Efficient mass modeling of strong lenses through deep learning

HOLISMOKES IV. - Schuldt et al. (2021)

Stefan Schuldt (MPA/TUM) "Time-Domain Cosmology with Strong Gravitational Lensing" workshop January, 2021

Upcoming Lens Detections

Upcoming surveys (like LSST) will find hundred thousands of strongly lensed galaxies

- -> automated and fast way to model
- -> Convolutional Neural Network trained on images

Upcoming Lens Detections

Upcoming surveys (like LSST) will find hundred thousands of strongly lensed galaxies

- -> automated and fast way to model
- -> Convolutional Neural Network trained on images
- statistical studies
- needed for follow-up observations

Upcoming Lens Detections

Upcoming surveys (like LSST) will find hundred thousands of strongly lensed galaxies

- -> automated and fast way to model
- -> Convolutional Neural Network trained on images
- statistical studies
- needed for follow-up observations

-> assume SIE profile: lens center, position angle, axis ratio, and Einstein radius

- Hezaveh et al. 2017, Levasseur et al. 2017
 -> modeling of HST-like lensed arcs, single filter
 - -> removing of lens necessary

- Hezaveh et al. 2017, Levasseur et al. 2017
 - -> modeling of HST-like lensed arcs, single filter
 - -> removing of lens necessary
- Pearson et al. 2019
 - -> fully mocked up images

- Hezaveh et al. 2017, Levasseur et al. 2017
 - -> modeling of HST-like lensed arcs, single filter
 - -> removing of lens necessary
- Pearson et al. 2019
 - -> fully mocked up images
- Schuldt et al. (2021)
 - -> use real galaxy observation
 - -> only simulate lensing effect
 - -> additionally predict lens center

Network architecture

Network architecture

output:

Input: images

mock up images

based on real observed galaxy images

Lens

HSC with SDSS velocity dispersion -> axis ratio and position angle -> with Gaussian spread for possible offset of mass from light distribution

Source

HUDF images, masked out

-> high redshift, high resolution-> random picked galaxy for givenlens and randomly located

mock up images

based on real observed galaxy images

Lens

HSC with SDSS velocity dispersion -> axis ratio and position angle -> with Gaussian spread for possible offset of mass from light distribution

Source

HUDF images, masked out

-> high redshift, high resolution-> random picked galaxy for givenlens and randomly located

mock up images

based on real observed galaxy images

make use of several filters

Ζ

Example colour images

Image size 10.8"x10.8", based on gri filters

Test different data sets

- per data set ~100,000 images, each 4 filters
- variations of Einstein radius distribution
 - naturally distributed, lower limit 0.5"

-> peaks at 0.5"

- -> performance drops for larger θ_{E} significantly
- Naturally distributed, lower limit 2"
- Equally distributed, lower limit 0.5"

-> flat up to ~2"

Equally distributed sample

Quads + doubles

Lens center

-> within pixels-> kept for completness

Equally distributed sample

Quads + doubles

Lens center

-> within pixels-> kept for completness

Complex ellipticity

Equally distributed sample

Quads + doubles

-> within pixels-> kept for completness

Performance on Einstein radius

Performance on image position(s)

Use SIE mass model from CNN to predict image positions

Performance on time delay(s)

Use SIE mass model from CNN to predict time delay(s)

Summary and outlook

- Mock images based on real galaxies
 - -> be as realistic as possible (galaxy structure, line-of-side objects)
 - -> but limited in number
- Good regression network performance
- Distribution of Einstein radius is important
- CNN predictions good enough for image position and time delay predictions
 - > important for follow-up planning

data used for simulationLensSource- Hyper Suprime-Cam (HSC)- Hubble telescope (HUDF)

Redshift from SDSS

Redshift from Hubble

data used for simulationLensSource- Hyper Suprime-Cam (HSC)- Hubble telescope (HUDF)

Velocity dispersion from SDSS

Redshift from Hubble

Data set splitting

Cross validation

validation

train

- train 5 runs over 300 epochs
- best epoch to stop training: mean of all five losses is minimal
- -> train final network up to this epoch using train and validation set
- -> use test set to finally test the performance