Two limits of supernovae: Electron capture supernova Pulsational pair-instability supernova

Shing-Chi Leung

Tapir, Caltech

In collaboration with Ken'ichi Nomoto (IPMU) Sergei Blinnikov (ITEP) Koji Ishidoshiro (Tohoku) Alexandre Kozlov (IPMU) Elena Sorokina (Sternberg) Petr Blaklanov (NRNU) Alexey Tolstov (Open U*) Toshio Suzuki (Nihon U.) Shuai Zha (Stockholm)

The low mass limit: ECSN

Based on our series of PPISN papers:

Suzuki+ ApJ 881, 64 (2019); Zha + ApJ 886, 12 (2019);

Leung+, PASA 36, e006 (2019); Leung+ ApJ 889, 34 (2020)

What is pulsational pair-instability?

Note: exact mass depends on metallicity and mass-loss rate

Bifurcation of ECSN

• Collapse vs. Explode

Where and how the nuclear runaway takes place?

- Electron capture \rightarrow Suppress flame growth
- Nuclear reaction \rightarrow Enhance flame growth

Leung, Nomoto, PASA 36, e006 (2019)

What is the condition for the ECSN to collapse?

Published today !! THE ASTROPHYSICAL JOURNAL

Electron-capture Supernovae of Super-AGB Stars: Sensitivity on Input Physics

Shing-Chi Leung^{1,2}, Ken'ichi Nomoto¹, and Tomoharu Suzuki³ Published 2020 January 22 • © 2020. The American Astronomical Society. All rights reserved. <u>The Astrophysical Journal</u>, <u>Volume 889</u>, <u>Number 1</u>

THE ASTROPHYSICAL JOURNAL, 889:34 (25pp), 2020 January 20 © 2020. The American Astronomical Society. All rights reserved.

Electron-capture Supernovae of Super-AGB Stars: Sensitivity on Input Physics

Shing-Chi Leung^{1,2}, Ken'ichi Nomoto¹, and Tomoharu Suzuki³ ¹Kavli Institute for the Physics and Mathematics of the Universe (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan shingchi.leung@ipmu.jp, nomoto@astron.s.u-tokyo.ac.jp ²TAPIR, Walter Burke Institute for Theoretical Physics, Mailcode 350-17, Caltech, Pasadena, CA 91125, USA ³College of Engineering, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan; tsuzuki@isc.chubu.ac.jp *Received 2019 January 30; revised 2019 November 26; accepted 2019 November 26; published 2020 January 22*

Sensitivity to Ignition density and position

Sensitivity to Ignition density and position

Leung, Nomoto, Suzuki ApJ 889, 34 (2020)

Recent motivations

A change in the e-cap rate translates to the ignition position and density

• New e-cap rate of ²⁰Ne

$$\log ft = 10.47 \pm 0.11$$

• (Kirsebom+ 2018)

Suzuki, Zha, Leung, Nomoto, ApJ 881, 64 (2019)

0

Impact

• When does the star runaway?

Zha, Leung, Suzuki, Nomoto, ApJ 886, 22 (2019)

Stellar evolution of ONeMg core before nuclear runaway

Most updated models

Most models tend to collapse to form a Low-mass neutron star.

Zha, Leung, Suzuki, Nomoto, ApJ 886, 22 (2019)

The high mass limit

Based on our series of PPISN papers:

Leung+ ApJ 887, 72 (2019); Leung + ApJ accepted (2020); Leung+ in prep (2020)

What is pulsational pair-instability?

Note: exact mass depends on metallicity and mass-loss rate

What is pair-instability?

- In a very massive star, photon pressure is the main supporting force
 - High temperature (10⁹ K), low density (10²⁻⁶ g cm⁻³)
- After core He-burning, energetic photon \rightarrow electron + positron pair
- Electron is non-degenerate \rightarrow Low pressure support ($\Gamma < 4/3$)
- Faster contraction, more photons converted

10

Gamma diagram

1.6 1.55

1.5

1.4

1.35

1.3

1.25

1.2

10

Gamma

What metallicity range forms PPISN?

Evolution and pulsation of 40 M_{sun} He core

Below 40 M_{sun} , the He core does not pulse and eject mass

- Obtained from ~80 solar mass star
- 5 weak pulses
- 1 strong pulse
 - Ejected ~1 Msun mass

Evolution and pulsation of 62 M_{sun} He-core

Above 64 M_{sun}, the He core does not pulsate but explode directly

Ejecta mass and composition

How much mass is ejected?

PPISN Remnant vs. LIGO

- Most aLIGO black holes are formed by CCSN
- Black hole between 36
 52 Msun by PPISN