Binary Models versus LIGO/Virgo data

Chris Belczynski¹ T.Bulik, D.Holz, P.Madau R.O'Shaughnessy, E.Berti C.Fryer, J.Klencki, G.Meynet

C.Fields, N.Singh, K.Nomoto, D.Brown, M.Chruslinska, A.Olejak S.Jones, S.Leung, N.Pol, S.Mondal, P.Drozda, D.Wysocki, S.Ekstrom R.Hirschi, L.Zdunik, C.Georgy, M.Giersz, A.Askar, J.P.Lasota M.McLaughlin, D.Lorimer, O.Korobkin, M.Davies, E. van den Heuvel, ... ¹Copernicus Center (Warsaw), Polish Academy of Sciences

- modeling: formation channels, input physics
- BH-BH: merger rate, masses, effective spins
- NS-NS: merger rate and host galaxy

major formation scenarios: stars

isolated binaries:

- spirals, ellipticals, dwarf galaxies
- stellar/binary evolution
- 99% of stars
- formation efficiency: $X_{\rm BHBH} \approx 10^{-6}$

dynamical interactions:

- globular, nuclear, open clusters
- dynamics + stellar/binary evolution
- 0.1% of stars
- formation efficiency: $X_{\rm BHBH} pprox 10^{-4}$

+ some exotica: triple stars, single stars, binaries in AGN disks, PBHs...

Modeling

Results from Classical Binary Evolution: NS-NS:

GW150914: 30 + 30 M_{\odot} massive BH-BH merger

binary evolution

dynamics/globular clusters

credit: W.Gladysz – StarTrack simulation

credit: A.Askar - MOCCA simulation

binary evolution and dynamics: can produce massive BH-BH mergers
 because of (1): the origin of BH-BH mergers unknown...

modeling: synthetic universe

Modeling

Results from Classical Binary Evolution:

- merger rates

- BH masses

— BH s

Cosmic Star Formation Rate SFR (z): Pop I/II

NS-NS:

- 2 new SFRs: low and high (uncertainty range: Piero Madau)
- old versus new: not much change (until z = 2)

Modeling Evolution: NS-NS:

Results from Classical Binary Evolution:

- merger rates

- BH masses

– BH s

Cosmic Metallicity Evolution Z(z): Pop I/II

- new Z(z): high metallicity of star forming gas at a given z

- old Z(z): low metallicity of star forming gas at a given z

Modeling

Results from Classical Binary Evolution:

- merger rates
- BH masses

NS-NS: – BH

BH-BH merger rate: effect of SFR(z) and Z(z)

- SFR(z): almost no impact on merger rates (z < 2)

- Z(z): significant impact on merger rates (BH-BH/BH-NS)

- merger rates

NS-NS: BH-BH merger rate: effect of CE and SNe kicks

- Common Envelope: ~ 1 order of mag. change of merger rates

- Natal Kicks: \sim 1 order of mag. change of merger rates

Modeling

Results from Classical Binary Evolution:

- merger rates
- BH masses

NS-NS: - BH

Models of BH-BH/BH-NS/NS-NS with new physics:

some models: fit all rates (e.g., M30.B or M33.A)
 all models: available at www.syntheticuniverse.org

merger rate
 BH masses
 BH spins

BH mass spectrum: maximum BH mass

- past updates:

 $\frac{\text{stellar models:}}{\text{(Spera et al. 2015)}} \sim 130 \text{ M}_{\odot}$

 $\frac{\text{IMF extension:}}{(\text{Belczynski et al. 2014})}$

- present update (2019): BH mass: $\lesssim 40-60~M_{\odot}$ (pair-instability pulsations)

 $\label{eq:stellar-origin BHs can reach: $$\sim 100 \ M_{\odot}$$ (Zamperi & Roberts 2009; Mapelli et al. 2009)$

- merger rates
- BH masses

BH spins

Pair-instability Pulsation Supernovae: PPSN

- no PPSN/PSN: any BH mass allowed (limits from: IMF, winds, SN)

merger rates

BH masses

– BH spins

Maximum stellar-origin BH mass: $\sim 60 M_{\odot}$

new NS/BH mass spectrum:

neutron stars:	$1-2~M_{\odot}$
first mass gap:	$2-5~M_{\odot}$
black holes:	$5-60~M_{\odot}$
second mass gap:	60 – 130 M
black holes:	130 - ??? M ₀

BH masses:

- LIGO/Virgo will test PPSN/PSN
- all our PPSN/PSN models: are OK so far

merger rate
 BH masses

BH spins

Predicted primary BH mass vs LIGO estimates

Chris Belczynski

The Astrophysics of NS-NS/BH-NS/BH-BH with LIGO/Virgo

- merger rate
 BH masses
- BH spins

laying out the problem....

- LIGO/Virgo detected 10 BH-BH mergers: all with $\chi_{eff} \approx 0$ $\chi_{eff} \equiv (M_1 a_1 \cos \theta_1 + M_2 a_2 \cos \theta_2)/(M_1 + M_2), \quad a \equiv cJ_{BH}/(GM_{BH}^2)$
 - (1) BH spins in opposite direction ($a_1 \approx a_2 \approx 1$): $\chi_{\rm eff} \approx 0$
 - (2) both BH spins in orbital plane ($a_1 \approx a_2 \approx 1$): $\chi_{eff} \approx 0$
 - (3) both BH spins very small ($a_1 \approx a_2 \approx 0$): $\chi_{eff} \approx 0$
- EM observations: high BH spins in high mass X-ray binaries (M33 X-7: a=0.84, LMC X-1: a=0.92, Cyg X-1: a>0.98)
- what do stellar evolution models predict for BH-BH mergers?
 - (1) initial rotation of a massive star
 - (2) angular momentum transport through a star
 - (3) mass loss that removes angular momentum from a star
 - (4) core collapse (supernova?) mass/ang. momentum loss

< < >>

- merger rates
- BH masses

BH spins

$M_{\rm zams} = 32 \ { m M}_{\odot}$ at Z = 0.002: angular momentum

NS-NS:

no TS: meridional currents (mild ang. momentum transport)

TS: Tyler-Spruit magnetic dynamo (efficient ang. momentum transport)

Modeling

Results from Classical Binary Evolution:

- merger rates
- BH masses

NS-NS: – BH spins

Angular momentum transport in massive stars

Carl Fields, Sam Jones, Raphael Hirschi

- 1) Geneva: mild ang. momentum transport (meridional currents)
- 2) MESA: effective ang. momentum transport (magnetic fields)
- 3) Fuller: very effective ang. momentum transport ($a_{spin} = 0.01$)

- merger rates
- BH masses

- BH spins

BH-BH effective spins parameter: χ_{eff}

1) Geneva: effective spins too high ($\chi_{eff} \sim 0.8 \rightarrow 0.7$) $\chi_{eff} = (M_1 a_1 \cos \theta_1 + M_2 a_2 \cos \theta_2)/(M_1 + M_2)$

3

э.

Modeling Evolution: NS-NS:

Results from Classical Binary Evolution:

- merger rates
- BH masses

- BH spins

BH-BH effective spins: tides

- 1) MESA: tides not needed
- 2) Fuller: tides (marginally) needed

but, 2 low p-astro IAS detections with high positive χ_{eff} : may require tides...

merger rates

- BH masses
- BH spins

Conclusions: BH-BH

- origin of BH-BH mergers: still unknown
 - isolated binaries: \sim 90%?
 - globular clusters: $\sim 10\%?$
- LIGO/Virgo BH-BH mergers: if from isolated binary evolution
 - merger rate density: OK
 - BH masses: OK
 - effective spins: OK
- astro implications: from just several models
 - efficient angular momentum transport
 - PPSN mass loss required
 - tidal spin-up possibly detected?

イロト イポト イヨト イヨ

- LIGO/Virgo detection
 - evolutionary predictions
- models vs Milky Way NS-NS binaries

GW170817: first NS-NS merger in gravitational waves

- LIGO/Virgo inspiral detection of: 1.4 1.6 M_{\odot} and 1.2 1.4 M_{\odot} (NS-NS?)
- LIGO/Virgo merger rate: \sim 1,000 (110 3,840) Gpc⁻³ yr⁻¹ (1st surprise)
- EM: optical kilonova + off-axis short GRB
- Host galaxy: massive elliptical at 40 Mpc (2nd surprise)

イロト イポト イヨト イヨト

 Modeling
 – LIGO/Virgo detection

 Results from Classical Binary Evolution:
 – evolutionary predictions

 NS-NS:
 – models vs Milky Way NS-NS binaries

NGC 4993: GW170817 host galaxy star formation

observations: photometry, spectra, images (radio, IR, optical, UV, X-rays, gamma-rays)

NGC 4993:

- medium size elliptical galaxy: at 40 Mpc
- stars at near-solar metallicity: $Z \approx 0.02$
- $\bullet\,$ total star forming mass: $7.9\times10^{10}~M_{\odot}$
- peak of star formation rate: 11 Gyr ago
- extra (?) episode of SFR: 0.5-1 Gyr ago (but only < 1% of total SFR)

almost no current/recent star formation...

Blanchard, Berger et al. 2017, ApJ 848, L22 -> (see also Troja et al. 2017, Palmese et al. 2017)

- LIGO/Virgo detection
- evolutionary predictions
- models vs Milky Way NS-NS binaries

NS-NS merger: in old host galaxies (NGC4993-like)

binary stars:

globular clusters:

LIGO rate: $\sim 1 \ yr^{-1}$ – so how did GW170817 formed?

(Belczynski, Askar, Arca-Sedda, Chruslinska, Donnari, Giersz, Benacquista, Spurzem, Jin, Wiktorowicz, Belloni 2018, A&A, 615, 91)

Chris Belczynski The Astrophysics of NS-NS/BH-NS/BH-BH with LIGO/Virgo

- LIGO/Virgo detection
- evolutionary predictions
- models vs Milky Way NS-NS binarie

NS-NS mergers: delay time distribution

typically short delays: most mergers expected in star forming regions (this is a generic result and very hard to change...)

- LIGO/Virgo detection
- evolutionary predictions
- models vs Milky Way NS-NS binaries

Galactic NS-NS: 18 known systems

Name	type	M_{psr}^{b}	M _{com}	Porb	а	е	tmer ^c	referencee
		[M _☉]	[M _☉]	[day]	[R ₀]		[Gyr]	
field:								
1) J1946+2052	recycled	1.25	1.25	0.076	1.028	0.06	0.042	[1]
2) J1757-1854	recycled	1.34	1.39	0.183	1.897	0.6	0.079	[2]
3) J0737-3039	young	1.338	1.249	0.102	1.261	0.088	0.085	[3,4,5]
4) B1913+16	recycled	1.440	1.389	0.323	2.801	0.617	0.301	[6,7]
5) J1906+0746	young	1.291	1.322	0.166	1.750	0.085	0.308	[8,9]
6) J1913+1102	recycled	1.64	1.25	0.206	2.090	0.08	0.473	[10,11]
7) J1756-2251	recycled	1.341	1.230	0.320	2.696	0.181	1.660	[12,13]
8) B1534+12	recycled	1.333	1.346	0.421	3.282	0.274	2.736	[14]
9) J1829+2456	recycled	1.295	1.295	1.176	6.436	0.139	55.36	[15]
10) J1411+2551	recycled	1.265	1.265	2.61	10.9	0.16	471.3	[16]
11) J0453+1559	recycled	1.559	1.174	4.072	15.0	0.113	1,452	[17]
12) J1811-1736	recycled	1.285	1.285	18.779	40.7	0.828	1,794	[18]
13) J1518+4904	recycled	1.359	1.359	8.634	24.7	0.249	8,853	[19]
14) J1755-2550	young	1.3	1.3	9.696	26.3	0.089	15,917	[20,21]
15) J1753-2240	recycled	1.3	1.3	13.638	33.0	0.304	28,646	[22]
16) J1930-1852	recycled	1.295	1.295	45.060	73.1	0.399	531,294	[23]
globular clusters:								
17) B2127+11C	recycled	1.358	1.354	0.335	2.830	0.681	0.217	[24,25]
18) J1807-2500B ^d	recycled	1.366	1.206	9.957	26.7	0.747	1,044	[26]

current merger times: 50%–50% short vs long merger time systems (Belczynski, Bulik, Olejak et al. 12/2018: arXiv:1812.10065)

イロト イポト イヨト イヨト

Modeling – LIGO/Virgo detection Results from Classical Binary Evolution: – evolutionary predictions NS-NS: – models vs Milky Way NS-NS binaries

Galactic NS-NS: merger rate in MW

peak value: $\mathcal{R}_{MW} \sim 40 \text{ Myr}^{-1}$ 1st estimate: 28–72 Myr⁻¹ 2nd estimate: 6.6–190 Myr⁻¹

merger rate estimates:

- adopt MW star formation model
- adopt radio and recycled pulsar lifetimes
- radio detctability model (beaming, luminosity)
- extrapolate from 8 close NS-NS MW systems
- Pol, McLaughlin, Lorimer 11/2018, arXiv:1811.04086)
- O'Shaughnessy 2019)

- LIGO/Virgo detection
- evolutionary predictions
- models vs Milky Way NS-NS binaries

NS-NS models: merger rate predictions

Population synthesis calculations (the StarTrack code)

\sim 20 models:

- NS natal kicks (Hobbs, ECS, Bray&Eldridge)
- CE effciency (0.1–1.0-10)
- RLOF mass loss (50%–80%)
- we calculate NS-NS merger rate:
- in Milky Way
- in all local Elliptical galaxies

we compare both with observations...

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Name	CC kick"	ECS kick ^o	ace	(acc/eje)a1.or	R _{MW} [Myr ⁻¹] ^r	Rel [Gpc ^{-*} yr ^{-*}]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	observations					28-725	110-3840
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						6.6-190 ^h	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NN2 A	Hobbe: 265 km x ⁻¹	OFE: -	1.0	0.2/0.8	13.5-20.0	08-23
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	NN/2 P	Hobba: 265 km s ⁻¹	OFF.	1.0	0.2/0.0	0.0.1.2	0.8 2 2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	14142.0	H0005. 205 Kill S	OPP. =	1.0	0.2/0.8	0.9-1.5	0.8-2.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	NINIL4 A	HabbaER, 265 Jan	OFF.	1.0	0.2/0.8	22.6.22.4	08.20
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	101014.74	HOUDSPB. 200 Kill'S	OFF. =	1.0	0.2/0.8	22.0=33.4	0.8-3.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ININ I+.D	HOUDSPID: 200 KIII S	OPP. =	1.0	0.2/0.8	1.3=2.2	0.8-2.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	NN/.A	Hobbs: 133 km s	ON: 66 km s	1.0	0.2/0.8	32.4-48.0	1.2-0.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	NN7.B	Hobbs: 133 km s ⁻¹	ON: 66 km s ⁻⁺	1.0	0.2/0.8	3.1-4.6	1.2-4.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	NN3.A	HobbsFB: 265 km s ⁻¹	ON: 0 km s ⁻¹	1.0	0.2/0.8	38.4-56.8	6.3-21.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	NN3.B	HobbsFB: 265 km s ⁻¹	ON: 0 km s ⁻¹	1.0	0.2/0.8	10.8 - 16.0	5.9-18.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	NN8_A	Hobbs: 133 km s ⁻¹	ON: 0 km s ⁻¹	1.0	0.2/0.8	45.0-66.6	8.3-19.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	NN8.B	Hobbs: 133 km s ⁻¹	ON: 0 km s ⁻¹	1.0	0.2/0.8	10.6-15.7	7.5-15.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	M10.A	HobbsFB: 265 km s ⁻¹	ON: 0 km s ⁻¹	1.0	0.5/0.5	53.6-79.3	11.4-51.4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	M10.B	HobbsFB: 265 km s ⁻¹	ON: 0 km s ⁻¹	1.0	0.5/0.5	17.4-25.8	18.5-22.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	NN11.A	Hobbs: 66 km s ⁻¹	OFF: -	1.0	0.2/0.8	61.1-90.4	4.7-13.1
$ \begin{array}{cccc} NN9A \\ NN9A \\ NN9A \\ NN0A \\ Hobs: 66 km s^{-1} \\ ON: 33 km s^{-1} \\ ON: 33 km s^{-1} \\ DO: 0208 \\ ON: 31 km s^{-1} \\ ON: 000 \\ ON: 31 km s^{-1} \\ OPE \\ OPE \\ NN10A \\ Hobs: 66 km s^{-1} \\ Hobs: 600 \\ Hobs: 000 \\ OPE \\ $	NN11.B	Hobbs: 66 km s ⁻¹	OFF: -	1.0	0.2/0.8	7.8-11.5	4.3-11.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NN9 A	Hobbs: 66 km s ⁻¹	ON: 33 km s ⁻¹	1.0	0.2/0.8	67.6-100	39-18.4
NN10.4 Hocke of km s ⁻¹ OFF:- 10 0.208 750-114 75-299 NN10.4 Hocke of km s ⁻¹ 0.07:- 1.0 0.208 760-114 75-299 NN10.4 Hocke of km s ⁻¹ 0.07:- 1.0 0.208 760-114 75-299 NN12.4 Hocke 53 km s ⁻¹ 0.07:- 1.0 0.208 728-79 75-277 NN12.4 Hocke 53 km s ⁻¹ 0.07:- 1.0 0.208 728-737 73-239 NN12.4 Hocke 53 km s ⁻¹ 0.07:- 1.0 0.208 728-77 73-237 NN4.4 Hocke 50 km s ⁻¹ 0.07:- 1.0 0.208 728-77 73-237 NN4.4 Hocke 50 km s ⁻¹ 0.07:- 1.0 0.208 728-77 72-72 NN3.5 Hocke 50 km s ⁻¹ 0.07:- 1.0 0.208 728-77 72-72 NN3.5 Hocke 50 km s ⁻¹ 0.07:- 1.0 0.208 72-72 72-72 NN3.5 Hocke 50 km s ⁻¹ 0.07:- 1.0 <td>NN9 B</td> <td>Hobbe: 66 km r⁻¹</td> <td>ON: 33 km r⁻¹</td> <td>1.0</td> <td>0.2/0.8</td> <td>11.0-16.3</td> <td>3.9-16.3</td>	NN9 B	Hobbe: 66 km r ⁻¹	ON: 33 km r ⁻¹	1.0	0.2/0.8	11.0-16.3	3.9-16.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14117.10	HOUSE OF KINS	0.1. 35 km 3	1.0	0.2/0.0	11.0-10.0	5.9-10.5
	NINILO A	Habbar 66 has all	ON-0 hm1	1.0	0.2/0.8	76.0 114	7.0.20.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	NNI0.A	Hobos. oo kiii s	ON O KIII S	1.0	0.2/0.8	70.9=114	7.9-29.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	INIVIO.B	HODOS: OO KIII S	ON. O KIII S	1.0	0.2/0.8	10.0=23.7	1.3-21.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	NINU 2 A	Halakar 22 has and	OFF	1.0	0.2/0.8	126 186	12 4 22 1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	NN12.A	Hobos, 55 km s	OFF. =	1.0	0.2/0.8	120-180	13.4-33.1
	NN12.B	Hobbs: 33 km s	OPP: -	1.0	0.2/0.8	21.8-32.3	13.4-31.5
	NN4.A	Hobbs: 0 km s ⁻¹	OPP: =	1.0	0.2/0.8	251-371	23.2-72.1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	NN4.B	Hobbs: 0 km s ⁻¹	OFF: -	1.0	0.2/0.8	48.9-72.4	23.2-70.8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	NN13.A	Hobbs: 0 km s ⁻¹	OFF: -	10	0.2/0.8	1208-1788	186-561
$\begin{array}{llllllllllllllllllllllllllllllllllll$	NN13.B	Hobbs: 0 km s ⁻¹	OFF: -	10	0.2/0.8	6.7-9.9	29.9-25.2
NNSA BEII: 100/-710 km s ⁻¹ OFF:- 0.1 0.20.8 11.9-17.0 11.8-22.9 NNSB BEII: 100/-710 km s ⁻¹ OFF:- 0.1 0.20.8 11.5-17.0 11.8-22.9 NNLA BEII: 100/-710 km s ⁻¹ OFF:- 1.0 0.20.8 11.5-17.0 11.8-22.9 NNLA BEII: 100/-710 km s ⁻¹ OFF:- 1.0 0.20.8 179-285 15.3-51.2 NNLB BEII: 100/-710 km s ⁻¹ OFF:- 1.0 0.20.8 37.0-54.8 15.3-50.6							
NN5.B BE18: 100/-170 km s ⁻¹ OFF:- 0.1 0.2/0.8 11.5-17.0 11.8-22.9 NN1.A BE18: 100/-170 km s ⁻¹ OFF:- 1.0 0.2/0.8 179-265 15.3-51.2 NN1.B BE18: 100/-170 km s ⁻¹ OFF:- 1.0 0.2/0.8 37.0-54.8 15.3-50.6	NN5.A	BE18: 100/ - 170 km s ⁻¹	OFF: -	0.1	0.2/0.8	11.9-17.6	11.8-22.9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	NN5.B	BE18: 100/ - 170 km s ⁻¹	OFF: -	0.1	0.2/0.8	11.5-17.0	11.8-22.9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
NN1.B BE18: 100/ - 170 km s ⁻¹ OFF: - 1.0 0.2/0.8 37.0-54.8 15.3-50.6	NNLA	BE18: 100/ - 170 km s ⁻¹	OFF: -	1.0	0.2/0.8	179-265	15.3-51.2
	NN1.B	BE18: 100/ - 170 km s ⁻¹	OFF: -	1.0	0.2/0.8	37.0-54.8	15.3-50.6
NN6.A BE18: 100/ - 170 km s ⁻¹ OFF: - 10 0.2/0.8 961-1422 156-471	NN6.A	BE18: 100/ - 170 km s ⁻¹	OFF: -	10	0.2/0.8	961-1422	156-471
NN6.B BE18: 100/ - 170 km s ⁻¹ OFF: - 10 0.2/0.8 4.1-6.1 12.6-15.1	NN6.B	BE18: 100/ - 170 km s ⁻¹	OFF: -	10	0.2/0.8	4.1-6.1	12.6-15.1

(Belczynski, Bulik, Olejak et al. 12/2018: arXiv:1812.10065)

Chris Belczynski

The Astrophysics of NS-NS/BH-NS/BH-BH with LIGO/Virgo

- LIGO/Virgo detection
- evolutionary predictions

- models vs Milky Way NS-NS binaries

NS-NS models: Milky Way vs Elliptical galaxies

Milky Way vs LIGO/Virgo: no tested models overalp with both constraints...

- LIGO/Virgo detection
- evolutionary predictions
- models vs Milky Way NS-NS binaries

Predicted merger times for NS-NS in Milky Way

- models with Hobbs/ECS kicks
- with normal CE effciency
- reproduce Galactic merger rates
- are good match to merger times

they don't produce LIGO/Virgo rate

- models with Eldridge/zero kicks
- with high CE effciency
- don't reproduce Galactic rates
- no good match to merger times

but they produce LIGO/Virgo rate

The Astrophysics of NS-NS/BH-NS/BH-BH with LIGO/Virgo

- LIGO/Virgo detection
 evolutionary predictions
- models vs Milky Way NS-NS binaries

NS-NS: conclusions

- Milky Way: many evolutionary models... (agreement: rates, merger times)
- LIGO/Virgo: very few (unphysical?) models...
 (but these models in disagreement with Milky Way observations)

LIGO/Virgo NS-NS merger: formation mechanism unknown... unless:

- detection of NS-NS merger in elliptical was a statistical fluke
- If above not true: solution in untested part of parameter space
- If above not true: classical binary evolution model needs revision
- If above not true: different formation process must be at work...

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Modeling – LIGO/V Results from Classical Binary Evolution: – evolutio NS-NS: – models

- LIGO/Virgo detection
- evolutionary predictions
- models vs Milky Way NS-NS binaries

DCO merger rates: comaprison with LIGO/Virgo

- NS-NS: OK match to LIGO/Virgo (but host galaxy issue)

- BH-NS: rate within upper limit (first detection in O3?)

- models vs Milky Way NS-NS binaries

NS-NS merger: stellar/binary evolution

NS-NS merger rate: $\sim 1,000 \text{ Gpc}^{-3} \text{ yr}^{-1}$ LIGO/Virgo range: $110-3.840 \text{ Gpc}^{-3} \text{ yr}^{-1}$

predictions: $\sim 100 \text{ Gpc}^{-3} \text{ yr}^{-1}$, because:

- narrow mass range: $M_{ZAMS} \sim 10-20 M_{\odot}$
- common envelope: 50% binary mergers
- first SNa: \geq 90% binary disruptions
- common envelope: 20% binary mergers
- short delay: 30 Myr + \leq 1 Gyr ->
 - -> not expected in old ellipticals!

(Chruslinska et al. 2018, MRAS 474, 2937)

Chris Belczynski

- LIGO/Virgo detection
- evolutionary predictions
- models vs Milky Way NS-NS binaries

BH-BH masses: Pop I/II

Chris Belczynski The Astrophysics of NS-NS/BH-NS/BH-BH with LIGO/Virgo

ъ

- LIGO/Virgo detection
- evolutionary predictions
- models vs Milky Way NS-NS binaries

Maximum stellar-origin BH mass: $\sim 50 M_{\odot}$

PSN: Pair-instability SN $(M_{\rm He} \sim 65-130 {\rm ~M}_{\odot})$ no remnant: entire star disruption

PPSN: Pair-instability Pulsation SN $(M_{\rm He} \sim 45-65 {\rm ~M}_{\odot})$ black hole: and severe mass loss

NS/BH mass spectrum:

neutron stars:	$1-2~M_{\odot}$
first mass gap:	$2-5~M_{\odot}$
black holes:	$5-50~M_{\odot}$
second mass gap:	$50-130~M_{\odot}$
black holes:	$130 - ??? M_{\odot}$

(Belczynski, Heger, Gladysz, Ruiter, Woosley, Wiktorowicz, Chen, Bulik, O'Shaughnessy, Holz, Fryer, Berti: A&A 2016)

- LIGO/Virgo detection
 - evolutionary predictions
- models vs Milky Way NS-NS binaries

Common envelope: orbital decay at low Z

high-Z: RLOF at HG -> radiative envelope -> stable MT & no orbit decay low-Z: RLOF at CHeB -> convective envelope -> CE & orbit decay

BH-BH progenitors go through CE: at low Z rates up by 50 times ($Z_{\odot} \rightarrow 0.1 Z_{\odot}$)

Modeling – LIGO/Virgo detection Results from Classical Binary Evolution: – evolutionary predictions NS-NS: – models vs Milky Way NS-NS binaries

BH-BH formation: broad perspective

LIGO detections: outbreak of models

- PopII/I BH-BH: isolated binary evolution (90% stars in cosmos)
- PopII/I BH-BH: dynamics/globular clusters (0.1%) $X_{\rm BHBH} \approx 10^{-5} - 10^{-7} {\rm M}_{\odot}^{-1}$ (binary) vs $X_{\rm BHBH} \approx 10^{-4}$ (dynamics) rate_binary / rate_dynamics $\approx 10-100$
- Primordial BH-BH: density fluctuations after Big Bang
- PopIII BH-BH: first massive stars (≲ 1%)
- PopII/I BH-BH: rapid rotation (homogeneous evol.) (10%)
- exotic BH-BH: e.g., nuclear star clusters: dynamics (?)
 e.g., massive star formation in AGN disk (?)
 e.g., single star core splitting (?)

ヘロン ヘアン ヘビン ヘビン

Modeling – LIGO/Virgo detection Results from Classical Binary Evolution: – evolutionary predictions NS-NS: – models vs Milky Way NS-NS binaries

GW170104: claimed to originate from dynamics, but...

LIGO: $-0.42 < \chi_{eff} < 0.09$ (90% credible) $\chi_{eff} = (M_1 a_1 \cos \theta_1 + M_2 a_2 \cos \theta_2)/(M_1 + M_2)$

binary evolution can explain GW170104:

- low metallicity: $Z < 10\% Z_{\odot}$
- CE: during CHeB
- Iong delay: 5 Myr + 6 Gyr
- aligned BH spins: tilt = 0 deg?
- BH spin: $a_1 = 0.0 \Rightarrow a_1 = 0.05$ $a_2 = 0.14 \Rightarrow a_2 = 0.14$

 $\chi_{\rm eff,max} = 0.09$ (OK with observations)

(Belczynski, Klencki, Meynet, Fryer, Brown, et al. 2018, submitted)

- LIGO/Virgo detection
- evolutionary predictions
- models vs Milky Way NS-NS binaries

BH natal spin model: from the Geneva code

– low-mass BHs $~(\lesssim 15~M_{\odot},$ weak winds): high natal spins ($a_{spin}\approx 0.9)$

– high-mass BHs ($\gtrsim 30~M_{\odot},$ strong winds): low natal spins $~(a_{spin}\approx 0.1)$

- LIGO/Virgo detection
- evolutionary predictions
- models vs Milky Way NS-NS binaries

Predictions vs LIGO/Virgo effective spins

NS-NS:

– if LIGO/Virgo effective spins continue at low values: then even BHs with $M_{BH} < 30 M_{\odot}$ are born with low spins –> efficient angular momentum transport in stellar interiors

- LIGO/Virgo detection
- evolutionary predictions
- models vs Milky Way NS-NS binaries

Star formation history: Pop I/II vs Pop III stars

Pop I/II: uncertain for z>2, Pop III: much smaller contribution

- LIGO/Virgo detection
- evolutionary predictions
- models vs Milky Way NS-NS binaries

Population III binary initial conditions:

NS-NS:

- LIGO/Virgo detection
 - evolutionary predictions
- models vs Milky Way NS-NS binaries

Pop III BH-BH merger rate history:

NS-NS:

- delay time: $a^{-1}(da/dt)_{GR} \propto t^{-1/4}d(t^{1/4})/dt \propto t^{-1}$ (initial separation distr.: $\sim a^{-1}$, $t_{GR} \propto a^4$: Peters 1964) - O1/O2 LIGO BH-BH merger rate: 12–213 Gpc⁻³ vr⁻¹

Pop III BH-BH rates: 3 orders below LIGO, 4 orders below Pop I/II

Modeling – LIGO/Virgo detection Results from Classical Binary Evolution: – evolutionary predictions NS-NS: – models vs Milky Way NS-NS binaries

Conclusions

- LIGO/Virgo NS-NS merger: will guide evolutionary physics...
- origin of LIGO/Virgo BH-BH mergers: still unknown
 - binary channel: high rates; but masses OK (spins not OK)
 - dynamical channel: low rates; but masses OK (spins not OK)
- astro implications: doubly limited
 - implications: valid only within a given BH-BH origin model
 - within each model: multiple (untested) possibilities
- channel discrimination: may be very hard to do, but
 - BH spins: semi-aligned/random? (binary/dynamical)
 - BH mass: $M_{
 m BH} \approx 50 130$ ${
 m M}_{\odot}$ and $a_{
 m BH} \sim 0.6$? (dynamical)
 - BH-BH rate: $\gtrsim 100 \text{ Gpc}^{-3} \text{ yr}^{-1}$? (binary)
- Pop III BH-BH mergers: not likely as LIGO/Virgo sources

くロト くぼト くほと くほと

- LIGO/Virgo detection
- evolutionary predictions

- models vs Milky Way NS-NS binaries

NS-NS merger rates: observations vs predictions

- NS-NS upto 1000 Gpc⁻³ yr⁻¹: but over-production of BH-BH mergers...

 Diamonds/Circles: pop. synthesis models with different Common Envelope do BH-BH progenitors evolve through a different CE than NS-NS systems?

- LIGO/Virgo detection
- evolutionary predictions

NS-NS:

- models vs Milky Way NS-NS binaries

BH-BH mergers: LIGO 120 days of O2 (70 Mpc)

 $\begin{array}{l} \text{LIGO/Virgo BH-BH mergers: GW151226: } 14+8 \ \text{M}_{\odot}, \ \text{LVT151012: } 23+13 \ \text{M}_{\odot}, \\ \text{GW170104: } 31+19 \ \text{M}_{\odot}, \ \text{GW170814: } 31+25 \ \text{M}_{\odot}, \ \text{GW150914: } 36+29 \ \text{M}_{\odot}, \\ \end{array}$

Chris Belczynski The Astrophysics of NS-NS/BH-NS/BH-BH with LIGO/Virgo

- LIGO/Virgo detection
- evolutionary predictions
- models vs Milky Way NS-NS binaries

Pair instability: maximum BH mass $\sim 50 M_{\odot}$

PSN: Pair-instability SN $(M_{\rm He} \sim 65-130 {\rm ~M}_{\odot})$ no remnant: entire star disruption

PPSN: Pair-instability Pulsation SN $(M_{\rm He} \sim 45-65 {\rm ~M}_{\odot})$ black hole: and severe mass loss

NS/BH mass spectrum:

neutron stars:	$1-2~M_{\odot}$
first mass gap:	$2-5~M_{\odot}$
black holes:	$5-50~M_{\odot}$
second mass gap:	$50-130~M_{\odot}$
black holes:	$130 - ??? M_{\odot}$

(Belczynski, Heger, Gladysz, Ruiter, Woosley, Wiktorowicz, Chen, Bulik, O'Shaughnessy, Holz, Fryer, Berti: A&A 2016)

- LIGO/Virgo detection
- evolutionary predictions
- models vs Milky Way NS-NS binaries

Formation of BH-BH merger: dynamics

- globular cluster: 1.2×10^6 stars
- low metallicity: $Z < 10\% Z_{\odot}$
- dynamical interactions: 40!
- BH-BH system: kicked out of the cluster
- BH spin direction: isotropic distribution

credit: Abbas Askar (Warsaw): MOCCA simulation

★ E → < E →</p>

- LIGO/Virgo detection
- evolutionary predictions
- models vs Milky Way NS-NS binaries

Metallicity evolution:

Metallicity model: Madau & Dickinson 2014 with SNe and GRB calibration

Modeling – LIGO/Virgo detection Results from Classical Binary Evolution: – evolutionary predictions NS-NS: – models vs Milky Way NS-NS binaries

BH-BH properties: classical isolated binary evolution

- M10: no BH kicks, 50% RLOF
- M20: no BH kicks, 20% RLOF, rotation: 1.2*M*_{CO}
- M26: M20 + 70 km/s BH kicks
- $q-M_{tot,z}$:
 - LIGO events within models
 - M20/26 better than M10

• $q-\chi_{\rm eff,max}$:

- models found for LIGO events
- GW170104: matches found: doubly conservative

credit: Jakub Klencki (Warsaw)

Chris Belczynski

The Astrophysics of NS-NS/BH-NS/BH-BH with LIGO/Virgo