
of a three-dimensional mass profile as being a re-distribution of
matter from the dark matter component and a rescaling of the
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a cosmological-dependent and cosmology-independent part, as
(Birrer et al. 2016, 2019)

(�P)2 = Ds
Dds

c
2
J(⇠mass, ⇠ light, �ani) (17)

where J(⇠mass, ⇠ light, �ani) is the dimensionless and cosmology-
independent term of the Jeans equation only relying on the an-
gular units in the light, mass and anisotropy model.

Inverting Equation 17 illustrates that a measured velocity
dispersion, �P, allows us to constrain the distance ratio Ds/Dds,
independent of the cosmological model and time delays but while
relying on the same lens model, ⇠ lens,

Ds
Dds
=

(�P)2
c2J(⇠ lens, ⇠ light, �ani)

. (18)

We note that the distance ratio Ds/Dds can be constrained
without time delays being available. If one has kinematic and
time-delay data, instead of expressing constraints on Ds/Dds,
one can also express the cosmologically independent constraints
in terms of Dd (e.g. Paraficz & Hjorth 2009; Jee et al. 2015;
Birrer et al. 2019) as

Dd =
1

(1 + zd)
c�tAB

��AB(⇠ lens)
c

2
J(⇠ lens, ⇠ light, �ani)

(�P)2 . (19)

In this work, we do not transform the kinematics constraints into
Ds/Dds or Dd constraints but work directly on the likelihood level
of the velocity dispersion when discriminating between di�erent
cosmological models.

In Appendix B we illustrate the radial dependence on the
model predicted velocity dispersion, �P, for di�erent stellar
anisotropy models. Observations at di�erent projected radii can
partially break the mass-anisotropy degeneracy provided that we
have independent mass profile estimates from lensing observ-
ables.

2.3. Mass-sheet transform

The mass-sheet transform (MST) is a multiplicative transform of
the lens Equation (Eqn. 1) (Falco et al. 1985)

�� = ✓ � �↵(✓) � (1 � �)✓, (20)

which preserves image positions (and any higher order relative
di�erentials of the lens equation) under a linear source displace-
ment � ! ��. The term (1��)✓ in Equation 20 above describes
an infinite sheet of convergence (or mass), and hence the name
mass-sheet transform. Only observables related to the absolute
source size, intrinsic magnification or to the lensing potential are
able to break this degeneracy.

The convergence field transforms according to

�(✓) = � ⇥ (✓) + (1 � �) . (21)

The same relative lensing observables can result if the mass
profile is scaled by the factor � with the addition of a sheet of
convergence (or mass) of (✓) = (1 � �).

The di�erent observables described in Section 2.1 & 2.2
transform by a MST term � as follow:

The image positions remain invariant

✓� = ✓ . (22)

The source position scales with �

�� = ��. (23)

The time delay scales with �

�tAB� = ��tAB (24)

and the velocity dispersion scales with � as

�P
v � =

p
��P

v . (25)

Until now we have only stated how the MST impacts ob-
servables directly. However, it is also useful to describe how
cosmographic constraints derived from a set of observables and
assumptions on the mass profile are transformed when transform-
ing the lens model with a MST (Eqn. 8, 18, 19). The time-delay
distance (Eqn. 7) is dependent on the time delay �t (Eqn. 5)

D�t � = �
�1

D�t . (26)

The distance ratio constrained by the kinematics and the lens
model scales as

(Ds/Dds)� = ��1
Ds/Dds. (27)

Given time-delay and kinematics data the inference on the angular
diameter distance to the lens is invariant under the MST

Dd� = Dd. (28)

The Hubble constant, when inferred from the time-delay distance,
D�t , transforms as (from Eqn. 9)

H0� = �H0. (29)

Mathematically, all the MSTs can be equivalently stated as a
change in the angular diameter distance to the source

Ds ! �Ds. (30)

In other words, if one knows the dependence of any lensing
variable upon Ds one can transform it under the MST and scale
all other quantities in the same way.

2.4. Line-of-sight contribution

Structure along the line of sight of lenses induce distortions and
focusing (or de-focusing) of the light rays. The first-order shear
distortions do have an observable imprint on the shape of Einstein
rings and can thus be constrained as part of the modeling proce-
dure of strong lensing imaging data. The first order convergence
e�ect alters the angular diameter distances along the specific line
of sight of the strong lens. We define D

lens as the specific angular
diameter distance along the line of sight of the lens and D

bkg as
the angular diameter distance from the homogeneous background
metric without any perturbative contributions. D

lens and D
bkg are

related through the convergence terms as

D
lens
d = (1 � d)Dbkg

d

D
lens
s = (1 � s)Dbkg

s

D
lens
ds = (1 � ds)Dbkg

ds .

(31)

s is the integrated convergence along the line of sight passing
through the strong lens to the source plane and the term 1 � s
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a cosmological-dependent and cosmology-independent part, as
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Until now we have only stated how the MST impacts ob-
servables directly. However, it is also useful to describe how
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assumptions on the mass profile are transformed when transform-
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In other words, if one knows the dependence of any lensing
variable upon Ds one can transform it under the MST and scale
all other quantities in the same way.

2.4. Line-of-sight contribution

Structure along the line of sight of lenses induce distortions and
focusing (or de-focusing) of the light rays. The first-order shear
distortions do have an observable imprint on the shape of Einstein
rings and can thus be constrained as part of the modeling proce-
dure of strong lensing imaging data. The first order convergence
e�ect alters the angular diameter distances along the specific line
of sight of the strong lens. We define D

lens as the specific angular
diameter distance along the line of sight of the lens and D

bkg as
the angular diameter distance from the homogeneous background
metric without any perturbative contributions. D
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bkg are
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choose an uninformative prior, addressing point (2). We make
use of a blind submission to the Time Delay Lens Modeling
Challenge (TDLMC) (Ding et al. 2018) and validate our approach
end to end, including imaging analysis, kinematics analysis and
MST mitigation, addressing point (3) 4.

In our new analysis scheme, the MST is exclusively con-
strained by the kinematic information of the deflector galaxies,
and thus fully accounted for in the error budget. Under these min-
imal assumptions, we expect that the data currently available for
the individual lenses in our TDCOSMO sample will not constrain
H0 to the 2% level.

In addition, we take into account covariances between
the sample galaxies, by formulating the priors on the stellar
anisotropy distribution and the MST at the population level and
globally sampling and marginalizing over their uncertainties.

To further improve the constraints on the mass profile and
the MST on the population level, we incorporate a sample of 33
lenses from the Sloan Lens ACS (SLACS) survey (Bolton et al.
2006) into our analysis. We make use of the lens model infer-
ence results presented by Shajib et al. (prep, 2019), which follow
the standards of the TDCOSMO collaboration. We assess the as-
sumptions in the kinematics modeling and incorporate Integral
Field Unit (IFU) spectroscopy from VIMOS 2D data of a subset
of the SLACS lenses from Czoske et al. (2012) in our analy-
sis. This dataset allows us to improve constraints on the stellar
anisotropy distribution in massive elliptical galaxies at the popu-
lation level and thus reduces uncertainties in the interpretation of
the kinematic measurements, hence improving the constraints on
the MST and H0. Our joint hierarchical analysis is based on the
assumption that the massive elliptical galaxies acting as lenses
in the SLACS and the TDCOSMO sample represent the same
underlying parent population in regard of their mass profiles and
kinematic properties. The final H0 value derived in this work is
inferred from the joint hierarchical analysis of the SLACS and
TDCOSMO samples.

The paper is structured as follows: Section 2 revisits the anal-
ysis performed on individual lenses and assesses potential sys-
tematics due to MST and mass profile assumptions. Section 3
describes the hierarchical Bayesian analysis framework to miti-
gate assumptions and priors associated to the MST to a sample of
lenses. We first validate this approach in Section 4 on the Time-
Delay Lens Modeling Challenge data set (Ding et al. 2018) and
then move to perform this very same analysis on the TDCOSMO
data set in Section 5. Next, we perform our hierarchical analy-
sis on the SLACS sample with imaging and kinematics data to
further constrain uncertainties in the mass profiles and the kine-
matic behavior of the stellar anisotropy in Section 6. We present
the joint analysis and final inference on the Hubble constant in
Section 7. We discuss the limitations of the current work and lay
out the path forward in Section 8 and finally conclude in Section
9.

All the software used in this analysis is open source and
we share the analysis scripts and pipeline with the community
� here5. Numerical tests on the impact of the MST are performed
with �����������6 (Birrer & Amara 2018; Birrer et al. 2015).
The kinematics is modeled with the �����������.G����� mod-
ule. The re-analysis of the SLACS lenses imaging data is per-
formed with �������7, a wrapper around ����������� for au-

4 Noting however the caveats on the realism of the TDLMC simulations
discussed by Ding et al. (2020).
5 https://github.com/TDCOSMO/hierarchy_analysis_2020_

public/

6 � https://github.com/sibirrer/lenstronomy

7 � https://github.com/ajshajib/dolphin

tomated lens modeling (Shajib et al. prep) and we introduce ��-
��A��8 (this work) for the hierarchical sampling in conjunction
with �����������. All components of the analysis - including
analysis scripts and software - were reviewed internally by peo-
ple not previously involved in the analysis of the sample before
the joint inference was performed. All uncertainties stated are
given in 16th, 50th and 84th percentiles. Error contours in plots
represent 68th and 95th credible regions.

As in previous work by our team - in order to avoid exper-
imenter bias - we keep our analysis blind by using previously
blinded analysis products, and all additional choices made in this
analysis, e.g. considering model parameterization and including
or excluding of data, are assessed blindly in regard to H0 or pa-
rameters directly related to it. All sections, except Section 8.5, of
this paper have been written and frozen before the unblinding of
the results.

2. Cosmography from individual lenses and the
mass-sheet degeneracy

In this section we review the principles of time-delay cosmog-
raphy and the underlying observables (Section 2.1 for lensing
and time delays and Section 2.2 for the kinematic observables).
We emphasize how a MST a�ects the observables and thus the
inference of cosmographic quantities (Section 2.3). We separate
the physical origin of the MST into the line-of-sight (external
MST, Section 2.4) and mass-profile contributions (internal MST,
Section 2.5) and then provide the limits on the internal mass
profile constraints from imaging data and plausibility arguments
in Section 2.6. We provide concluding remarks on the constrain-
ing power of individual lenses for time-delay cosmography in
Section 2.7.

2.1. Cosmography with strong lenses

In this section we state the relevant governing physical principles
and observables in terms of imaging, time delays, and stellar
kinematics.

The phenomena of gravitational lensing can be described by
the lens equation, which maps the source plane � to the image
plane ✓ (2D vectors on the plane of the sky)

� = ✓ � ↵(✓), (1)

where ↵ is the angular shift on the sky between the original
unlensed and the lensed observed position of an object.

For a single lensing plane, the lens equation can be expressed
in terms of the physical deflection angle ↵̂ as

� = ✓ � Ds
Dds

↵̂(✓), (2)

with Ds, Dds is the angular diameter distance from the observer
to the source and from the deflector to the source, respectively.

In the single lens plane regime we can introduce the lensing
potential  such that

↵(✓) = r (✓) (3)

and the lensing convergence as

(✓) = 1
2
r2 (✓). (4)

8 � https://github.com/sibirrer/hierarc
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Fig. A.1: Illustration of the power-law profile (Eqn. 39) in three dimensions (left panel) and in projection (right panel) under an
approximate MST with a cored mass component (Eqn. 37). The transforms presented here were indistinguishable by the mock
imaging data of Figure A.2. � source

Fig. A.2: Mock HST image with a power-law mass profile for
which we perform the inference on the detectability of an ap-
proximate MST. � source

The model covariance matrix for the time delays can be ex-
pressed as

⌃2
�tmodel = cov

�
��Fermat,��Fermat

� ✓
�

D�t

c

◆2
, (C.8)

the covariance matrix on the kinematics as

⌃2
�model = cov

⇣p
JAi0,

q
JA j0

⌘
c

2 Ds
Dds
�
q
�Ai (�ani)�A j (�ani)

(C.9)

and the cross-covariance between the kinematics and the time
delays as

⌃2
�t�model = cov

⇣
��Fermat,

q
JA j0

⌘
D�t

r
Ds
Dds
�3/2

q
�A j (�ani).

(C.10)

In this form, the model covariances are explicitly dependent on
the anisotropy model, the MST and the cosmology.

The covariance between the kinematics and the time delays,
⌃2
�t�model, above in Equation (C.10) is primarily impacted by the

average density slope parameter � of the mass model. � a�ects
both the kinematics and the Fermat potential and uncertainty in �
can lead to covariances. However, if the density slope parameter
is well constrained by imaging data (modulo explicit MST), the
covariance in Equation (C.10) becomes sub-dominant relative to
the uncertainty in the measurement of the kinematics.

When setting ⌃2
�t�model = 0, we can separate the inference

of D�t/� from the kinematics likelihood and can work directly
on the D�t/� posteriors from the inference from the image data,
Dimage, and the time-delay measurement, Dtd,

p(Dtd,Dimage |D�t/�) =
π

p(Dimage |⇠mass, ⇠ light)

⇥ p(Dtd |⇠mass,D�t/�)p(⇠mass, ⇠ light)d⇠massd⇠ light. (C.11)

This allows us to use individually sampled angular diameter dis-
tance posteriors (expression 40) without sampling an additional
MST and then transform them in post-processing. This is appli-
cable for both, external convergence and internal MST and we
e�ectively evaluate the likelihood on the one-dimensional poste-
rior density in D�t/�.

In the same way as for the time-delay likelihood, we can
perform the marginalization of the kinematics likelihood over
the imaging data constraints

p(Dspec,Dimg |�ani,Ds/Dds, �) =π
p(Dimg |⇠mass, ⇠ light)p(Dspec |⇠mass, ⇠ light, �ani,Ds/Dds, �)

⇥ p(⇠mass, ⇠ light)d⇠massd⇠ light. (C.12)

Appendix D: TDLMC inference with more general
anisotropy models

In this work, we presented inferences based on the anisotropy
parameterization by Osipkov (1979); Merritt (1985) (Eqn. 51).
In this Appendix we perform the inference on the TDLMC with a
more general anisotropy parameterization. Agnello et al. (2014a)

Article number, page 36 of 41

S. Birrer et al.: Hierarchical time-delay cosmography

a cosmological-dependent and cosmology-independent part, as
(Birrer et al. 2016, 2019)

(�P)2 = Ds
Dds

c
2
J(⇠mass, ⇠ light, �ani) (17)

where J(⇠mass, ⇠ light, �ani) is the dimensionless and cosmology-
independent term of the Jeans equation only relying on the an-
gular units in the light, mass and anisotropy model.

Inverting Equation 17 illustrates that a measured velocity
dispersion, �P, allows us to constrain the distance ratio Ds/Dds,
independent of the cosmological model and time delays but while
relying on the same lens model, ⇠ lens,

Ds
Dds
=

(�P)2
c2J(⇠ lens, ⇠ light, �ani)

. (18)

We note that the distance ratio Ds/Dds can be constrained
without time delays being available. If one has kinematic and
time-delay data, instead of expressing constraints on Ds/Dds,
one can also express the cosmologically independent constraints
in terms of Dd (e.g. Paraficz & Hjorth 2009; Jee et al. 2015;
Birrer et al. 2019) as

Dd =
1

(1 + zd)
c�tAB

��AB(⇠ lens)
c

2
J(⇠ lens, ⇠ light, �ani)

(�P)2 . (19)

In this work, we do not transform the kinematics constraints into
Ds/Dds or Dd constraints but work directly on the likelihood level
of the velocity dispersion when discriminating between di�erent
cosmological models.

In Appendix B we illustrate the radial dependence on the
model predicted velocity dispersion, �P, for di�erent stellar
anisotropy models. Observations at di�erent projected radii can
partially break the mass-anisotropy degeneracy provided that we
have independent mass profile estimates from lensing observ-
ables.

2.3. Mass-sheet transform

The mass-sheet transform (MST) is a multiplicative transform of
the lens Equation (Eqn. 1) (Falco et al. 1985)

�� = ✓ � �↵(✓) � (1 � �)✓, (20)

which preserves image positions (and any higher order relative
di�erentials of the lens equation) under a linear source displace-
ment � ! ��. The term (1��)✓ in Equation 20 above describes
an infinite sheet of convergence (or mass), and hence the name
mass-sheet transform. Only observables related to the absolute
source size, intrinsic magnification or to the lensing potential are
able to break this degeneracy.

The convergence field transforms according to

�(✓) = � ⇥ (✓) + (1 � �) . (21)

The same relative lensing observables can result if the mass
profile is scaled by the factor � with the addition of a sheet of
convergence (or mass) of (✓) = (1 � �).

The di�erent observables described in Section 2.1 & 2.2
transform by a MST term � as follow:

The image positions remain invariant

✓� = ✓ . (22)

The source position scales with �

�� = ��. (23)

The time delay scales with �

�tAB� = ��tAB (24)

and the velocity dispersion scales with � as

�P
v � =

p
��P

v . (25)

Until now we have only stated how the MST impacts ob-
servables directly. However, it is also useful to describe how
cosmographic constraints derived from a set of observables and
assumptions on the mass profile are transformed when transform-
ing the lens model with a MST (Eqn. 8, 18, 19). The time-delay
distance (Eqn. 7) is dependent on the time delay �t (Eqn. 5)

D�t � = �
�1

D�t . (26)

The distance ratio constrained by the kinematics and the lens
model scales as

(Ds/Dds)� = ��1
Ds/Dds. (27)

Given time-delay and kinematics data the inference on the angular
diameter distance to the lens is invariant under the MST

Dd� = Dd. (28)

The Hubble constant, when inferred from the time-delay distance,
D�t , transforms as (from Eqn. 9)

H0� = �H0. (29)

Mathematically, all the MSTs can be equivalently stated as a
change in the angular diameter distance to the source

Ds ! �Ds. (30)

In other words, if one knows the dependence of any lensing
variable upon Ds one can transform it under the MST and scale
all other quantities in the same way.

2.4. Line-of-sight contribution

Structure along the line of sight of lenses induce distortions and
focusing (or de-focusing) of the light rays. The first-order shear
distortions do have an observable imprint on the shape of Einstein
rings and can thus be constrained as part of the modeling proce-
dure of strong lensing imaging data. The first order convergence
e�ect alters the angular diameter distances along the specific line
of sight of the strong lens. We define D

lens as the specific angular
diameter distance along the line of sight of the lens and D

bkg as
the angular diameter distance from the homogeneous background
metric without any perturbative contributions. D

lens and D
bkg are

related through the convergence terms as

D
lens
d = (1 � d)Dbkg

d

D
lens
s = (1 � s)Dbkg

s

D
lens
ds = (1 � ds)Dbkg

ds .

(31)

s is the integrated convergence along the line of sight passing
through the strong lens to the source plane and the term 1 � s
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Fig. 3: Constraints on an approximate internal MST transform
with a cored component, �c, of an NFW profile as a function of
core radius. In gray are the 1-� exclusion limits that imaging data
can provide. In orange is the region where the total mass of the
core within a three-dimensional radius exceeds the mass of the
NFW profile in the same sphere. In blue is the region where the
transformed profile results in negative convergence at the core
radius. The white region is e�ectively allowed by the imaging
data and simple plausibility considerations and where we can use
the mathematical MST as an approximation (�c ⇡ �int). The halo
mass, concentration and the redshift configuration is displayed in
the lower left box. � source

(Eqn. 35) and the analytic relation of a perfect MST (Eqn. 25)
for the mock lens presented in Appendix A. For this figure, we
chose an aperture size of 100 ⇥ 100 and seeing of FWHM = 000.7
and an isotropic stellar orbit distribution (�ani(r) = 0). For �c
in the range [0.8, 1.2], the MST approximation in the predicted
velocity dispersion is accurate to <1%. We conclude that, for the
�int range considered in this work, the analytic approximation of
a perfect MST is valid to reliably compute the predicted velocity
dispersion. The precise dependence of the velocity dispersion
only marginally depends on the specific core radius Rc and the
approximation remains valid for all reasonable and non-excluded
core radii and �int. We tested that our conclusions also hold for
di�erent anisotropy profiles and observational conditions.

2.7. Constraining power using individual lenses

For each individual strong lens in the TDCOSMO sample, there
are four data sets available: (i) imaging data of the strong lensing
features and the deflector galaxy, Dimg; (2) time-delay measure-
ments between the multiple images, Dtd; (3) stellar kinematics
measurement of the main deflector galaxy,Dspec; (4) line-of-sight
galaxy count and weak lensing statistics, Dlos.

These data sets are independent and so are their likelihoods
in a joint cosmographic inference. Hence, we can write the like-
lihood of the joint set of the data D = {Dimg,Dtd,Dspec,Dlos}
given the cosmographic parameters {Dd,Ds,Dds} ⌘ Dd,s,ds as

L(D|Dd,s,ds) =
π

L(Dimg |⇠mass, ⇠ light) (40)

⇥L(Dtd |⇠mass, ⇠ light, �,D�t ) (41)
⇥L(Dspec |⇠mass, ⇠ light, �ani, �,Ds/Dds)L(Dlos |ext) (42)

⇥p(⇠mass, ⇠ light, �int, ext, �ani)d⇠massd⇠ lightd�intdextd�ani. (43)

In the expression above we only included the relevant model com-
ponents in the expressions of the individual likelihoods. ⇠ light

Fig. 4: Comparison of the actual predicted kinematics from the
modeling of the physical three-dimensional mass distribution �int
(Eqn. 35) for varying core sizes (solid) and the analytic relation
of a perfect MST (Eqn. 25, dashed) for the mock lens presented
in Figure A.2. Lower panel shows the fractional di�erences be-
tween the exact prediction and a perfect MST calculation. The
MST prediction matches to <1% in the considered range. Minor
numerical noise is present at the subpercent level. � source

formally includes the source and lens light surface brightness.
For the time-delay likelihood, we only consider the time-variable
source position from the set of ⇠ light parameters. In Appendix C
we provide details on the computation of the combined likeli-
hood, in particular with application in the hierarchical context.

An approximate internal MST of a power law with �int of
10% still leads to physically interpretable mass profiles with the
Hubble constant changed by 10% (see Eqn. 29). Imaging data is
not su�ciently able to distinguish between models producing H0
value within this 10% range (Kochanek 2020a). The kinematics
are changed with good approximation by Equation 25 through this
transform. The kinematic prediction is also cosmology dependent
by Equation 17. The scalings of an MST are analytical in the
model-predicted time-delay distance and kinematics and thus
its marginalization can be performed in post processing given
posteriors for a specific lens model family that breaks the MST,
such as a power-law model.

The kinematics information is the decisive factor in discrim-
inating di�erent profile families. The relative uncertainty in the
velocity dispersion measurement directly propagates into the rel-
ative uncertainty in the MST as

��int
�int

= 2
��P

�P . (44)

The current uncertainties on the velocity dispersion measure-
ments, on the order of 5-10% (including the uncertainties due
to stellar template mismatch and other systematic errors) limit
the precise determination of the mass profile per individual lens.
Uncertainties in the interpretation of the stellar anisotropy orbit
distribution additionally complicates the problem. Birrer et al.
(2016) performed such an analysis and demonstrated that an ex-
plicit treatment of the MST (in their approach parameterized as a
source scale) leads to uncertainties consistent with the expecta-
tions of Kochanek (2020a). Because the kinematic measurement
of each lens is not su�ciently precise to constrain the mass pro-
file to the desired level, in this work we marginalize over the
uncertainties properly accounting for the priors.
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Fig. 3: Constraints on an approximate internal MST transform
with a cored component, �c, of an NFW profile as a function of
core radius. In gray are the 1-� exclusion limits that imaging data
can provide. In orange is the region where the total mass of the
core within a three-dimensional radius exceeds the mass of the
NFW profile in the same sphere. In blue is the region where the
transformed profile results in negative convergence at the core
radius. The white region is e�ectively allowed by the imaging
data and simple plausibility considerations and where we can use
the mathematical MST as an approximation (�c ⇡ �int). The halo
mass, concentration and the redshift configuration is displayed in
the lower left box. � source

(Eqn. 35) and the analytic relation of a perfect MST (Eqn. 25)
for the mock lens presented in Appendix A. For this figure, we
chose an aperture size of 100 ⇥ 100 and seeing of FWHM = 000.7
and an isotropic stellar orbit distribution (�ani(r) = 0). For �c
in the range [0.8, 1.2], the MST approximation in the predicted
velocity dispersion is accurate to <1%. We conclude that, for the
�int range considered in this work, the analytic approximation of
a perfect MST is valid to reliably compute the predicted velocity
dispersion. The precise dependence of the velocity dispersion
only marginally depends on the specific core radius Rc and the
approximation remains valid for all reasonable and non-excluded
core radii and �int. We tested that our conclusions also hold for
di�erent anisotropy profiles and observational conditions.

2.7. Constraining power using individual lenses

For each individual strong lens in the TDCOSMO sample, there
are four data sets available: (i) imaging data of the strong lensing
features and the deflector galaxy, Dimg; (2) time-delay measure-
ments between the multiple images, Dtd; (3) stellar kinematics
measurement of the main deflector galaxy,Dspec; (4) line-of-sight
galaxy count and weak lensing statistics, Dlos.

These data sets are independent and so are their likelihoods
in a joint cosmographic inference. Hence, we can write the like-
lihood of the joint set of the data D = {Dimg,Dtd,Dspec,Dlos}
given the cosmographic parameters {Dd,Ds,Dds} ⌘ Dd,s,ds as

L(D|Dd,s,ds) =
π

L(Dimg |⇠mass, ⇠ light) (40)

⇥L(Dtd |⇠mass, ⇠ light, �,D�t ) (41)
⇥L(Dspec |⇠mass, ⇠ light, �ani, �,Ds/Dds)L(Dlos |ext) (42)

⇥p(⇠mass, ⇠ light, �int, ext, �ani)d⇠massd⇠ lightd�intdextd�ani. (43)

In the expression above we only included the relevant model com-
ponents in the expressions of the individual likelihoods. ⇠ light

Fig. 4: Comparison of the actual predicted kinematics from the
modeling of the physical three-dimensional mass distribution �int
(Eqn. 35) for varying core sizes (solid) and the analytic relation
of a perfect MST (Eqn. 25, dashed) for the mock lens presented
in Figure A.2. Lower panel shows the fractional di�erences be-
tween the exact prediction and a perfect MST calculation. The
MST prediction matches to <1% in the considered range. Minor
numerical noise is present at the subpercent level. � source

formally includes the source and lens light surface brightness.
For the time-delay likelihood, we only consider the time-variable
source position from the set of ⇠ light parameters. In Appendix C
we provide details on the computation of the combined likeli-
hood, in particular with application in the hierarchical context.

An approximate internal MST of a power law with �int of
10% still leads to physically interpretable mass profiles with the
Hubble constant changed by 10% (see Eqn. 29). Imaging data is
not su�ciently able to distinguish between models producing H0
value within this 10% range (Kochanek 2020a). The kinematics
are changed with good approximation by Equation 25 through this
transform. The kinematic prediction is also cosmology dependent
by Equation 17. The scalings of an MST are analytical in the
model-predicted time-delay distance and kinematics and thus
its marginalization can be performed in post processing given
posteriors for a specific lens model family that breaks the MST,
such as a power-law model.

The kinematics information is the decisive factor in discrim-
inating di�erent profile families. The relative uncertainty in the
velocity dispersion measurement directly propagates into the rel-
ative uncertainty in the MST as

��int
�int

= 2
��P

�P . (44)

The current uncertainties on the velocity dispersion measure-
ments, on the order of 5-10% (including the uncertainties due
to stellar template mismatch and other systematic errors) limit
the precise determination of the mass profile per individual lens.
Uncertainties in the interpretation of the stellar anisotropy orbit
distribution additionally complicates the problem. Birrer et al.
(2016) performed such an analysis and demonstrated that an ex-
plicit treatment of the MST (in their approach parameterized as a
source scale) leads to uncertainties consistent with the expecta-
tions of Kochanek (2020a). Because the kinematic measurement
of each lens is not su�ciently precise to constrain the mass pro-
file to the desired level, in this work we marginalize over the
uncertainties properly accounting for the priors.
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deconvolved ⇢⇤ terms in the equations above). In practice, the in-
ference of the deflector light profile is jointly fit with other light
components, such as source light and quasar flux.

Inverting Equation 17 illustrates that a measured velocity
dispersion, �P, allows us to constrain the distance ratio Ds/Dds,
independent of the cosmological model and time delays but while
relying on the same lens model, ⇠ lens,

Ds
Dds
=

(�P)2
c2J(⇠ lens, ⇠ light, �ani)

. (18)

We note that the distance ratio Ds/Dds can be constrained without
time delays being available. If one has kinematic and time-delay
data, instead of expressing constraints on Ds/Dds, one can also
express the cosmologically independent constraints in terms of
Dd (e.g., Paraficz & Hjorth 2009; Jee et al. 2015; Birrer et al.
2019) as

Dd =
1

(1 + zd)
c�tAB

��AB(⇠ lens)
c

2
J(⇠ lens, ⇠ light, �ani)

(�P)2 . (19)

In this work, we do not transform the kinematics constraints into
Ds/Dds or Dd constraints but work directly on the likelihood level
of the velocity dispersion when discriminating between di�erent
cosmological models.

In Appendix B we illustrate the radial dependence on the
model predicted velocity dispersion, �P, for di�erent stellar
anisotropy models. Observations at di�erent projected radii can
partially break the mass-anisotropy degeneracy provided that we
have independent mass profile estimates from lensing observ-
ables.

2.3. Mass-sheet transform

The mass-sheet transform (MST) is a multiplicative transform of
the lens Equation (Eqn. 1) (Falco et al. 1985)

�� = ✓ � �↵(✓) � (1 � �)✓, (20)

which preserves image positions (and any higher order relative
di�erentials of the lens equation) under a linear source displace-
ment � ! ��. The term (1��)✓ in Equation 20 above describes
an infinite sheet of convergence (or mass), and hence the name
mass-sheet transform. Only observables related to the absolute
source size, intrinsic magnification or to the lensing potential are
able to break this degeneracy.

The convergence field transforms according to

�(✓) = � ⇥ (✓) + (1 � �) . (21)

The same relative lensing observables can result if the mass
profile is scaled by the factor � with the addition of a sheet of
convergence (or mass) of (✓) = (1 � �).

The di�erent observables described in Section 2.1 & 2.2
transform by an MST term � as follow: The image positions
remain invariant

✓� = ✓ . (22)

The source position scales with �

�� = ��. (23)

The time delay scales with �

�tAB� = ��tAB (24)

and the velocity dispersion scales with � as

�P
v � =

p
��P

v . (25)

Until now we have only stated how the MST impacts ob-
servables directly. However, it is also useful to describe how
cosmographic constraints derived from a set of observables and
assumptions on the mass profile are transformed when transform-
ing the lens model with an MST (Eqn. 8, 18, 19). The time-delay
distance (Eqn. 7) is dependent on the time delay �t (Eqn. 5)

D�t � = �
�1

D�t . (26)

The distance ratio constrained by the kinematics and the lens
model scales as

(Ds/Dds)� = ��1
Ds/Dds. (27)

Given time-delay and kinematics data the inference on the angular
diameter distance to the lens is invariant under the MST

Dd� = Dd. (28)

The Hubble constant, when inferred from the time-delay distance,
D�t , transforms as (from Eqn. 9)

H0� = �H0. (29)

Mathematically, all the MSTs can be equivalently stated as a
change in the angular diameter distance to the source

Ds ! �Ds. (30)

In other words, if one knows the dependence of any lensing
variable upon Ds one can transform it under the MST and scale
all other quantities in the same way.

2.4. Line-of-sight contribution

Structure along the line of sight of lenses induce distortions and
focusing (or de-focusing) of the light rays. The first-order shear
distortions do have an observable imprint on the shape of Einstein
rings and can thus be constrained as part of the modeling proce-
dure of strong lensing imaging data. The first order convergence
e�ect alters the angular diameter distances along the specific line
of sight of the strong lens. We define D

lens as the specific angular
diameter distance along the line of sight of the lens and D

bkg as
the angular diameter distance from the homogeneous background
metric without any perturbative contributions. D

lens and D
bkg are

related through the convergence terms as

D
lens
d = (1 � d)Dbkg

d

D
lens
s = (1 � s)Dbkg

s

D
lens
ds = (1 � ds)Dbkg

ds .

(31)

s is the integrated convergence along the line of sight passing
through the strong lens to the source plane and the term 1 � s
corresponds to an MST (Eqn. 30)9. To predict the velocity disper-
sion of the deflector (Eqn. 17), the terms s and ds are relevant
when using background metric predictions from a cosmological

9 The integral between the deflector and the source deviates from the
Born approximation as the light paths are significantly perturbed (see
e.g., Bar-Kana 1996; Birrer et al. 2017)
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deconvolved ⇢⇤ terms in the equations above). In practice, the in-
ference of the deflector light profile is jointly fit with other light
components, such as source light and quasar flux.

Inverting Equation 17 illustrates that a measured velocity
dispersion, �P, allows us to constrain the distance ratio Ds/Dds,
independent of the cosmological model and time delays but while
relying on the same lens model, ⇠ lens,

Ds
Dds
=

(�P)2
c2J(⇠ lens, ⇠ light, �ani)

. (18)

We note that the distance ratio Ds/Dds can be constrained without
time delays being available. If one has kinematic and time-delay
data, instead of expressing constraints on Ds/Dds, one can also
express the cosmologically independent constraints in terms of
Dd (e.g., Paraficz & Hjorth 2009; Jee et al. 2015; Birrer et al.
2019) as

Dd =
1

(1 + zd)
c�tAB

��AB(⇠ lens)
c

2
J(⇠ lens, ⇠ light, �ani)

(�P)2 . (19)

In this work, we do not transform the kinematics constraints into
Ds/Dds or Dd constraints but work directly on the likelihood level
of the velocity dispersion when discriminating between di�erent
cosmological models.

In Appendix B we illustrate the radial dependence on the
model predicted velocity dispersion, �P, for di�erent stellar
anisotropy models. Observations at di�erent projected radii can
partially break the mass-anisotropy degeneracy provided that we
have independent mass profile estimates from lensing observ-
ables.

2.3. Mass-sheet transform

The mass-sheet transform (MST) is a multiplicative transform of
the lens Equation (Eqn. 1) (Falco et al. 1985)

�� = ✓ � �↵(✓) � (1 � �)✓, (20)

which preserves image positions (and any higher order relative
di�erentials of the lens equation) under a linear source displace-
ment � ! ��. The term (1��)✓ in Equation 20 above describes
an infinite sheet of convergence (or mass), and hence the name
mass-sheet transform. Only observables related to the absolute
source size, intrinsic magnification or to the lensing potential are
able to break this degeneracy.

The convergence field transforms according to

�(✓) = � ⇥ (✓) + (1 � �) . (21)

The same relative lensing observables can result if the mass
profile is scaled by the factor � with the addition of a sheet of
convergence (or mass) of (✓) = (1 � �).

The di�erent observables described in Section 2.1 & 2.2
transform by an MST term � as follow: The image positions
remain invariant

✓� = ✓ . (22)

The source position scales with �

�� = ��. (23)

The time delay scales with �

�tAB� = ��tAB (24)

and the velocity dispersion scales with � as

�P
v � =

p
��P

v . (25)

Until now we have only stated how the MST impacts ob-
servables directly. However, it is also useful to describe how
cosmographic constraints derived from a set of observables and
assumptions on the mass profile are transformed when transform-
ing the lens model with an MST (Eqn. 8, 18, 19). The time-delay
distance (Eqn. 7) is dependent on the time delay �t (Eqn. 5)

D�t � = �
�1

D�t . (26)

The distance ratio constrained by the kinematics and the lens
model scales as

(Ds/Dds)� = ��1
Ds/Dds. (27)

Given time-delay and kinematics data the inference on the angular
diameter distance to the lens is invariant under the MST

Dd� = Dd. (28)

The Hubble constant, when inferred from the time-delay distance,
D�t , transforms as (from Eqn. 9)

H0� = �H0. (29)

Mathematically, all the MSTs can be equivalently stated as a
change in the angular diameter distance to the source

Ds ! �Ds. (30)

In other words, if one knows the dependence of any lensing
variable upon Ds one can transform it under the MST and scale
all other quantities in the same way.

2.4. Line-of-sight contribution

Structure along the line of sight of lenses induce distortions and
focusing (or de-focusing) of the light rays. The first-order shear
distortions do have an observable imprint on the shape of Einstein
rings and can thus be constrained as part of the modeling proce-
dure of strong lensing imaging data. The first order convergence
e�ect alters the angular diameter distances along the specific line
of sight of the strong lens. We define D

lens as the specific angular
diameter distance along the line of sight of the lens and D

bkg as
the angular diameter distance from the homogeneous background
metric without any perturbative contributions. D

lens and D
bkg are

related through the convergence terms as

D
lens
d = (1 � d)Dbkg

d

D
lens
s = (1 � s)Dbkg

s

D
lens
ds = (1 � ds)Dbkg

ds .

(31)

s is the integrated convergence along the line of sight passing
through the strong lens to the source plane and the term 1 � s
corresponds to an MST (Eqn. 30)9. To predict the velocity disper-
sion of the deflector (Eqn. 17), the terms s and ds are relevant
when using background metric predictions from a cosmological

9 The integral between the deflector and the source deviates from the
Born approximation as the light paths are significantly perturbed (see
e.g., Bar-Kana 1996; Birrer et al. 2017)
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deconvolved ⇢⇤ terms in the equations above). In practice, the in-
ference of the deflector light profile is jointly fit with other light
components, such as source light and quasar flux.

Inverting Equation 17 illustrates that a measured velocity
dispersion, �P, allows us to constrain the distance ratio Ds/Dds,
independent of the cosmological model and time delays but while
relying on the same lens model, ⇠ lens,

Ds
Dds
=

(�P)2
c2J(⇠ lens, ⇠ light, �ani)

. (18)

We note that the distance ratio Ds/Dds can be constrained without
time delays being available. If one has kinematic and time-delay
data, instead of expressing constraints on Ds/Dds, one can also
express the cosmologically independent constraints in terms of
Dd (e.g., Paraficz & Hjorth 2009; Jee et al. 2015; Birrer et al.
2019) as

Dd =
1

(1 + zd)
c�tAB

��AB(⇠ lens)
c

2
J(⇠ lens, ⇠ light, �ani)

(�P)2 . (19)

In this work, we do not transform the kinematics constraints into
Ds/Dds or Dd constraints but work directly on the likelihood level
of the velocity dispersion when discriminating between di�erent
cosmological models.

In Appendix B we illustrate the radial dependence on the
model predicted velocity dispersion, �P, for di�erent stellar
anisotropy models. Observations at di�erent projected radii can
partially break the mass-anisotropy degeneracy provided that we
have independent mass profile estimates from lensing observ-
ables.

2.3. Mass-sheet transform

The mass-sheet transform (MST) is a multiplicative transform of
the lens Equation (Eqn. 1) (Falco et al. 1985)

�� = ✓ � �↵(✓) � (1 � �)✓, (20)

which preserves image positions (and any higher order relative
di�erentials of the lens equation) under a linear source displace-
ment � ! ��. The term (1��)✓ in Equation 20 above describes
an infinite sheet of convergence (or mass), and hence the name
mass-sheet transform. Only observables related to the absolute
source size, intrinsic magnification or to the lensing potential are
able to break this degeneracy.

The convergence field transforms according to

�(✓) = � ⇥ (✓) + (1 � �) . (21)

The same relative lensing observables can result if the mass
profile is scaled by the factor � with the addition of a sheet of
convergence (or mass) of (✓) = (1 � �).

The di�erent observables described in Section 2.1 & 2.2
transform by an MST term � as follow: The image positions
remain invariant

✓� = ✓ . (22)

The source position scales with �

�� = ��. (23)

The time delay scales with �

�tAB� = ��tAB (24)

and the velocity dispersion scales with � as

�P
v � =

p
��P

v . (25)

Until now we have only stated how the MST impacts ob-
servables directly. However, it is also useful to describe how
cosmographic constraints derived from a set of observables and
assumptions on the mass profile are transformed when transform-
ing the lens model with an MST (Eqn. 8, 18, 19). The time-delay
distance (Eqn. 7) is dependent on the time delay �t (Eqn. 5)

D�t � = �
�1

D�t . (26)

The distance ratio constrained by the kinematics and the lens
model scales as

(Ds/Dds)� = ��1
Ds/Dds. (27)

Given time-delay and kinematics data the inference on the angular
diameter distance to the lens is invariant under the MST

Dd� = Dd. (28)

The Hubble constant, when inferred from the time-delay distance,
D�t , transforms as (from Eqn. 9)

H0� = �H0. (29)

Mathematically, all the MSTs can be equivalently stated as a
change in the angular diameter distance to the source

Ds ! �Ds. (30)

In other words, if one knows the dependence of any lensing
variable upon Ds one can transform it under the MST and scale
all other quantities in the same way.

2.4. Line-of-sight contribution

Structure along the line of sight of lenses induce distortions and
focusing (or de-focusing) of the light rays. The first-order shear
distortions do have an observable imprint on the shape of Einstein
rings and can thus be constrained as part of the modeling proce-
dure of strong lensing imaging data. The first order convergence
e�ect alters the angular diameter distances along the specific line
of sight of the strong lens. We define D

lens as the specific angular
diameter distance along the line of sight of the lens and D

bkg as
the angular diameter distance from the homogeneous background
metric without any perturbative contributions. D

lens and D
bkg are

related through the convergence terms as

D
lens
d = (1 � d)Dbkg

d

D
lens
s = (1 � s)Dbkg

s

D
lens
ds = (1 � ds)Dbkg

ds .

(31)

s is the integrated convergence along the line of sight passing
through the strong lens to the source plane and the term 1 � s
corresponds to an MST (Eqn. 30)9. To predict the velocity disper-
sion of the deflector (Eqn. 17), the terms s and ds are relevant
when using background metric predictions from a cosmological

9 The integral between the deflector and the source deviates from the
Born approximation as the light paths are significantly perturbed (see
e.g., Bar-Kana 1996; Birrer et al. 2017)

Article number, page 5 of 41

S. Birrer et al.: Hierarchical time-delay cosmography

deconvolved ⇢⇤ terms in the equations above). In practice, the in-
ference of the deflector light profile is jointly fit with other light
components, such as source light and quasar flux.

Inverting Equation 17 illustrates that a measured velocity
dispersion, �P, allows us to constrain the distance ratio Ds/Dds,
independent of the cosmological model and time delays but while
relying on the same lens model, ⇠ lens,

Ds
Dds
=

(�P)2
c2J(⇠ lens, ⇠ light, �ani)

. (18)

We note that the distance ratio Ds/Dds can be constrained without
time delays being available. If one has kinematic and time-delay
data, instead of expressing constraints on Ds/Dds, one can also
express the cosmologically independent constraints in terms of
Dd (e.g., Paraficz & Hjorth 2009; Jee et al. 2015; Birrer et al.
2019) as

Dd =
1

(1 + zd)
c�tAB

��AB(⇠ lens)
c

2
J(⇠ lens, ⇠ light, �ani)

(�P)2 . (19)

In this work, we do not transform the kinematics constraints into
Ds/Dds or Dd constraints but work directly on the likelihood level
of the velocity dispersion when discriminating between di�erent
cosmological models.

In Appendix B we illustrate the radial dependence on the
model predicted velocity dispersion, �P, for di�erent stellar
anisotropy models. Observations at di�erent projected radii can
partially break the mass-anisotropy degeneracy provided that we
have independent mass profile estimates from lensing observ-
ables.

2.3. Mass-sheet transform

The mass-sheet transform (MST) is a multiplicative transform of
the lens Equation (Eqn. 1) (Falco et al. 1985)

�� = ✓ � �↵(✓) � (1 � �)✓, (20)

which preserves image positions (and any higher order relative
di�erentials of the lens equation) under a linear source displace-
ment � ! ��. The term (1��)✓ in Equation 20 above describes
an infinite sheet of convergence (or mass), and hence the name
mass-sheet transform. Only observables related to the absolute
source size, intrinsic magnification or to the lensing potential are
able to break this degeneracy.

The convergence field transforms according to

�(✓) = � ⇥ (✓) + (1 � �) . (21)

The same relative lensing observables can result if the mass
profile is scaled by the factor � with the addition of a sheet of
convergence (or mass) of (✓) = (1 � �).

The di�erent observables described in Section 2.1 & 2.2
transform by an MST term � as follow: The image positions
remain invariant

✓� = ✓ . (22)

The source position scales with �

�� = ��. (23)

The time delay scales with �

�tAB� = ��tAB (24)

and the velocity dispersion scales with � as

�P
v � =

p
��P

v . (25)

Until now we have only stated how the MST impacts ob-
servables directly. However, it is also useful to describe how
cosmographic constraints derived from a set of observables and
assumptions on the mass profile are transformed when transform-
ing the lens model with an MST (Eqn. 8, 18, 19). The time-delay
distance (Eqn. 7) is dependent on the time delay �t (Eqn. 5)

D�t � = �
�1

D�t . (26)

The distance ratio constrained by the kinematics and the lens
model scales as

(Ds/Dds)� = ��1
Ds/Dds. (27)

Given time-delay and kinematics data the inference on the angular
diameter distance to the lens is invariant under the MST

Dd� = Dd. (28)

The Hubble constant, when inferred from the time-delay distance,
D�t , transforms as (from Eqn. 9)

H0� = �H0. (29)

Mathematically, all the MSTs can be equivalently stated as a
change in the angular diameter distance to the source

Ds ! �Ds. (30)

In other words, if one knows the dependence of any lensing
variable upon Ds one can transform it under the MST and scale
all other quantities in the same way.

2.4. Line-of-sight contribution

Structure along the line of sight of lenses induce distortions and
focusing (or de-focusing) of the light rays. The first-order shear
distortions do have an observable imprint on the shape of Einstein
rings and can thus be constrained as part of the modeling proce-
dure of strong lensing imaging data. The first order convergence
e�ect alters the angular diameter distances along the specific line
of sight of the strong lens. We define D

lens as the specific angular
diameter distance along the line of sight of the lens and D

bkg as
the angular diameter distance from the homogeneous background
metric without any perturbative contributions. D

lens and D
bkg are

related through the convergence terms as

D
lens
d = (1 � d)Dbkg

d

D
lens
s = (1 � s)Dbkg

s

D
lens
ds = (1 � ds)Dbkg

ds .

(31)

s is the integrated convergence along the line of sight passing
through the strong lens to the source plane and the term 1 � s
corresponds to an MST (Eqn. 30)9. To predict the velocity disper-
sion of the deflector (Eqn. 17), the terms s and ds are relevant
when using background metric predictions from a cosmological

9 The integral between the deflector and the source deviates from the
Born approximation as the light paths are significantly perturbed (see
e.g., Bar-Kana 1996; Birrer et al. 2017)
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deconvolved ⇢⇤ terms in the equations above). In practice, the in-
ference of the deflector light profile is jointly fit with other light
components, such as source light and quasar flux.

Inverting Equation 17 illustrates that a measured velocity
dispersion, �P, allows us to constrain the distance ratio Ds/Dds,
independent of the cosmological model and time delays but while
relying on the same lens model, ⇠ lens,

Ds
Dds
=

(�P)2
c2J(⇠ lens, ⇠ light, �ani)

. (18)

We note that the distance ratio Ds/Dds can be constrained without
time delays being available. If one has kinematic and time-delay
data, instead of expressing constraints on Ds/Dds, one can also
express the cosmologically independent constraints in terms of
Dd (e.g., Paraficz & Hjorth 2009; Jee et al. 2015; Birrer et al.
2019) as

Dd =
1

(1 + zd)
c�tAB

��AB(⇠ lens)
c

2
J(⇠ lens, ⇠ light, �ani)

(�P)2 . (19)

In this work, we do not transform the kinematics constraints into
Ds/Dds or Dd constraints but work directly on the likelihood level
of the velocity dispersion when discriminating between di�erent
cosmological models.

In Appendix B we illustrate the radial dependence on the
model predicted velocity dispersion, �P, for di�erent stellar
anisotropy models. Observations at di�erent projected radii can
partially break the mass-anisotropy degeneracy provided that we
have independent mass profile estimates from lensing observ-
ables.

2.3. Mass-sheet transform

The mass-sheet transform (MST) is a multiplicative transform of
the lens Equation (Eqn. 1) (Falco et al. 1985)

�� = ✓ � �↵(✓) � (1 � �)✓, (20)

which preserves image positions (and any higher order relative
di�erentials of the lens equation) under a linear source displace-
ment � ! ��. The term (1��)✓ in Equation 20 above describes
an infinite sheet of convergence (or mass), and hence the name
mass-sheet transform. Only observables related to the absolute
source size, intrinsic magnification or to the lensing potential are
able to break this degeneracy.

The convergence field transforms according to

�(✓) = � ⇥ (✓) + (1 � �) . (21)

The same relative lensing observables can result if the mass
profile is scaled by the factor � with the addition of a sheet of
convergence (or mass) of (✓) = (1 � �).

The di�erent observables described in Section 2.1 & 2.2
transform by an MST term � as follow: The image positions
remain invariant

✓� = ✓ . (22)

The source position scales with �

�� = ��. (23)

The time delay scales with �

�tAB� = ��tAB (24)

and the velocity dispersion scales with � as

�P
v � =

p
��P

v . (25)

Until now we have only stated how the MST impacts ob-
servables directly. However, it is also useful to describe how
cosmographic constraints derived from a set of observables and
assumptions on the mass profile are transformed when transform-
ing the lens model with an MST (Eqn. 8, 18, 19). The time-delay
distance (Eqn. 7) is dependent on the time delay �t (Eqn. 5)

D�t � = �
�1

D�t . (26)

The distance ratio constrained by the kinematics and the lens
model scales as

(Ds/Dds)� = ��1
Ds/Dds. (27)

Given time-delay and kinematics data the inference on the angular
diameter distance to the lens is invariant under the MST

Dd� = Dd. (28)

The Hubble constant, when inferred from the time-delay distance,
D�t , transforms as (from Eqn. 9)

H0� = �H0. (29)

Mathematically, all the MSTs can be equivalently stated as a
change in the angular diameter distance to the source

Ds ! �Ds. (30)

In other words, if one knows the dependence of any lensing
variable upon Ds one can transform it under the MST and scale
all other quantities in the same way.

2.4. Line-of-sight contribution

Structure along the line of sight of lenses induce distortions and
focusing (or de-focusing) of the light rays. The first-order shear
distortions do have an observable imprint on the shape of Einstein
rings and can thus be constrained as part of the modeling proce-
dure of strong lensing imaging data. The first order convergence
e�ect alters the angular diameter distances along the specific line
of sight of the strong lens. We define D

lens as the specific angular
diameter distance along the line of sight of the lens and D

bkg as
the angular diameter distance from the homogeneous background
metric without any perturbative contributions. D

lens and D
bkg are

related through the convergence terms as

D
lens
d = (1 � d)Dbkg

d

D
lens
s = (1 � s)Dbkg

s

D
lens
ds = (1 � ds)Dbkg

ds .

(31)

s is the integrated convergence along the line of sight passing
through the strong lens to the source plane and the term 1 � s
corresponds to an MST (Eqn. 30)9. To predict the velocity disper-
sion of the deflector (Eqn. 17), the terms s and ds are relevant
when using background metric predictions from a cosmological

9 The integral between the deflector and the source deviates from the
Born approximation as the light paths are significantly perturbed (see
e.g., Bar-Kana 1996; Birrer et al. 2017)
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deconvolved ⇢⇤ terms in the equations above). In practice, the in-
ference of the deflector light profile is jointly fit with other light
components, such as source light and quasar flux.

Inverting Equation 17 illustrates that a measured velocity
dispersion, �P, allows us to constrain the distance ratio Ds/Dds,
independent of the cosmological model and time delays but while
relying on the same lens model, ⇠ lens,

Ds
Dds
=

(�P)2
c2J(⇠ lens, ⇠ light, �ani)

. (18)

We note that the distance ratio Ds/Dds can be constrained without
time delays being available. If one has kinematic and time-delay
data, instead of expressing constraints on Ds/Dds, one can also
express the cosmologically independent constraints in terms of
Dd (e.g., Paraficz & Hjorth 2009; Jee et al. 2015; Birrer et al.
2019) as

Dd =
1

(1 + zd)
c�tAB

��AB(⇠ lens)
c

2
J(⇠ lens, ⇠ light, �ani)

(�P)2 . (19)

In this work, we do not transform the kinematics constraints into
Ds/Dds or Dd constraints but work directly on the likelihood level
of the velocity dispersion when discriminating between di�erent
cosmological models.

In Appendix B we illustrate the radial dependence on the
model predicted velocity dispersion, �P, for di�erent stellar
anisotropy models. Observations at di�erent projected radii can
partially break the mass-anisotropy degeneracy provided that we
have independent mass profile estimates from lensing observ-
ables.

2.3. Mass-sheet transform

The mass-sheet transform (MST) is a multiplicative transform of
the lens Equation (Eqn. 1) (Falco et al. 1985)

�� = ✓ � �↵(✓) � (1 � �)✓, (20)

which preserves image positions (and any higher order relative
di�erentials of the lens equation) under a linear source displace-
ment � ! ��. The term (1��)✓ in Equation 20 above describes
an infinite sheet of convergence (or mass), and hence the name
mass-sheet transform. Only observables related to the absolute
source size, intrinsic magnification or to the lensing potential are
able to break this degeneracy.

The convergence field transforms according to

�(✓) = � ⇥ (✓) + (1 � �) . (21)

The same relative lensing observables can result if the mass
profile is scaled by the factor � with the addition of a sheet of
convergence (or mass) of (✓) = (1 � �).

The di�erent observables described in Section 2.1 & 2.2
transform by an MST term � as follow: The image positions
remain invariant

✓� = ✓ . (22)

The source position scales with �

�� = ��. (23)

The time delay scales with �

�tAB� = ��tAB (24)

and the velocity dispersion scales with � as

�P
v � =

p
��P

v . (25)

Until now we have only stated how the MST impacts ob-
servables directly. However, it is also useful to describe how
cosmographic constraints derived from a set of observables and
assumptions on the mass profile are transformed when transform-
ing the lens model with an MST (Eqn. 8, 18, 19). The time-delay
distance (Eqn. 7) is dependent on the time delay �t (Eqn. 5)

D�t � = �
�1

D�t . (26)

The distance ratio constrained by the kinematics and the lens
model scales as

(Ds/Dds)� = ��1
Ds/Dds. (27)

Given time-delay and kinematics data the inference on the angular
diameter distance to the lens is invariant under the MST

Dd� = Dd. (28)

The Hubble constant, when inferred from the time-delay distance,
D�t , transforms as (from Eqn. 9)

H0� = �H0. (29)

Mathematically, all the MSTs can be equivalently stated as a
change in the angular diameter distance to the source

Ds ! �Ds. (30)

In other words, if one knows the dependence of any lensing
variable upon Ds one can transform it under the MST and scale
all other quantities in the same way.

2.4. Line-of-sight contribution

Structure along the line of sight of lenses induce distortions and
focusing (or de-focusing) of the light rays. The first-order shear
distortions do have an observable imprint on the shape of Einstein
rings and can thus be constrained as part of the modeling proce-
dure of strong lensing imaging data. The first order convergence
e�ect alters the angular diameter distances along the specific line
of sight of the strong lens. We define D

lens as the specific angular
diameter distance along the line of sight of the lens and D

bkg as
the angular diameter distance from the homogeneous background
metric without any perturbative contributions. D

lens and D
bkg are

related through the convergence terms as

D
lens
d = (1 � d)Dbkg

d

D
lens
s = (1 � s)Dbkg

s

D
lens
ds = (1 � ds)Dbkg

ds .

(31)

s is the integrated convergence along the line of sight passing
through the strong lens to the source plane and the term 1 � s
corresponds to an MST (Eqn. 30)9. To predict the velocity disper-
sion of the deflector (Eqn. 17), the terms s and ds are relevant
when using background metric predictions from a cosmological

9 The integral between the deflector and the source deviates from the
Born approximation as the light paths are significantly perturbed (see
e.g., Bar-Kana 1996; Birrer et al. 2017)
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model (Dbkg). To predict the time delays (Eqn. 5) from a cos-
mological model, all three terms are relevant. We can define a
single e�ective convergence, ext, that transforms the time-delay
distance (Eqn. 7)

D
lens
�t ⌘ (1 � ext)Dbkg

�t (32)

with

1 � ext =
(1 � d)(1 � s)

(1 � ds)
. (33)

2.5. External vs. internal mass sheet transform

An MST (Eqn. 21) is always linked to a specific choice of lens
model and so is its physical interpretation. The MST can be either
associated with line-of-sight structure (s) not a�liated with the
main deflector or as a transform of the mass profile of the main
deflector itself (e.g., Koopmans 2004; Saha & Williams 2006;
Schneider & Sluse 2013; Birrer et al. 2016; Shajib et al. 2020a).

There are di�erent observables and physical priors related
to these two distinct physical causes and we use the notation
s to describe the external convergence aspect of the MST and
�int to describe the internal profile aspect of the MST. The total
transform which a�ects the time delays and kinematics (see Eqn.
24 & 25) is the product of the two transforms

� = (1 � s) ⇥ �int. (34)

The line-of-sight contribution can be estimated by tracers of
the larger scale structure, either using galaxy number counts (e.g.,
Rusu et al. 2017) or weak lensing of distant galaxies by all the
mass along the line of sight (e.g., Tihhonova et al. 2018), and can
be estimated with a few per cent precision per lens. The internal
MST requires either priors on the form of the deflector profile or
exquisite kinematic tracers of the gravitational potential. The �int
component is the focus of this work.

2.6. Approximate internal mass-sheet transform

Imposing the physical boundary condition, limr!1 (r) = 0, vio-
lates the mathematical form of the MST10. However, approximate
MSTs that satisfy the boundary condition of a finite physically en-
closed mass may still be possible and encompass the limitations
and concerns of strong gravitational lensing in providing precise
constraints on the Hubble constant. We specify an approximate
MST as a profile without significantly impacting imaging observ-
ables around the Einstein radius and resulting in the transforms
of the time delays (Eqn. 24) and kinematics (Eqn. 25).

Cored mass components, c(r), can serve as physically mo-
tivated approximations to the MST (Blum et al. 2020). We can
write a physically motivated approximate internal MST with a
parameter �c as

�c (✓) = �cmodel(✓) + (1 � �c)c(✓), (35)

where model corresponds to the model used in the reconstruction
of the imaging data and �c describes the scaling between the

10 We note that the mean cosmological background density is already
fully encompassed in the background metric and we e�ectively only
require to model the enhancement matter density (see e.g., Wucknitz
2008; Birrer et al. 2017).

cored and the other model components, in resemblance to �int.
Approximating a physical cored transform with the pure MST
means that:

�int ⇡ �c (36)

in deriving all the observable scalings in Section 2.3.
Blum et al. (2020) showed that several well-chosen cored 3D

mass profiles, ⇢(r), can lead to approximate MST’s in projection,
c(r), with physical interpretations, such as

⇢(r) = 2
⇡
⌃crit

R
2
c�

R
2
c + r2�3/2 , (37)

resulting in the projected convergence profile

c(✓) =
R

2
c

R
2
c + ✓

2 , (38)

where ⌃crit is the critical surface density of the lens. The specific
functional form of the profile listed above (37) resemble the outer
slope of the NFW profile with ⇢(r) / r

�3.
Figure 1 illustrates a composite profile consisting of a stel-

lar component (Hernquist profile) and a dark matter component
(NFW + cored component, Eqn. 37) which transform according
to an approximate MST. The stellar component gets rescaled by
the MST while the cored component is transforming only the
dark matter component.

It is of greatest importance to quantify the physical plausibil-
ity of those transforms and their impact on other observables in
detail. In this section we extend the study of Blum et al. (2020).
We perform detailed numerical experiments on mock imaging
data to quantify the constraints from imaging data, time delays
and kinematics, and we quantify the range of such an approxi-
mate transform with physically motivated boundary conditions.
Further illustrations and details on the examples given in this
section can be found in Appendix A.

2.6.1. Imaging constraints on the internal MST

In this section we investigate the extent to which imaging data is
able to distinguish between di�erent lens models with di�erent
cored mass components and their impact on the inferred time
delay distance in combination with time delay information. We
first generate a mock image and time delays without a cored
component and then perform the inference with an additional
cored component model (Eqn 38) parameterized with the core
radius Rc and the core projected density ⌃c ⌘ (1 � �c) (Eqn. 35).
In our specific example, we simulate a quadruply lensed quasar
image similar to Millon et al. (2020) (more details in Appendix
A and Fig. A.2) with a power-law elliptical mass distribution
(PEMD, Kormann et al. 1994; Barkana 1998)

(✓1, ✓2) =
3 � �pl

2

2666664
✓Eq

qm✓21 + ✓
2
2/qm

3777775

�pl�1

(39)

where �pl is the logarithmic slope of the profile, qm is the axis
ratio of the minor and the major axes of the elliptical profile, and
✓E is the Einstein radius. The coordinate system is defined such
that ✓1 and ✓2 are along the major and minor axis respectively.
We also add an external shear model component with distortion
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model (Dbkg). To predict the time delays (Eqn. 5) from a cos-
mological model, all three terms are relevant. We can define a
single e�ective convergence, ext, that transforms the time-delay
distance (Eqn. 7)

D
lens
�t ⌘ (1 � ext)Dbkg

�t (32)

with

1 � ext =
(1 � d)(1 � s)

(1 � ds)
. (33)

2.5. External vs. internal mass sheet transform

An MST (Eqn. 21) is always linked to a specific choice of lens
model and so is its physical interpretation. The MST can be either
associated with line-of-sight structure (s) not a�liated with the
main deflector or as a transform of the mass profile of the main
deflector itself (e.g., Koopmans 2004; Saha & Williams 2006;
Schneider & Sluse 2013; Birrer et al. 2016; Shajib et al. 2020a).

There are di�erent observables and physical priors related
to these two distinct physical causes and we use the notation
s to describe the external convergence aspect of the MST and
�int to describe the internal profile aspect of the MST. The total
transform which a�ects the time delays and kinematics (see Eqn.
24 & 25) is the product of the two transforms

� = (1 � s) ⇥ �int. (34)

The line-of-sight contribution can be estimated by tracers of
the larger scale structure, either using galaxy number counts (e.g.,
Rusu et al. 2017) or weak lensing of distant galaxies by all the
mass along the line of sight (e.g., Tihhonova et al. 2018), and can
be estimated with a few per cent precision per lens. The internal
MST requires either priors on the form of the deflector profile or
exquisite kinematic tracers of the gravitational potential. The �int
component is the focus of this work.

2.6. Approximate internal mass-sheet transform

Imposing the physical boundary condition, limr!1 (r) = 0, vio-
lates the mathematical form of the MST10. However, approximate
MSTs that satisfy the boundary condition of a finite physically en-
closed mass may still be possible and encompass the limitations
and concerns of strong gravitational lensing in providing precise
constraints on the Hubble constant. We specify an approximate
MST as a profile without significantly impacting imaging observ-
ables around the Einstein radius and resulting in the transforms
of the time delays (Eqn. 24) and kinematics (Eqn. 25).

Cored mass components, c(r), can serve as physically mo-
tivated approximations to the MST (Blum et al. 2020). We can
write a physically motivated approximate internal MST with a
parameter �c as

�c (✓) = �cmodel(✓) + (1 � �c)c(✓), (35)

where model corresponds to the model used in the reconstruction
of the imaging data and �c describes the scaling between the

10 We note that the mean cosmological background density is already
fully encompassed in the background metric and we e�ectively only
require to model the enhancement matter density (see e.g., Wucknitz
2008; Birrer et al. 2017).

cored and the other model components, in resemblance to �int.
Approximating a physical cored transform with the pure MST
means that:

�int ⇡ �c (36)

in deriving all the observable scalings in Section 2.3.
Blum et al. (2020) showed that several well-chosen cored 3D

mass profiles, ⇢(r), can lead to approximate MST’s in projection,
c(r), with physical interpretations, such as

⇢(r) = 2
⇡
⌃crit

R
2
c�

R
2
c + r2�3/2 , (37)

resulting in the projected convergence profile

c(✓) =
R

2
c

R
2
c + ✓

2 , (38)

where ⌃crit is the critical surface density of the lens. The specific
functional form of the profile listed above (37) resemble the outer
slope of the NFW profile with ⇢(r) / r

�3.
Figure 1 illustrates a composite profile consisting of a stel-

lar component (Hernquist profile) and a dark matter component
(NFW + cored component, Eqn. 37) which transform according
to an approximate MST. The stellar component gets rescaled by
the MST while the cored component is transforming only the
dark matter component.

It is of greatest importance to quantify the physical plausibil-
ity of those transforms and their impact on other observables in
detail. In this section we extend the study of Blum et al. (2020).
We perform detailed numerical experiments on mock imaging
data to quantify the constraints from imaging data, time delays
and kinematics, and we quantify the range of such an approxi-
mate transform with physically motivated boundary conditions.
Further illustrations and details on the examples given in this
section can be found in Appendix A.

2.6.1. Imaging constraints on the internal MST

In this section we investigate the extent to which imaging data is
able to distinguish between di�erent lens models with di�erent
cored mass components and their impact on the inferred time
delay distance in combination with time delay information. We
first generate a mock image and time delays without a cored
component and then perform the inference with an additional
cored component model (Eqn 38) parameterized with the core
radius Rc and the core projected density ⌃c ⌘ (1 � �c) (Eqn. 35).
In our specific example, we simulate a quadruply lensed quasar
image similar to Millon et al. (2020) (more details in Appendix
A and Fig. A.2) with a power-law elliptical mass distribution
(PEMD, Kormann et al. 1994; Barkana 1998)

(✓1, ✓2) =
3 � �pl

2

2666664
✓Eq

qm✓21 + ✓
2
2/qm

3777775

�pl�1

(39)

where �pl is the logarithmic slope of the profile, qm is the axis
ratio of the minor and the major axes of the elliptical profile, and
✓E is the Einstein radius. The coordinate system is defined such
that ✓1 and ✓2 are along the major and minor axis respectively.
We also add an external shear model component with distortion
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3. Hierarchical Bayesian cosmography

The overarching goal of time-delay cosmography is to provide a
robust inference of cosmological parameters, ⇡, and in particular
the absolute distance scale, the Hubble constant H0, and possibly
other parameters describing the expansion history of the Universe
(such as ⌦⇤ or ⌦m), from a sample of gravitational lenses with
measured time delays. Based on the conclusions we draw from
Section 2, it is absolutely necessary to propagate assumptions and
priors made on the analysis of an individual lens hierarchically
when performing the inference on the cosmological parameters
from a population of lenses. In particular, this is relevant for pa-
rameters that we cannot su�ciently constrain on a lens-by-lens
basis and parameters whose uncertainties significantly propa-
gate to the H0 inference on the population level. In this section,
we introduce three specific hierarchical sampling procedures for
properties of lensing galaxies and their selection that are relevant
for the cosmographic analysis. In particular, these are: (1) an
overall internal MST relative to a chosen mass profile, �int, and
its distribution among the sample of lenses; (2) stellar anisotropy
distribution in the sample of lenses; (3) the line-of-sight structure
selection and distribution of the lens sample.

In Section 3.1 we formalize the Bayesian problem and define
an approximate scheme for the full hierarchical inference that
allows us to keep track of key systematic uncertainties while
still being able to reuse currently available inference products. In
Section 3.2 we specify the hyper-parameters we sample on the
population level. Section 3.3 details the specific approximations
in the likelihood calculation. All hierarchical computations and
sampling presented in this work are implemented in the open-
source software ����A��.

3.1. Hierarchical inference problem

In Bayesian language, we want to calculate the probability of
the cosmological parameters, ⇡, given the strong lensing data
set, p(⇡ |{Di}N ), where Di is the data set of an individual lens
(including imaging data, time-delay measurements, kinematic
observations and line-of-sight galaxy properties) and N the total
number of lenses in the sample.

In addition to ⇡, we introduce ⇠ that incorporates all the
model parameters. Using Bayes rule and considering that the
data of each individual lens Di is independent, we can write:

p(⇡ |{Di}N ) / L({Di}N |⇡)p(⇡) =
π

L({Di}N |⇡, ⇠)p(⇡, ⇠)d⇠

=

π N÷
i

L(Di |⇡, ⇠)p(⇡, ⇠)d⇠ . (45)

In the following, we divide the nuisance parameter, ⇠ , into
a subset of parameters that we constrain independently per lens,
⇠ i , and a set of parameters that require to be sampled across
the lens sample population globally, ⇠pop. The parameters of
each individual lens, ⇠ i , include the lens model, source and lens
light surface brightness and any other relevant parameter of the
model to predict the data. Hence, we can express the hierarchical
inference (Eqn. 45) as

p(⇡ |{Di}N ) /
π ÷

i

⇥
L(Di |Dd,s,ds(⇡), ⇠ i, ⇠pop)p(⇠ i)

⇤

⇥
p(⇡, {⇠ i}N, ⇠pop)Œ

i p(⇠ i)
d⇠ {i }d⇠pop (46)

where {⇠ i}N = {⇠1, ⇠2, ..., ⇠N } is the set of the parameters
applied to the individual lenses and p(⇠ i) are the interim priors
on the model parameters in the inference of an individual lens.
The cosmological parameters ⇡ are fully encompassed in the set
of angular diameter distances, {Dd,Ds,Dds} ⌘ Dd,s,ds, and thus,
instead of stating ⇡ in Equation 46, we now state Dd,s,ds(⇡). Up to
this point, no approximation was applied to the full hierarchical
expression (Eqn. 45).

From now on, we assume

p(⇡, ⇠ {i }, ⇠pop)Œ
i p(⇠ i)

⇡ p(⇡, ⇠pop), (47)

which states that, for the parameters classified as ⇠ {i }, the in-
terim priors do not propagate into the cosmographic inference
and the population prior on those parameters is formally known
exactly. The population parameters, ⇠pop, describe a distribution
function such that the values of individual lenses, ⇠ 0

pop,i, follow
the distribution likelihood p(⇠ 0

pop,i |⇠pop).
With this approximation and the notation of the sample dis-

tribution likelihood, we can simplify expression 46 to

p(⇡ |{Di}N ) /
π ÷

i

L(Di |Dd,s,ds, ⇠pop)p(⇡, ⇠pop)d⇠pop (48)

where

L(Di |Dd,s,ds, ⇠pop) =π
L(Di |Dd,s,ds, ⇠

0
pop,i)p(⇠ 0

pop,i |⇠pop)d⇠ 0
pop,i (49)

are the individual likelihoods from an independent sampling of
each lens with access to global population parameters, ⇠pop, and
marginalized over the population distribution. The integral in
Equation 49 goes over all individual parameters where a popu-
lation distribution p(⇠ 0

pop,i |⇠pop) is applied. Equation 40 is e�ec-
tively expression 49 without the marginalization over parameters
assigned as ⇠pop.

For parameters in the category ⇠ {i }, our approximation im-
plies that there is no population prior and that the interim priors
do not impact the cosmographic inference. This approximation
is valid in the regime where the posterior distribution in ⇠ {i } is
e�ectively independent of the prior. Although formally this is
never true, for many parameters in the modeling of high signal-
to-noise imaging data the individual lens modeling parameters
are very well constrained relative to the prior imposed.

In the following we highlight some key aspects of the cos-
mographic analysis and in particular the inference on the Hubble
constant where the approximation stated in expression 47 is not
valid and thus fall in the category of ⇠pop. We give explicit pa-
rameterizations of these e�ects and provide specific expressions
to allow for an e�cient and su�ciently accurate sampling and
marginalization, according to Equation 49, for individual lenses
within an ensemble.

3.2. Lens population hyper-parameters

In this section we discuss the choices of population level hyper-
parameters we include in our analysis.
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3. Hierarchical Bayesian cosmography

The overarching goal of time-delay cosmography is to provide a
robust inference of cosmological parameters, ⇡, and in particular
the absolute distance scale, the Hubble constant H0, and possibly
other parameters describing the expansion history of the Universe
(such as ⌦⇤ or ⌦m), from a sample of gravitational lenses with
measured time delays. Based on the conclusions we draw from
Section 2, it is absolutely necessary to propagate assumptions and
priors made on the analysis of an individual lens hierarchically
when performing the inference on the cosmological parameters
from a population of lenses. In particular, this is relevant for pa-
rameters that we cannot su�ciently constrain on a lens-by-lens
basis and parameters whose uncertainties significantly propa-
gate to the H0 inference on the population level. In this section,
we introduce three specific hierarchical sampling procedures for
properties of lensing galaxies and their selection that are relevant
for the cosmographic analysis. In particular, these are: (1) an
overall internal MST relative to a chosen mass profile, �int, and
its distribution among the sample of lenses; (2) stellar anisotropy
distribution in the sample of lenses; (3) the line-of-sight structure
selection and distribution of the lens sample.

In Section 3.1 we formalize the Bayesian problem and define
an approximate scheme for the full hierarchical inference that
allows us to keep track of key systematic uncertainties while
still being able to reuse currently available inference products. In
Section 3.2 we specify the hyper-parameters we sample on the
population level. Section 3.3 details the specific approximations
in the likelihood calculation. All hierarchical computations and
sampling presented in this work are implemented in the open-
source software ����A��.

3.1. Hierarchical inference problem

In Bayesian language, we want to calculate the probability of
the cosmological parameters, ⇡, given the strong lensing data
set, p(⇡ |{Di}N ), where Di is the data set of an individual lens
(including imaging data, time-delay measurements, kinematic
observations and line-of-sight galaxy properties) and N the total
number of lenses in the sample.

In addition to ⇡, we introduce ⇠ that incorporates all the
model parameters. Using Bayes rule and considering that the
data of each individual lens Di is independent, we can write:

p(⇡ |{Di}N ) / L({Di}N |⇡)p(⇡) =
π

L({Di}N |⇡, ⇠)p(⇡, ⇠)d⇠

=

π N÷
i

L(Di |⇡, ⇠)p(⇡, ⇠)d⇠ . (45)

In the following, we divide the nuisance parameter, ⇠ , into
a subset of parameters that we constrain independently per lens,
⇠ i , and a set of parameters that require to be sampled across
the lens sample population globally, ⇠pop. The parameters of
each individual lens, ⇠ i , include the lens model, source and lens
light surface brightness and any other relevant parameter of the
model to predict the data. Hence, we can express the hierarchical
inference (Eqn. 45) as

p(⇡ |{Di}N ) /
π ÷

i

⇥
L(Di |Dd,s,ds(⇡), ⇠ i, ⇠pop)p(⇠ i)

⇤

⇥
p(⇡, {⇠ i}N, ⇠pop)Œ

i p(⇠ i)
d⇠ {i }d⇠pop (46)

where {⇠ i}N = {⇠1, ⇠2, ..., ⇠N } is the set of the parameters
applied to the individual lenses and p(⇠ i) are the interim priors
on the model parameters in the inference of an individual lens.
The cosmological parameters ⇡ are fully encompassed in the set
of angular diameter distances, {Dd,Ds,Dds} ⌘ Dd,s,ds, and thus,
instead of stating ⇡ in Equation 46, we now state Dd,s,ds(⇡). Up to
this point, no approximation was applied to the full hierarchical
expression (Eqn. 45).

From now on, we assume

p(⇡, ⇠ {i }, ⇠pop)Œ
i p(⇠ i)

⇡ p(⇡, ⇠pop), (47)

which states that, for the parameters classified as ⇠ {i }, the in-
terim priors do not propagate into the cosmographic inference
and the population prior on those parameters is formally known
exactly. The population parameters, ⇠pop, describe a distribution
function such that the values of individual lenses, ⇠ 0

pop,i, follow
the distribution likelihood p(⇠ 0

pop,i |⇠pop).
With this approximation and the notation of the sample dis-

tribution likelihood, we can simplify expression 46 to

p(⇡ |{Di}N ) /
π ÷

i

L(Di |Dd,s,ds, ⇠pop)p(⇡, ⇠pop)d⇠pop (48)

where

L(Di |Dd,s,ds, ⇠pop) =π
L(Di |Dd,s,ds, ⇠

0
pop,i)p(⇠ 0

pop,i |⇠pop)d⇠ 0
pop,i (49)

are the individual likelihoods from an independent sampling of
each lens with access to global population parameters, ⇠pop, and
marginalized over the population distribution. The integral in
Equation 49 goes over all individual parameters where a popu-
lation distribution p(⇠ 0

pop,i |⇠pop) is applied. Equation 40 is e�ec-
tively expression 49 without the marginalization over parameters
assigned as ⇠pop.

For parameters in the category ⇠ {i }, our approximation im-
plies that there is no population prior and that the interim priors
do not impact the cosmographic inference. This approximation
is valid in the regime where the posterior distribution in ⇠ {i } is
e�ectively independent of the prior. Although formally this is
never true, for many parameters in the modeling of high signal-
to-noise imaging data the individual lens modeling parameters
are very well constrained relative to the prior imposed.

In the following we highlight some key aspects of the cos-
mographic analysis and in particular the inference on the Hubble
constant where the approximation stated in expression 47 is not
valid and thus fall in the category of ⇠pop. We give explicit pa-
rameterizations of these e�ects and provide specific expressions
to allow for an e�cient and su�ciently accurate sampling and
marginalization, according to Equation 49, for individual lenses
within an ensemble.

3.2. Lens population hyper-parameters

In this section we discuss the choices of population level hyper-
parameters we include in our analysis.
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3. Hierarchical Bayesian cosmography

The overarching goal of time-delay cosmography is to provide a
robust inference of cosmological parameters, ⇡, and in particular
the absolute distance scale, the Hubble constant H0, and possibly
other parameters describing the expansion history of the Universe
(such as ⌦⇤ or ⌦m), from a sample of gravitational lenses with
measured time delays. Based on the conclusions we draw from
Section 2, it is absolutely necessary to propagate assumptions and
priors made on the analysis of an individual lens hierarchically
when performing the inference on the cosmological parameters
from a population of lenses. In particular, this is relevant for pa-
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gate to the H0 inference on the population level. In this section,
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for the cosmographic analysis. In particular, these are: (1) an
overall internal MST relative to a chosen mass profile, �int, and
its distribution among the sample of lenses; (2) stellar anisotropy
distribution in the sample of lenses; (3) the line-of-sight structure
selection and distribution of the lens sample.

In Section 3.1 we formalize the Bayesian problem and define
an approximate scheme for the full hierarchical inference that
allows us to keep track of key systematic uncertainties while
still being able to reuse currently available inference products. In
Section 3.2 we specify the hyper-parameters we sample on the
population level. Section 3.3 details the specific approximations
in the likelihood calculation. All hierarchical computations and
sampling presented in this work are implemented in the open-
source software ����A��.

3.1. Hierarchical inference problem

In Bayesian language, we want to calculate the probability of
the cosmological parameters, ⇡, given the strong lensing data
set, p(⇡ |{Di}N ), where Di is the data set of an individual lens
(including imaging data, time-delay measurements, kinematic
observations and line-of-sight galaxy properties) and N the total
number of lenses in the sample.

In addition to ⇡, we introduce ⇠ that incorporates all the
model parameters. Using Bayes rule and considering that the
data of each individual lens Di is independent, we can write:
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=
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In the following, we divide the nuisance parameter, ⇠ , into
a subset of parameters that we constrain independently per lens,
⇠ i , and a set of parameters that require to be sampled across
the lens sample population globally, ⇠pop. The parameters of
each individual lens, ⇠ i , include the lens model, source and lens
light surface brightness and any other relevant parameter of the
model to predict the data. Hence, we can express the hierarchical
inference (Eqn. 45) as
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where {⇠ i}N = {⇠1, ⇠2, ..., ⇠N } is the set of the parameters
applied to the individual lenses and p(⇠ i) are the interim priors
on the model parameters in the inference of an individual lens.
The cosmological parameters ⇡ are fully encompassed in the set
of angular diameter distances, {Dd,Ds,Dds} ⌘ Dd,s,ds, and thus,
instead of stating ⇡ in Equation 46, we now state Dd,s,ds(⇡). Up to
this point, no approximation was applied to the full hierarchical
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From now on, we assume
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which states that, for the parameters classified as ⇠ {i }, the in-
terim priors do not propagate into the cosmographic inference
and the population prior on those parameters is formally known
exactly. The population parameters, ⇠pop, describe a distribution
function such that the values of individual lenses, ⇠ 0

pop,i, follow
the distribution likelihood p(⇠ 0
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With this approximation and the notation of the sample dis-

tribution likelihood, we can simplify expression 46 to
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are the individual likelihoods from an independent sampling of
each lens with access to global population parameters, ⇠pop, and
marginalized over the population distribution. The integral in
Equation 49 goes over all individual parameters where a popu-
lation distribution p(⇠ 0

pop,i |⇠pop) is applied. Equation 40 is e�ec-
tively expression 49 without the marginalization over parameters
assigned as ⇠pop.

For parameters in the category ⇠ {i }, our approximation im-
plies that there is no population prior and that the interim priors
do not impact the cosmographic inference. This approximation
is valid in the regime where the posterior distribution in ⇠ {i } is
e�ectively independent of the prior. Although formally this is
never true, for many parameters in the modeling of high signal-
to-noise imaging data the individual lens modeling parameters
are very well constrained relative to the prior imposed.

In the following we highlight some key aspects of the cos-
mographic analysis and in particular the inference on the Hubble
constant where the approximation stated in expression 47 is not
valid and thus fall in the category of ⇠pop. We give explicit pa-
rameterizations of these e�ects and provide specific expressions
to allow for an e�cient and su�ciently accurate sampling and
marginalization, according to Equation 49, for individual lenses
within an ensemble.

3.2. Lens population hyper-parameters

In this section we discuss the choices of population level hyper-
parameters we include in our analysis.
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Table 1: Summary of the model parameters sampled in the hierarchical inference on TDLMC Rung3 in Section 4.

name prior description
Cosmology (Flat ⇤CDM)
H0 [km s�1Mpc�1] U([0, 150]) Hubble constant
⌦m = 0.27 current normalized matter density
Mass profile
�int,0 U([0.5, 1.5]) internal MST population mean for re�/✓E = 1
↵� U([�1, 1]) slope of �int with re�/✓E of the deflector (Eqn. 50)
�(�int) U([0, 0.2]) 1-� Gaussian scatter in �int at fixed re�/✓E
Stellar kinematics
haanii U([0.1, 5]) or U(log([0.1, 5])) scaled anisotropy radius (Eqn. 51, 52)
�(aani) U([0, 1]) �(aani)haanii is the 1-� Gaussian scatter in aani
Line of sight
hexti = 0 population mean in external convergence of lenses
�(ext) = 0.025 1-� Gaussian scatter in ext

3. HE0435-1223: The discovery is presented by Wisotzki et al.
(2002). The image modeling is presented by Wong et al.
(2017) (for HST) and Chen et al. (2019) (for Keck Adaptive
Optics data). The time-delay measurement is presented by
Bonvin et al. (2016). The velocity dispersion measurement
of 222 ± 15 km/s presented by Wong et al. (2017) is based
on Keck-LRIS spectroscopy and includes systematic uncer-
tainties. An independent measurement of 222 ± 34 km/s by
Courbin et al. (2011) using VLT is in excellent agreement.
The line-of-sight analysis is presented by Rusu et al. (2017).

4. SDSS1206+4332: The discovery is presented by Oguri et al.
(2005). The image modeling is presented by Birrer et al.
(2019). The time-delay measurement is presented by Eulaers
et al. (2013) with an update by Birrer et al. (2019). The ve-
locity dispersion measurement of 290±30 km/s presented by
Agnello et al. (2016) is based on Keck-DEIMOS spectroscopy
and includes systematic uncertainties. The line-of-sight anal-
ysis is presented by Birrer et al. (2019).

5. WFI2033-4723: The discovery is presented by Morgan et al.
(2004), the image modeling by Rusu et al. (2020) and the
time-delay measurement by Bonvin et al. (2019). The veloc-
ity dispersion measurement from VLT MUSE is presented
by Sluse et al. (2019) with 250 ± 10 km/s only accounting
for statistical error and 250 ± 19 km/s including systematic
uncertainties. The line-of-sight analysis is presented by Rusu
et al. (2020).

6. DES0408-5354: The discovery is presented by Lin et al.
(2017); Diehl et al. (2017). The imaging modeling is pre-
sented by Shajib et al. (2020a). A second team within
STRIDES and TDCOSMO is performing an independent
and blind analysis using a di�erent modeling code (Yildirim
et al in prep). The time-delay measurement is presented by
Courbin et al. (2018). The velocity dispersion measurements
are presented by Buckley-Geer et al. (2020). We used the val-
ues from Table 3 in Shajib et al. (2020a). The measurements
are from Magellan with 230±37 km/s (mask A) and 236±42
km/s (mask B), from Gemini with 220 ± 21 km/s and from
VLT MUSE with 227 ± 9 km/s. The reported values do not
include systematic uncertainties and covariances among the
di�erent measurements. Following Shajib et al. (2020a) we
add a covariant systematic uncertainty of ±17 km/s to the
reported values. The line-of-sight analysis is presented by
Buckley-Geer et al. (2020).

7. PG1115+080: The discovery is presented by Weymann et al.
(1980). The image modeling is presented by Chen et al.

(2019) using Keck Adaptive Optics. The time-delay mea-
surement is presented by Bonvin et al. (2018), while the
line-of-sight analysis by Chen et al. (2019). The velocity dis-
persion measurement of 281 ± 25 km/s, presented by Tonry
(1998), is based on Keck-LRIS spectroscopy. In this work we
add new acquired integral-field spectroscopy obtained with
the Multi-Object Survey Explorer (MUSE) on the VLT in
March 2019 (0102.A-0600(C), PI Agnello), and we thus go
in some detail about the observations. The details and the
data will be presented in a forthcoming paper by Agnello et
al. (in prep). At the location of the lens, 3h of total expo-
sure time were obtained, in clear or photometric conditions
and nominal seeing of 0.800 FWHM. Due to the proximity
of the four quasar images to the main galaxy, a dedicated
extraction routine was used in order to optimally deblend all
components. We followed the same procedure as by Sluse
et al. (2019) and Braibant et al. (2014), fitting each spectral
channel as a superposition of a Sersic profile (for the main
lens) and four point sources as identical Mo�at profiles. The
separation between the individual components is held fixed
to the HST-NICMOS measurements (Sluse et al. 2012).
A nearby star in the MUSE field-of-view was used as a refer-
ence PSF. From this direct modeling, the FWHM of the PSF
was found to be 000.67±000.1, with some variation with wave-
length that was accounted for in the model-based deblending.
This procedure produced an optimal subtraction of the quasar
spectra, at least within 100 from the center of the lens. The lens
galaxy 1D spectra were then extracted in two square apertures
(R < 000.6, 000.6 < R < 100.0), and processed with the Pe-
nalized PiXel-Fitting (����) code presented in Cappellari &
Emsellem (2004) and further upgraded in Cappellari (2017)
to obtain velocity dispersions.
The velocity dispersion measurement results from a linear
combination of stellar template spectra to which a sum of
orthogonal polynomials is added to adjust the continuum
shape of the templates to the observed galaxy specttrum. The
spectral library used for the fit is the Indo-US spectral library,
1273 stars covering the region from 3460 - 9464 Åat a spectral
resolution of 1.35 ÅFWHM (Valdes et al. 2004).
We measure for the inner aperture (R < 0.600) a stellar ve-
locity dispersion value of 277 ± 6.5 km/s and for the outer
(000.6 < R < 100.0) a value of 241 ± 8.8 km/s. The uncer-
tainties only include the statistical errors. In order to estimate
the systematics, we performed a number of ���� fits on the
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Section 4: Validation on the time-delay lens modeling challenge
S. Birrer et al.: Hierarchical time-delay cosmography

Fig. 5: Mock data from the TDLMC Rung3 inference with the parameters and prior specified in Table 1. Orange contours indicate
the inference with a uniform prior in aani while the purple contours indicate the inference with a uniform priors in log(aani). The thin
vertical line indicates the ground truth H0 value in the challenge. � source

smaller aperture, changing each time the wavelength range,
the degree of the additive polynomial and the number of stel-
lar templates used to fit the galaxy spectra. We obtained a
systematic uncertainty of ±23.6 km/s that, as for the case of
DES0408, we treat as fully covariant among the two aperture
measurements. With the spectral resolution of MUSE, sys-
tematic uncertainties are within ⇡ 10% and about three times
larger than the nominal, statistical uncertainties thanks to the
high signal-to-noise of the spectra.

All the TDCOSMO analyses of lenses used uniform priors
on all relevant parameters when performing the inference with
a PEMD model 12. Six out of the seven lenses were modeled
blindly13, that is H0 values were never seen by the modeler at any
step of the process.

Detailed line-of-sight analyses for each lens have been per-
formed based on weighted relative number counts of galaxies
along the line of sight on deep photometry and spectroscopic

12 For the composite models, priors on the mass-concentration relation
of the dark matter profiles were imposed.
13 The first lens, B1608+656, and the reanalysis of RXJ1131-1231 with
AO data were not executed blindly.

campaigns (e.g., Rusu et al. 2017). Furthermore, for a fraction of
the lenses, we have used also an external shear constraint inferred
by the strong lens modeling to inform the line-of-sight conver-
gence estimate. The weighted galaxy number count and external
shear summary statistics have been applied on the Millenium
Simulation (Springel et al. 2005) with ray-tracing (Hilbert et al.
2009) to extract a posterior in p(ext) with the prior from the
Millenium Simulation and semi-analytic galaxy evolution model
with painted synthetic photometry on top (De Lucia & Blaizot
2007)14. The external convergence and shear values from the Mil-
lenium simulation are computed from the observer to the source
plane, ext ⇡ s. The coupling of the strong lens deflector (e.g.,
Bar-Kana 1996; McCully et al. 2014; Birrer et al. 2017) is not
included in the calculation of s. Figure 6 shows the ext poste-
riors for the individual lenses. For the overall sample mean, we
get hexti = 0.035+0.021

�0.016 with a scatter of �(ext) = 0.046 around
the mean. Nearby massive galaxies along the line of sight were
included explicitly in the modeling where required, and the ex-
ternal convergence term was adapted accordingly in order to not

14 The Millenium Simulation uses the following flat⇤CDM cosmology:
⌦m = 0.25, ⌦b = 0.045, H0 = 73 km s�1Mpc�1, n = 1, and �8 = 0.9.
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Section 5: TDCOSMO mass profile and H0 inference
A&A proofs� manuscript no. mst_h0

Fig. 7: Hierarchical analysis of the TDCOSMO-only sample when constraining the MST with kinematic information. Parameter and
priors are specified in Table 3. Orange contours correspond to the inference with uniform prior on ⌦m, U([0.05, 0.5]), while the
purple contours correspond to the prior based on the Pantheon sample with N(µ = 0.298,� = 0.022). � source

with V-band data (Advance Camera for Surveys F555W filter, or
Wide Field and Planetary Camera 2 F606W filter).

After the modeling, 23 lenses are selected to have good qual-
ity models. The criteria for this final selection are: (i) good fitting
to data by visually inspecting the residual between the image
and the model-based reconstruction, and (ii) the median of the
power-law slope does not diverge to unusual values (i.e., . 1.5 or
& 2.5)15. For the TDCOSMO sample, iterative PSF corrections
have been performed, based on the presence of the bright quasar
images, to guarantee a well matched and reliable PSF in the mod-
eling. For the SLACS lenses, such an iterative correction on the
image itself cannot be performed due to the absence of quasars in
these systems. Nevertheless, extensive tests with variations of the
PSF have been performed by Shajib et al. (2020b) and the impact
on the resulting power-law slope inference was below ⇠0.005 on
the population mean of �pl. The half light radius for the deflector

15 We note that the prior on the power-law slope �pl is chosen to be
uniform in [1, 3] during the Bayesian inference with MCMC.

galaxies are taken from Auger et al. (2009) in V-band (measured
along the intermediate axis).

6.2. SLACS spectroscopy

The constraints on the MST rely on the kinematics observations.
In this section we provide details on the data set and reduced prod-
ucts we are using in this work, on top of the already described ones
for the TDCOSMO lenses. These include SDSS’s Baryon Oscil-
lation Spectroscopic Survey (BOSS) fiber spectroscopy (Dawson
et al. 2013) and VLT VIMOS IFU observations.

6.2.1. SDSS fiber spectroscopy

All the SLACS lenses have BOSS spectra available as part of
SDSS-III. The fiber diameter is 300 and the nominal seeing of the
observations are 100.4 FWHM. The measurements of the veloc-
ity dispersion from the SDSS reduction pipeline were originally
presented by Bolton et al. (2008). However, in this work, we
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Section 6: SLACS analysis of galaxy density profiles
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(a) Fit to the time-delay distance (b) Fit of velocity dispersion

Fig. 13: Illustration of the goodness of the fit of the maximum likelihood model of the joint analysis in describing the TDCOSMO
data set. Blue points are the measurements with the diagonal elements of the measurement covariance matrix. Orange points are
the model predictions with the diagonal elements of the model covariance uncertainties. Left: Comparison of measured time-delay
distance from imaging data and time delays compared with the predicted value from the cosmological model, the internal and
external MST (and their distributions). Right: Comparison of the velocity dispersion measurements and the predicted values. In
addition to the MST terms, the uncertainty in the model also includes the uncertainty in the anisotropy distribution aani. For lenses
with multiple velocity dispersion measurements, the diagonal terms in the error covariance are illustrated. � source

Fig. 14: Illustration of the goodness of the fit of the maximum likelihood model of the joint analysis in describing the SDSS velocity
dispersion measurements of the 34 SLACS lenses in our sample. Blue points are the measurements with the diagonal elements of
the measurement covariance matrix. Orange points are the model predictions with the diagonal elements of the model covariance
uncertainties. The measurement uncertainties include the uncertainties in the quoted measurements and the additional uncertainty
of ��P,sys. The model uncertainties include the lens model uncertainties and the marginalization over the �int and aani distribution.
� source

Fig. 15: Illustration of the goodness of the fit of the maximum likelihood model of the joint analysis in describing the VIMOS
radially binned IFU velocity dispersion measurements of the 9 SLACS lenses with VIMOS data in our sample. Blue points are
the measurements with the diagonal elements of the measurement covariance matrix. Orange points are the model predictions
with the diagonal elements of the model covariance uncertainties. The measurement uncertainties include the uncertainties in the
quoted measurements and the additional uncertainty of ��P,sys. The model uncertainties include the lens model uncertainties and
the marginalization over the �int and aani distribution. � source
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Table 6: Marginalized posteriors of our hierarchical Bayesian cosmography inference based on the priors and parameterization
specified in Table 5 for a flat ⇤CDM cosmology.

Data sets H0 [km s�1Mpc�1] �int,0 ↵� �(�int) aani �(aani) ��P,sys

TDCOSMO-only 74.5+5.6
�6.1 1.02+0.08

�0.09 0.00+0.07
�0.07 0.01+0.03

�0.01 2.32+1.62
�1.17 0.16+0.50

�0.14 -
TDCOSMO + SLACSIFU 73.3+5.8

�5.8 1.00+0.08
�0.08 �0.07+0.06

�0.06 0.07+0.09
�0.05 1.58+1.58

�0.54 0.15+0.47
�0.13 -

TDCOSMO + SLACSSDSS 67.4+4.3
�4.7 0.91+0.05

�0.06 �0.04+0.04
�0.04 0.02+0.04

�0.01 1.52+1.76
�0.70 0.28+0.45

�0.25 0.06+0.02
�0.02

TDCOSMO + SLACSSDSS+IFU 67.4+4.1
�3.2 0.91+0.04

�0.04 �0.07+0.03
�0.04 0.06+0.08

�0.04 1.20+0.70
�0.27 0.18+0.50

�0.15 0.06+0.02
�0.02

Fig. 12: Posterior distributions of the key parameters for the hierarchical inference. Blue: constraints from the TDCOSMO-only
sample. Violet: constraints with the addition of IFU data of 9 SLACS lenses to inform the anisotropy prior on the TDCOSMO
sample, TDCOSMO+SLACSIFU. Orange: constraints with a sample of 33 additional lenses with imaging and kinematics data (HST
imaging + SDSS spectra) from the SLACS sample, TDCOSMO+SLACSSDSS. Purple: Joint analysis of TDCOSMO and 33 SLACS
lenses with SDSS spectra of which 9 have VIMOS IFU data, TDCOSMO+SLACSSDSS+IFU. Priors are according to Table 5. The
68th percentiles of the 1D marginalized posteriors are presented in Table 6. The posteriors in H0 and �int,0 were held blinded during
the analysis. � source
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Constraining galaxy density profiles with lensing and kinematics
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(a) Fit to the time-delay distance (b) Fit of velocity dispersion

Fig. 13: Illustration of the goodness of the fit of the maximum likelihood model of the joint analysis in describing the TDCOSMO
data set. Blue points are the measurements with the diagonal elements of the measurement covariance matrix. Orange points are
the model predictions with the diagonal elements of the model covariance uncertainties. Left: Comparison of measured time-delay
distance from imaging data and time delays compared with the predicted value from the cosmological model, the internal and
external MST (and their distributions). Right: Comparison of the velocity dispersion measurements and the predicted values. In
addition to the MST terms, the uncertainty in the model also includes the uncertainty in the anisotropy distribution aani. For lenses
with multiple velocity dispersion measurements, the diagonal terms in the error covariance are illustrated. � source

Fig. 14: Illustration of the goodness of the fit of the maximum likelihood model of the joint analysis in describing the SDSS velocity
dispersion measurements of the 34 SLACS lenses in our sample. Blue points are the measurements with the diagonal elements of
the measurement covariance matrix. Orange points are the model predictions with the diagonal elements of the model covariance
uncertainties. The measurement uncertainties include the uncertainties in the quoted measurements and the additional uncertainty
of ��P,sys. The model uncertainties include the lens model uncertainties and the marginalization over the �int and aani distribution.
� source

Fig. 15: Illustration of the goodness of the fit of the maximum likelihood model of the joint analysis in describing the VIMOS
radially binned IFU velocity dispersion measurements of the 9 SLACS lenses with VIMOS data in our sample. Blue points are
the measurements with the diagonal elements of the measurement covariance matrix. Orange points are the model predictions
with the diagonal elements of the model covariance uncertainties. The measurement uncertainties include the uncertainties in the
quoted measurements and the additional uncertainty of ��P,sys. The model uncertainties include the lens model uncertainties and
the marginalization over the �int and aani distribution. � source
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Fig. 17: Illustration of the inferred mass profile of the joint TDCOSMO+SLACSSDSS+IFU analysis. A pure power-law with �pl =
2.10± 0.05 is shown in orange. In blue is the result of this work of �int = 0.91± 0.045 when interpreted as a cored mass component
with Rc uniform in [300, 1000]. Three dimensional density are illustrated on the left and the lensing convergence on the right. The
dashed vertical line on the right panels indicates the Einstein radius. Relative di�erence in respect to the power-law model are
presented in the bottom panels. � source

sometimes through repeated measurements. The nominal uncer-
tainties are thus accurate, resulting in the internal consistency of
all the TDCOSMO systems with a scatter on �int consistent with
zero19.

The SLACS-only analysis with the reported uncertainties of
the stellar velocity dispersions leads to an inferred scatter in
�int of about 10%. Assuming the same scatter in �int among the
TDCOSMO and SLACS lenses, the discrepancy in the inferred
�(�int) between the two samples indicates that the reported uncer-
tainties of the stellar velocity dispersions of the SLACS lenses do
not reflect the total uncertainty. For the present analysis, we have
addressed this issue by adding additional terms of uncorrelated
errors. However, future work should aim to improve the determi-
nation of systematics going back to the original data (or acquiring
better data), and contemplate the possibility of correlated cali-
bration errors, as due for example to the choice of stellar library
or instrumental setup. Second, our analysis is based on spherical
Jeans models, assuming anisotropy of the Osipkov–Merritt form.
These approximations are su�cient given the current uncertain-
ties and constraints, but future work should consider at least
axis-symmetric Jeans modeling (e.g., Cappellari 2008; Barnabè
et al. 2012; Posacki et al. 2015; Yıldırım et al. 2020), and consider
alternate parameterizations of anisotropy. Another possibility is
the use of axisymmetric modeling of the phase-space distribution
function with a two-integral Schwarzschild method by Cretton
et al. (1999); Verolme & de Zeeuw (2002) as performed by Barn-
abè & Koopmans (2007); Barnabè et al. (2009).

The addition of more freedom to the kinematic models will
require the addition of more empirical information that can be
obtained by spatially resolved data on distant lens galaxies, or
from high-quality data (including absorption line shapes) of ap-
propriately selected local elliptical galaxies.

8.3.2. Selection e↵ects of di↵erent lens samples

One key pillar in this analysis to improve the precision on the
H0 measurement from the TDCOSMO sample is the information

19 This statement has been tested with a flat prior on �(�int).

on the mass profiles of the SLACS sample. The SLACS sample
di�ers in terms of the redshift distribution and re�/✓E relative
to the TDCOSMO sample. Beyond our chosen explicit param-
eterized dependence of the MST parameter �int as a function
of re�/✓E we do not find trends in the predicted vs measured
velocity dispersion within the SLACS sample. However, we do
find di�erences in the external shear contributions between the
SLACS and TDCOSMO sample (Shajib et al. prep). This is ex-
pected because of selection e�ects. The TDCOSMO sample is
composed of quads at higher redshift than SLACS. So it is not
surprising that the TDCOSMO lenses tend to be more elongated
(to increase the size of the quad cross section) and be more im-
pacted by mass structure along the line of sight than SLACS.
Nonetheless, based on previous studies, we have no reason to
suspect that the deflectors themselves are intrinsically di�erent
between SLACS and TDCOSMO. Complex angular structure of
the lenses might also a�ect the inference in the power-law slope
�pl, as the angular degree of freedoms in our model assumptions
are, to some degree, limited (Kochanek 2020b). A study with
more lenses and particularly sampling the redshift range of the
TDCOSMO sample (see Fig. 16) would allow us to better test
our current underlying assumption and in case of a significant
redshift evolution to correct for it.

8.3.3. Line-of-sight structure

The investigation of the line-of-sight structure of strong gravita-
tional lenses of the TDCOSMO and the SLACS sample follows
a specific protocol to provide an individual PDF of the external
convergence, p(ext). In our current analysis, the statistical uncer-
tainty of the SLACS line-of-sight structure is sub-dominant.

In the future – as the other terms of the error budget shrink
and this one becomes more relevant – the following steps will
be necessary. First, the specific choice of N-body simulation and
semi-analytic galaxy evolution model will need to be re-visited.
Second, it will be necessary to investigate how to improve the
comparison with simulation products in order to further miti-
gate uncertainties. For instance, beyond galaxy number count
statistics, weak gravitational lensing observations can also add
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Fig. 18: Comparison of di�erent blind H0 measurements by the TDCOSMO collaboration, based on di�erent mass profile assump-
tions and data sets incorporated. All measurements presented on this plot were performed blindly with regard to the inference of
H0. The measurement on top is the combined H0LiCOW 6 lenses constraints presented by Wong et al. (2020), when averaging
power-law and composite NFW plus stars (with constant mass-to-light ratio) on a lens-by-lens basis without correlated errors among
the lenses. The next two measurements are from Millon et al. (2020) of 6 TDCOSMO time-delay lenses (5 H0LiCOW lenses21and 1
STRIDES lens by Shajib et al. (2020a)), when performing the inference assuming either a composite NFW plus stars (with constant
mass-to-light ratio) or the power-law mass density profile for the galaxy acting as a lens. In the lower panel, we show the results from
this work. The main di�erence with respect to previous work is that we have made virtually no assumption on the radial mass density
profile of the lens galaxy, and taken into account the covariance between the lenses. The analysis in this work is constrained only by
the stellar kinematics and fully accounts for the uncertainty related to the mass sheet transformation (MST). In this framework, we
obtain four measurements according to the datasets considered. The TDCOSMO-only inference is based on the same set of 7 lenses
as those jointly included by Millon et al. (2020) and Wong et al. (2020). The inferred median value is the same, indicating no bias,
and the uncertainties, as expected, are larger. The next three measurements rely on external datasets from the SLACS survey, by
making the assumption that the lens galaxies in the two surveys are drawn from the same population. The TDCOSMO+SLACSIFU
measurements uses, in addition to the TDCOSMO sample, 9 lenses from the SLACS sample with IFU observations to inform the
anisotropy prior applied on the TDCOSMO lenses. The TDCOSMO+SLACSSDSS measurement comes from the joint analysis of the
TDCOSMO sample and 33 SLACS lenses with SDSS spectroscopy. The TDCOSMO+SLACSSDSS+IFU presents the joint analysis
of all three data sets, again assuming self-similar distributions of the mass profiles and stellar anisotropy. The TDCOSMO-only
and TDCOSMO+SLACSIFU analyses do not rely on self-similar mass profiles of the SLACS and TDCOSMO sample while the
TDCOSMO+SLACSSDSS and TDCOSMO+SLACSSDSS+IFU measurements (orange and purple) do. All the measurements shown
in this plot are in statistical agreement with each other. See Section 8.5 for a discussion and physical interpretation of the results.
� source
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Way forward 1:
data on time delay lenses

• spatially resolved stellar 
kinematics                                           
(i.e. VLT MUSE, Keck KCWI)


• improving kinematics 
measurement and modeling 
(mitigating errors on the population level)


• increase sample size of time-
delay lenses                              
(discovery, monitoring, high-resolution 
imaging, spectroscopy)

4 A. J. Shajib et al.

Figure 1. Comparison between the observed (first and third columns) and reconstructed (second and fourth columns) strong-lens
systems. The three HST bands: F160W, F814W, and F475X are used in the red, green, and blue channels, respectively, to create the
red-green-blue (RGB) images. Horizontal white lines for each system are rulers showing 1 arcsec. The relative intensities of the bands
have been adjusted for each lens system for clear visulaisation of the features in the system.

2.2.8 PS J0630-1201

This system is the first-ever discovered five-image lensed
quasar system (Ostrovski et al. 2018). The discovery was
the result of a lens search from Gaia data from a selection
of lens candidates from Pan-STARRS and WISE.

2.2.9 DES J0420-4037

The discovery of this quad is reported in Ostrovski et al.
2018b. Several small knots are visible near the quasar images
that are possibly multiple images of extra components in the
source plane.

2.2.10 DES J0408-5354

This system was discovered from the DES Year 1 data (Lin
et al. 2017; Agnello et al. 2017b). This is a very complex
lens system with multiple lensed arcs visible in addition to
the quasar images. The sources of the lensed arcs can be
components in the same source plane as the lensed quasar or
they can be at di↵erent redshifts. This system has measured
time-delays (Courbin et al. 2018).

2.2.11 SDSS J1251+2935

This quad was discovered from the Sloan Digital Sky Survey
(SDSS) Quasar Lens Search (SQLS) (Kayo et al. 2007). The
source redshift is zs = 0.802 and the deflector redshift is zd =
0.410 measured from the SDSS spectra.

2.2.12 SDSS J1433+6007

This lens systems was discovered from the SDSS data re-
lease 12 photometric catalogue (Agnello et al. 2018a). The
redshifts of the source and deflector are zs = 2.737±0.003 and
zd = 0.407±0.002, respectively (Agnello et al. 2018a).

3 LENS MODELLING

To devise a uniform approach that will suit a wide range of
quads that vary in size, configuration, light profiles, etc., we
need to choose from the most general models for the lens
mass profile and the light distributions. It is often required
to fine-tune the choice of models by adding complexities to
the lens model in a case-by-case basis to suit the purpose of
the specific science driver of an investigator. However, such
detailed lens-modelling is outside of the scope of this paper.
We only require our models to satisfactorily ( �2

red ⇠ 1) fit

MNRAS 000, 1–15 (2017)

Shajib, SB+2018, STRIDES collaboration
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• increase sample size of time-
delay lenses                              
(discovery, monitoring, high-resolution 
imaging, spectroscopy)

Simon Birrer and Tommaso Treu: Strategies to measure H0 from time delays

Fig. 3. Forecast precision on H0, the MST parameter � and the
anisotropy parameter aani for di↵erent spectroscopic scenarios of a fu-
ture sample of 40 TDCOSMO lenses (future scenario) as specified in
Table 1 in the row of TDCOSMO-5%. � source

Fig. 4. Forecast precision on H0, the MST parameter � and the
anisotropy parameter aani for di↵erent spectroscopic scenarios of a fu-
ture sample of 40 TDCOSMO lenses (future scenario) observed with
aperture spectroscopy of 5% precision and additional external data sets
specified in Table 1 in the row of TDCOSMO-5%. � source

resolved kinematics and the inclusion of datasets of non-time-
delay lenses in a hierarchical framework.

These two strategies are not mutually exclusive and both
should be pursued. The TDCOSMO-only approach has the
advantage of not relying on the assumption of the time de-

lay and non-time-delay galaxies being drawn from the same
parent population. With this additional assumption, the TD-
COSMO+external approach allows for further improvement in
precision. The precision of each approach is su�cient to test
the mutual consistency among di↵erent samples while simul-
taneously fitting for H0. If verified, potentially with the exten-
sion of the hierarchical framework, the consistency will enable
the cosmological exploitation of larger samples of non-time de-
lay lenses that are expected to be discovered by future surveys
(Oguri & Marshall 2010).

Following our proposed strategies, time-delay cosmography
will be able to resolve in the near future the tension between
early and late universe probes at 3 � 5�, without relying on as-
sumptions on the radial mass profile of lens galaxies to break the
mass sheet degeneracy.
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Way forward 2: 
adding external data sets

• external lensing sample matching 
precisely TDCOSMO                            
(same redshift, deflector morphology etc)


• increase sample size of galaxy-galaxy 
lenses  (Rubin, Euclid, Roman observatories 
will discover 10’000+ lenses)


• add kinematic information from                                 
local elliptical galaxies                                                       
(SAURON, ATLAS3D, MASSIVE, …)


• Continuous effort to have the right 

38 Jacobs et al

Figure 22. Candidate lenses found in DES using CNNs. In yellow, left: best CNN score, right: human grade.

Jacobs+2019, DES collaboration

see also Birrer & Treu 2020, arXiv:2008.06157



Way forward 3:
challenge yourself!

• Improve simulation products for better validation                 
(full line-of-sight ray-tracing)


• Blind analysis challenges                                                       
(blind data challenges for the community - as realistic as possible)


• Keep analysis blind!                                                             
(continue assessing systematics regardless of the outcome of the 
experiment - challenge our intuition and assumptions)


• Open source                                                                         
(provide the full end-to-end analysis open source)


•



Hierarchical Inference of Strong Lenses 
with Bayesian Neural Networks

Sub-second posterior 
samples

Statistically accurate and 
precise parameter estimates

Population constrains on 
matter profile and environment 
of  thousands of  lenses

HST quality lens 
images

Carena-Wagner, Park, SB et al. 2020 
Park, Carena-Wagner, SB et al. 2020 
LSST-DESC collaboration

Assessing speed and accuracy of 
methods to scope with future data sets!

https://github.com/jiwoncpark/baobab

https://github.com/swagnercarena/ovejero

https://github.com/jiwoncpark/h0rton

https://github.com/jiwoncpark/baobab
https://github.com/swagnercarena/ovejero
https://github.com/jiwoncpark/h0rton


Software

17

Full software, scripts and data released for Birrer+19, 20


https://github.com/sibirrer/lenstronomy

Astropy affiliated!

SB et al. 2015, SB & Amara 2018



https://github.com/sibirrer/lenstronomy/blob/master/AFFILIATEDPACKAGES.rst

https://github.com/sibirrer/lenstronomy/blob/master/AUTHORS.rst
List of contributors - thank you very much!

https://github.com/sibirrer/lenstronomy/blob/master/AFFILIATEDPACKAGES.rst
https://github.com/sibirrer/lenstronomy/blob/master/AUTHORS.rst

