LIGO-Virgo's 3rd Observing Run (so far)

Ben Farr

Status of Ground-Based GW Astronomy

O3 began on April 1, 2019.

Mid-run commissioning break started Oct 2019 at 15:00:00 UTC.

- Scattered light mitigation.
- Hanford squeezing improvements.
- Virgo power increased from 18W to 26W.

LIGO/Virgo/KAGRA Memorandum of Agreement signed Oct 4.

O3b began Nov 1 at 15:00:00 UTC.

Status of Ground-Based GW Astronomy

https://monitor.ligo.org/gwstatus

LIGO Hanford science Duration: 0d 09:58:59 (prev: nohoft) Last updated at 0:06	LIGO Livingston NOHOFT Duration: 0d 00:26:00 (Prev: science) Lat: updated at 0.06	Virgo science Duration: dd 07:44:52 (prev: hoftok) Last updated at 0:06	Kagra NOHOFT Duration: 2d 15:35:00 (prev: unknown) Last updated at 0:06	Fri Nov 08 2019 0:06:28 1257235606	LDAS 14 OK
DMT 15 ok Last updated at 0.06	Low-latency Data 2 / 46 warning Last updated at 0.06	LIGO Data Replicator 14 ok Last updated at 0:06	DetChar Summary 2/23 warNing	DetChar Jobs 1 / 16 UNKNOWN Last updated at 0.06	DetChar- Omicron Jobs Call Alex Urban 13 / 155 CRITICAL 41 / 155 UNIKNOWN Last updated at 0.06
GraCEDb 1 ox	LVAlert 2 ок Last updated at 0:06	GraCEDb Playground 1 ok Last updated at 0.06	DQSegDB 15 ok Last updated at 0:06	NDS 36 0K Last updated at 0:06	ligoDV Web 7 ок Last updated at 0:06
gstLAL Inspiral Call Ched Hanna 1/2 CRITICAL	CIS 2 ок	EMFollow 2 ок	РуСВС Live ^{1 ок}	Auth 27 ок	iDQ зо ок

https://www.gw-openscience.org/detector_status/

<text><section-header><text><section-header><section-header><section-header><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-row><table-container><table-row><table-row><table-container><table-row><table-container>

This page is a product of the Gravitational Wave Open Science Center. Please contact us with questions or comments

https://gracedb.ligo.org/

GraceDB — Gravitational-Wave Candidate Event Database

http://chirp.sr.bham.ac.uk/

LIGO-Virgo's 3rd Observation Run

O3a

O3b

April 1 – October 1, 2019

November 1, 2019 – April 2020

GWTC-1

What we've learned so far

Abbott et al 2018 arXiv:1811.12907 (GWTC-1)

What we've learned so far

$$\chi_{eff} = \frac{(m_1 \vec{s}_1 + m_2 \vec{s}_2) \cdot \hat{L}_N}{m_1 + m_2} \qquad \qquad \chi_p = \frac{1}{B_1 m_1^2} \max(B_1 s_{1\perp}, B_2 s_{2\perp})$$

Abbott et al 2018 arXiv:1811.12907 (GWTC-1)

 $\chi_{
m eff}$

What we've learned about BH masses so far

Model A

- Max. BH mass
- Mass power-law index
- Min. BH mass = 5 M_{\odot}
- Mass ratio power-law index = 0

Model B

- Min. BH mass
- Max. BH mass
- Mass power-law index
- Mass ratio power-law index

Model C

- Model B
- Gaussian high-mass comp.
- Tapering at edges

B. P. Abbott *et al* 2019 *ApJL* 882 L24 (GWTC-1 R&P)

What we've learned about BH masses so far

Model A

- Min. BH mass = 5 M_{\odot}
- Mass ratio power-law index = 0
- Mass power-law index $0.4^{+1.3}_{-1.9}$
- Max. BH mass $41.6^{+9.0}_{-4.5} M_{\odot}$

Model B

- Min. BH mass $7.9^{+1.2}_{-2.5} M_{\odot}$
- Mass ratio power-law index = 0
- Mass power-law index $1.6^{+1.5}_{-1.7}$
- Max. BH mass $42.0^{+15.0}_{-5.7} M_{\odot}$

Model C

- Gaussian comp. w/ mean $30.1^{+4.5}_{-6.9} M_{\odot}$ and std. deviation $5.5^{+3.8}_{-4.0} M_{\odot}$
- Power-law index $7.3^{+4.2}_{-4.6}$
- Cannot constrain max. mass
- B. P. Abbott *et al* 2019 *ApJL* 882 L24 (GWTC-1 R&P) LIG

A Word of Caution

Mass estimates must be done in the context of the population.

Ignoring population for large samples leads to apparent outliers.

E.g., For GW170729 Single-event analysis:

 $m_1 = 51.2^{+16.2}_{-11.0} M_{\odot}$

Hierarchical analysis:

 $m_1 = 38.9^{+7.3}_{-4.5} M_{\odot}$

Fishbach *et al* 2019 **arXiv:1911.05882**

What we've learned about BH spins so far

B. P. Abbott et al 2019 ApJL 882 L24 (GWTC-1 R&P) LIGO-G2000092

What we've learned about **BH spins** so far

B. P. Abbott et al 2019 ApJL 882 L24 (GWTC-1 R&P) LIGO-G2000092

O3 so far

https://gracedb.ligo.org/latest

Source Classifications

LIGO/Virgo Public Alerts User Guide

https://emfollow.docs.ligo.org/userguide/

O3 so far

Low-Latency* Classifications

https://gracedb.ligo.org/latest

* Preliminary classifications produced in low-latency to facilitate follow-up efforts

O3 so far

https://gracedb.ligo.org/latest

Low-Latency* Classifications

* Preliminary classifications produced in low-latency to facilitate follow-up efforts

BBH Conclusions from O1 + O2

- O1 + O2 suggest stellar BH masses top out around 45 M_{\odot} .
- Haven't yet probed low-mass mass gap.
- Not enough events to disentangle models (yet).

CBC Conclusions from O3

- ~40 interesting events in the first 6 months.
- Rates are ~consistent with predictions from O2.
- Population statements will continue to get more interesting.

GW190425: Observation of a compact binary coalescence with total mass $\sim 3.4 M_{\odot}$ The LIGO Scientific Collaboration,¹ The Virgo Collaboration,²

GW190425: Network State

LIGO Hanford

LIGO Livingston

Offline for 2h

Online for 30h BNS Range: 135 Mpc

> Online for 14h BNS Range: 48 Mpc

LIGO-G2000092

Virgo

GW190425: Confidence

GW190425: Follow-up

Final localization: 8,284 sq. deg. 88 – 228 Mpc

Extensive follow-up efforts: 118 circulars

No reported EM transients appear to be associated with GW190425

No constraints on inclination from GW

GW190425: Masses

Primary

Low-spin prior: $1.62 - 1.88 M_{\odot}$ High-spin prior: $1.61 - 2.52 M_{\odot}$

Secondary

Low-spin prior: $1.45 - 1.69 M_{\odot}$ High-spin prior: $1.12 - 1.68 M_{\odot}$

Assuming a BNS... @ **5o** of galactic BNS population

GW190425: Masses

Field Formation

Might suggest a BNS pop. formed w/ sub-hour orbital periods.

Belczynski *et al.* 2002 *ApJ* **572** 407 Ivanova *et al.* 2003 *ApJ* **592** 475 Dewi & Pols 2003 *MNRAS* 344 629

Dynamical Formation

MS pulsars up to 2 M_☉ found in globular clusters Ransom *et al.* 2005 *Science* **307** 892 Freire *et al.* 2008 *ApJ* **679** 1433

BNS contributions expected to be minimal Belczynski *et al.* 2018 A&A **615** A91 Ye et al. 2019 arXiv:1910.10740

GW190425: Spins

Effective spin

$$\chi_{\text{eff}} = \frac{(m_1 \vec{s}_1 + m_2 \vec{s}_2) \cdot \hat{L}_N}{m_1 + m_2}$$

Broad spin priors allow for a large mass ratio

Data consistent with negligible spin

GW190425: Astrophysical Rates

BNS merger rate from GWTC-1:

 $R_{\rm GWTC-1} = 110 - 2520 \,\rm Gpc^{-3}yr^{-1}$

Assuming GW190425 & GW170817 from same uniform-in-component mass dist.:

 $R = 250 - 2470 \text{ Gpc}^{-3} \text{yr}^{-1}$

Treating GW190425 & GW170817 independently (a la Kim et al. 2003 ApJ 584 985)

 $R_{170817} = 110 - 2500 \,\mathrm{Gpc^{-3}yr^{-1}}$ $R_{190425} = 70 - 1510 \,\mathrm{Gpc^{-3}yr^{-1}}$

 $R = R_{170817} + R_{190425} = 290 - 2810 \,\mathrm{Gpc^{-3}yr^{-1}}$

GW190425: Matter Effects

No confident detection of matter effects i.e., can't rule out point-particle model

Constraints poorer than GW170817

No additional information on EoS

No sensitivity to post-merger signal

Conclusions

GW190425 is...

the first demonstration of single-detector detection. likely the second BNS detection with gravitational waves. an outlier of observed galactic BNS population.

More to come...

Beyond

Observing Schedule

Abbott, B.P. Living Rev Relativ (2018) 21: 3. arXiv:1304.0670

Thank you

Expected Sensitivities

Expected Ranges

		O1	O2	03	O4	05
BNS Range (Mpc)	aLIGO	80	100	110–130	160 - 190	330
	AdV	-	30	50	90 - 120	150–260
	KAGRA	-	-	8–25	25 - 130	130+
BBH Range (Mpc)	aLIGO AdV KAGRA	740 - -	910 270	990–1200 500 80–260	1400 - 1600 860 - 1100 260 - 1200	2500 1300-2100 1200+
NSBH Range (Mpc)	aLIGO	140	180	190–240	300 - 330	590
	AdV	-	50	90	170 - 220	270–480
	KAGRA	-	-	15–45	45 - 290	290+

Expected Detections

Observation Run	Network	Expected BNS Detections	Expected NSBH Detections	Expected BBH Detections
O3	HLV	2 ⁺⁸ 2	0^{+19}_{-0}	15^{+19}_{-10}
O4	HLVK	8 ^{+ 42} 7	2^{+94}_{-2}	$68^{+\ 81}_{-\ 38}$
		Area (deg ²) 90% c.r.	Area (deg ²) 90% c.r.	Area (deg ²) 90% c.r.
O3	HLV	250 - 310	310 – 390	250 - 340
O4	HLVK	29 - 48	48 - 69	33 - 47
		Comoving Volume (10 ³ Mpc ³) 90% c.r.	Comoving Volume (10 ³ Mpc ³) 90% c.r.	Comoving Volume (10 ³ Mpc ³) 90% c.r.
O3 O4	HLV HLVK	90 — 130 43 — 71	590 — 1000 400 — 560	11000 - 19000 6400 - 10000