## The Impact of Line-of-sight structures on Measuring H0 with Strong Lensing Time-delays

*Time-Domain Cosmology with Strong Gravitational Lensing* 2021/01, Tokyo

Nan Li (NAOC), Christoph Becker (Durham), Simon Dye (Nottingham)

## **Motivations**

- The H0 tension is at **4+** sigma.
- Strong lensing time delays is an independent method for measuring H0.
- The impact of **external convergence** is a key issue in this approach.
- There will be **~1000** strong lensing time delay Systems in the era of LSST.



# Is the assumption *"constant external convergence"* accurate enough?

### Mass Sheet Degeneracy



## Simulations

#### **Lens Population:**

- BCGs of galaxy groups from CosmoDC2[1] with zlens =  $0.5 \pm 0.01$
- Lightcones from CosmoDC2 (20" X 20")
- SIE Model {VelDisp, Ellipticity, Orientation}

#### **Source Population:**

- zsrc = 2.0
- Point Source

#### Number of Simulations:

- Kext:~400 Quads
- L.O.S:~400 Quads
- Kext is the median value of the effective convergence of the fully raytraced convergence map, L.O.S includes all halos along the line of sight.

#### Mock catalog:

- {ximg[4], yimg[4], delays[4], mags[4]}
- ~800 such mock systems





Li+ 2020, arXiv:2006.08540

#### Lensing Ray-tracing through Lightcones

## **Examples of Mock Lenses with L.O.S. Galaxies**



## Modeling Mock Lenses Using Lenstronomy

#### Lenstronomy: https://github.com/sibirrer/lenstronomy

#### **Lens Models:**

- Singular Elliptical Power Law + External Shear
- xlens, ylens, b, e, gamma, lens\_pa, gamma\_ext\_1, gamma\_ext\_2
- xsrc, ysrc
- H0

#### Lenstronomy:

- PSO method, 200 particles, 500 iterations
- optimization
  - xlens, ylens
  - b, e, gamma, lens\_pa
  - gamma\_ext\_1, gamma\_ext\_2

|                      | Parameter                                        | Prior                                  |
|----------------------|--------------------------------------------------|----------------------------------------|
| Model constraints    |                                                  |                                        |
| Multiple image pos.  | RA, DEC (arcsec)                                 | $\mathcal{N}(	heta_{	ext{sim}}, 0.01)$ |
| Flux-ratios          | $\Delta F_{1-2,1-3,1-4}$                         | $\mathcal{N}(F_{\mathrm{sim}}, 0.01)$  |
| Time delays          | $\Delta t_{1-2,1-3,1-4}$ (days)                  | $\mathcal{N}(\Delta t_{ m sim}, 0.01)$ |
| Model component      |                                                  |                                        |
| Lens, SEPL           | $	heta_E 	ext{ (arcsec)}$                        | $\mathcal{U}(0.01,10)$                 |
| Lens, SEPL           | $\gamma$                                         | $\mathcal{U}(1.7,2.3)$                 |
| Lens, SEPL           | $e_{1,2}$                                        | $\mathcal{U}(-0.5, 0.5)$               |
| Lens, SEPL           | $\theta_{1,2}$ (arcsec)                          | $\mathcal{U}(-10,10)$                  |
| External shear       | $\gamma_{\mathrm{ext},1}$                        | $\mathcal{U}(0.0, 0.5)$                |
| External shear angle | $\theta_{\gamma,\mathrm{ext}} \; (\mathrm{rad})$ | $\mathcal{U}(-\pi,\pi)$                |
| Source, Point        | $\beta_{1,2}$ (arcsec)                           | $\mathcal{U}(-10,10)$                  |
| Hubble-Lemaitre      | $H_0 ~({\rm km/s/Mpc})$                          | $\mathcal{U}(20,120)$                  |
| constant             |                                                  |                                        |

## Results



## Results



9

## **Results**



PDFs of the fractional differences between measured H0 and the true value. Blue histograms show the PDF of fractional differences with single SEPL mass model only; orange histograms show the PDF of fractional errors with the mass model of SEPL + external shear; green histograms show the corrected fractional differences of the orange histograms with constant \kappa\_{ext} correction. Back vertical solid line stands for the value of zero. Blue, orange, and green vertical dashed lines stand for the median of each PDF.

#### Li+ 2020, arXiv:2006.08540

- 1. Strong lensing time delay is an independent approach to study H0 tension. External convergence is critical.
- The assumption of constant external convergence is not accurate enough, which is ~3 times larger than the impacts of the L.O.S in the systems in our work.
- 3. More sophisticated models of the L.O.S. is needed when modeling SLTD systems.
- 4. Alternatively, comperical models for correcting the biases might be useful too.