Introduction Motivation Accretion Disk Size

Broad Line Region Size

SMBH Mass

Summary

Revealing the Structure of the Lensed Quasar Q 0957+561

Carina Fian

Postdoctoral Fellow Tel Aviv University and University of Haifa

Introduction	Motivation	Accretion Disk Size	Broad Line Region Size	SMBH Mass	Summary

2 Motivation

4 Broad Line Region Size

5 SMBH Mass

Introduction	Motivation	Accretion Disk Size	Broad Line Region Size	SMBH Mass	Summary

2 Motivation

3 Accretion Disk Size

4 Broad Line Region Size

5 SMBH Mass

6 Summary

Accretion Disk Size

Broad Line Region Size

SMBH Mass

Summary

Quasar Microlensing - Phenomenology

- stars behave like small lenses
- affect light curves
- image separation too small to be resolved
- whole galaxy: smooth potential, produces macro-images
- stars: introduce graininess, produce additional magnification
- information about size

Introduction	Motivation	Accretion Disk Size	Broad Line Region Size	SMBH Mass	Summary
	1				

2 Motivation

- **3** Accretion Disk Size
- 4 Broad Line Region Size

5 SMBH Mass

6 Summary

Introduction	Motivation	Accretion Disk Size	Broad Line Region Size	SMBH Mass	Summary
Motiva	tion				

- use microlensing to reveal structure of AGN:
 - broad-line region (BLR)
 - accretion disk
 - supermassive black hole (SMBH)

• in other words: study AGN structure at 3 different scales

Introduction	Motivation	Accretion Disk Size	Broad Line Region Size	SMBH Mass	Summary

1 Introduction

2 Motivation

4 Broad Line Region Size

5 SMBH Mass

6 Summary

l	ntroduction	ľ	V	otivatio

Accretion Disk Size

Broad Line Region Size

SMBH Mass

Summary

Accretion Disk Size Q 0957+561

Revealing the Structure of the Lensed Quasar Q 0957+561: I. Accretion Disk Size

Fian et al. (submitted)

Objective:

- calculate the size of the accretion disk
- evaluate impact of uncertainties

Method:

- relation between disk-size and microlensing
- use microlensing in the light curves to study size

h	ntro	duc	tio		ľ	V

otivation Ac

Accretion Disk Size

Broad Line Region Size

SMBH Mass

Summary

Q 0957+561 Overview

- first identified gravitationally lensed object
- discovered in 1979
- double quasar
- *z* = 1.41
- image separation: 6"
- $\Delta t_{AB} = 417$ days

Introduction	Motivation	Accretion Disk Size	Broad Line Region Size	SMBH Mass	Summary
Light (Curves o	of A and B			

- r-band observations from 1996 to 2016 (21 yr)
- IAC 80 (Tenerife) during the first observing period (1996-2005)
- Liverpool Telescope (La Palma): 2005 to 2016
- in total: 1067 epochs

Introduction	Motivation	Accretion Disk Size	Broad Line Region Size
		1111	

SMBH Mass

Summary

Intrinsic + Microlensing Variability

- shift light curve of B by -413 days
- correct for Δm between A and B using radio data
- flux variations in A mainly intrinsic
- $\bullet\,$ subtract intrinsic variability $\rightarrow\,$ residuals

Introduction	Motivation	Accretion Disk Size	Broad Line Region Size	SMBH Mass	Summary

Disk Size Estimation

- microlensing is sensitive to the size
- Bayes' theorem: $P(r,p|\Delta m_{obs}) \propto$ $P(\Delta m_{obs}|r,p) P(r,p)$
- source: circular Gaussian
- magnification = convolution of source profile and magnification map

Introduction	Motivation	Accretion Disk Size	Broad Line Region Size	SMBH Mass	Summary

Accretion Disk Size

•
$$R_{1/2} = 17.6 \pm 2.7 \sqrt{M/0.3 M_{\odot}}$$
 ld

- significantly greater than average size
- consistent within errors with result of Hainline et al. 2012 $(R_{1/2} = 12.2^{+26.4}_{-8.3} \text{ Id})$
- maybe large source size because of low transverse velocity
 ⇒ future work

Introduction	Motivation	Accretion Disk Size	Broad Line Region Size	SMBH Mass	Summary

1 Introduction

2 Motivation

3 Accretion Disk Size

4 Broad Line Region Size

5 SMBH Mass

6 Summary

Accretion Disk Size

Broad Line Region Size

SMBH Mass

Summary

Broad Line Region Size Q 0957+561

Revealing the Structure of the Lensed Quasar Q 0957+561: II. Constraints on the Broad-Line Region Size

Fian et al. (to be submitted)

Objective:

- study impact of microlensing on different wavelength regions
- study size, kinematics, and geometry of the BLR

Method:

- analyze different emission lines in several epochs
- estimate Δm for different line components (broad, very broad, underlying continuum)

Accretion Disk Size

Broad Line Region Size

SMBH Mass

Summary

Components - Standard Interpretation

Introduction	Motivation	Accretion Disk Size	Broad Line Region Size	SMBH Mass	Summary

Sketch Calculation

Accretion Disk Size

Broad Line Region Size

SMBH Mass

Summary

Spectroscopic Data Q 0957+561

- 14 epochs of observation
- data covering a period of 18 years
- from April 1999 to January 2017
- data from: HST, MMT, NOT, LT, WHT

Date	Emission Line	Facility	Reference
04/1999	C IV, C III], Mg II	HST	Goicoechea et al. 2005
06/2000	C IV, C III], Mg II	HST	Goicoechea et al. 2005
01/2008	C IV, C III], Mg II	MMT	Motta et al. 2012
01/2009	C III]	NOT*	GLENDAMA
03/2010	C IV, C III]	NOT*	GLENDAMA
10/2010	Mg II	LT*	GLENDAMA
03/2011	Mg II	LT*	GLENDAMA
04/2011	Mg II	LT^*	GLENDAMA
12/2011	Mg II	LT*	GLENDAMA
12/2011	C IV, C III]	NOT*	GLENDAMA
03/2013	C IV, C III]	NOT*	GLENDAMA
03/2015	C III], Mg II	LT	GLENDAMA
11/2015	C III], Mg II	LT*	Gil-Merino et al. 2018
03/2016	C IV, C III], Mg II	WHT	Fian et al. (in prep.)
01/2017	C III], Mg II	LT	Gil-Merino et al. 2018

Accretion Disk Size

Broad Line Region Size

SMBH Mass

Summary

Example BELs: C IV, C III], and Mg II

l	ntroduction	M	otiva

Accretion Disk Size

Broad Line Region Size

SMBH Mass

Summary

BLR Size and Geometry

ition

	Line	Feature	$R_{1/2}$
	C IV	continuum	$8.3^{+13.6}_{-2.9}$
		wing	$36.7^{+6.4}_{-5.4}$
 wings of Mg II, low velocity bins of C IV + C III]: large, spherically symmetric region 		bin 1	$53.2_{-3.1}^{+6.4}$
		bin 2	$15.1^{+18.5}_{-5.1}$
	C III]	continuum	$20.9^{+19.8}_{-6.1}$
high velocity bins of C IV +		wing	$45.8^{+9.1}_{-7.4}$
C III]: compact region,		bin 1	$55.8^{+3.8}_{-3.3}$
non-spherical geometry,		bin 2	$18.8^{+19.6}_{-6.4}$
probably following motion	Mg II	continuum	$36.7^{+11.1}_{-5.4}$
of accretion disk		wing	$52.6^{+4.7}_{-4.8}$
		bin 1	$80.7^{+9.6}_{-9.3}$
		bin 2	$51.3^{+3.5}_{-3.5}$

Introduction	Motivation	Accretion Disk Size	Broad Line Region Size	SMBH Mass	Summary

1 Introduction

2 Motivation

3 Accretion Disk Size

4 Broad Line Region Size

5 SMBH Mass

Accretion Disk Size

Broad Line Region Size

SMBH Mass

Summary

SMBH Masses from Fe III Redshift (Q 0957+561)

Revealing the Structure of the Lensed Quasar Q 0957+561 III. SMBH Mass via Gravitational Redshift

Fian et al. (to be submitted)

Objective:

• infer SMBH mass of Q 0957+561

Method:

- study size of the Fe III emitting region
- calculate gravitational redshift and the line broadening
- kinematics + estimation of redshift \rightarrow size + M_{BH}

Introduction	Motivation

Accretion Disk Size

Broad Line Region Size

SMBH Mass

Summary

Fe III Blend

- relatively isolated
- very variable
- originates from small region (few light-days)
- redshifted

Accretion Disk Size

Broad Line Region Size

SMBH Mass

Summary

Perform Fit to Fe III Blend

- fit: sum of 18 Gaussians
- fixed parameters: position and flux
- free parameters:
 - shift (position)
 - factor f (flux)
 - σ (broadening)

Introduction

Motivation

Accretion Disk Size

Broad Line Region Size

SMBH Mass

Summary

Fe III blend, Fit, and PDF

Introduction	Motivation	Accretion Disk Size	Broad Line Region Size	SMBH Mass	Summary
				11111	

Fe III Emitting Region Size and SMBH Mass

- in agreement within errors with:
 - virial determinations from Assef et al. 2011 $(M_{SMBH} \sim 1.0 \times 10^9 M_{\odot} \text{ using C IV})$ • average SMBH mass from Mediavilla et al. 2018
 - average SMBH mass from Mediavilla et al. 2018 $(M_{SMBH} \sim 0.8 \times 10^9 M_{\odot})$
- affected by relatively small errors (\leq 30%)
 - \rightarrow significant improvement in mass measurements

Interval	$R_{1/2}$ (lt-days)	$M_{BH}(\times 10^9 M_{\odot})$
Fixed	$15.0^{+6.8}_{-9.7}$	$1.47^{+0.24}_{-0.31}$
Shifted	$15.0^{+6.8}_{-9.7}$	$1.47^{+0.24}_{-0.31}$
+17.4Å	$15.5^{+6.4}_{-10.1}$	$1.52^{+0.24}_{-0.32}$

Introduction	Motivation	Accretion Disk Size	Broad Line Region Size	SMBH Mass	Summary
					11

1 Introduction

2 Motivation

3 Accretion Disk Size

4 Broad Line Region Size

5 SMBH Mass

Broad Line Region Size

SMBH Mass

Summary

Conclusions + Most Important Findings

Study structure of Q0957 at 3 different scales via microlensing:

- 1. new (and fast) method to estimate accretion disk size \rightarrow r_s of \sim 18 light-days
- 2. use microlensing in wings of BELs to reveal structure of BLR \rightarrow existence of 2 regions:
 - (a) LIL: arise from large region insensitive to ML
 - (b) HIL: compact region (inner part of BLR), sensitive to ML
- 3. huge microlensing differences in the Fe III lines
- 4. redshift of $\sim 17 \text{\AA}$ for Fe III
- 5. new method to estimate SMBH mass: size+redshift of Fe III

Introduction	Motivation	Accretion Disk Size	Broad Line Region Size	SMBH Mass	Summary
					11

Thank you for your attention!

