BBH formation in globular clusters

Tomek Bulik Dorota Rosińska

University of Warsaw

Globular Clusters

☆ Spherical collections of stars that orbit a galactic core as satellites. More than 60 000 extragalactic Globular Cluster (GC) observed ~157 GC in Milky Way (Harris catalog)

★ GC contain 10000 to several milions stars

 \star Most of stars are old Population II (metal-poor) stars

★ Stars are clumped closely together, especially near the centre of the cluster --> close dynamical interactions \rightarrow tight binary systems containing compact objects

★ Globular Clusters in the Milky Way are estimated to be at least 10 billion years old. 50% GC within 5kpc, the most distant 130 kpc

Credit: M. Benacquista & Downing, 2011, the distribution of 157 GC in the Milky Way from Hariss catalog

NGC 104 aka 47 Tucanae

What makes them special

- Many body interactions
- Many NS binaries
- Possible sites of IMBH

Globular clusters and gravitational waves

- Binary/Stellar evolution produces a number of interesting objects and exotic binary systems in globular clusters.
- Dense stellar environments of globular clusters are conducive to forming hard binaries with evolved compact objects.
- Dynamical interactions in globular clusters can eject a lot of binary systems that could be potential sources of gravitational waves.
- Numerous studies have used star cluster evolution codes to predict the number of gravitational wave events (mostly BBH mergers) originating from Globular Clusters.
 - Monte Carlo Codes: Downing et al. (2011), Rodriguez et al. (2015) and Rodriguez, Chatterjee & Rasio (2016), Askar et al. (2016).
 - Direct N-body Codes: Banerjee, Baumgardt & Kroupa (2010), Tanikawa (2013), Bae, Kim & Lee (2014) and Mapelli (2016).

Neutron stars in GC

155 pulsars in 29 clusters

Are there BHs?

- Unconfirmed detections of two IMBHS
- BH in a binary in NGC3201 non accreting – from motion of a companion.
- Probably no BHs if NS binaries present

Rates general arguments

- BBH merger rate: 10-100 Gpc-3yr-1
- Galaxy density: 2x10⁷ Gpc⁻³
- Supernova rate: 1/50 yr in a galaxy, so it is 4x10⁵ Gpc⁻³ yr⁻¹
- BH formation rate ~0.3 NS formation rate
- BH formation rate $\sim 10^5$ Gpc⁻³ yr⁻¹
- Thus about 1 in 1000 BH must be in merging binary

Rates limits in GC

- Number of stars in GCs in Milky Way: ~10⁸, i.e 10⁻³ of stars
- Thus if all BHs in GC are in merging binaries the rates can be right

Formation of BBH in GC

- Simulations, simulations, simulations
- Many groups working on the problem
- Results almost similar

BHBH formation efficiency

Mergers as a function of GC mass

103

 $(V_{\text{D}})_{\text{N}}$ $(V_{\text{D}})_{\text{D}}$ $(V_{$

 $N(M_C) = 7 \cdot 10^{-4} \cdot (M_C/M_\odot)^{0.8}$ for $Z_{ini} < Z_\odot$

 $\mathsf{N}(\mathsf{M}_{\mathsf{C}}) = 4 \cdot 10^{-3} \cdot (\mathsf{M}_{\mathsf{C}}/\mathsf{M}_{\odot})^{0.5}$ for $\mathsf{Z}_{\mathsf{ini}} = \mathsf{Z}_{\odot}$

How do they scale with mass?

Rodriguez et al . 2016

Figure 3. Normalized number of BBHs as a function of initial cluster mass M_c with fitted function $N(M_c)$. Data includes both escaped BBHs and BBHs that merge inside the cluster. Red and blue points correspond to two metallicities: solar (Z = 0.02) and sub-solar (Z < 0.02) respectively.

Askar et al 2016

Merger delay times

Askar et al 2016

Madau, P

BBH rates

- Small amount of mass in GC in comparison to the field
- High efficiency of formation of BBH
- Most mergers happen a long time ago right after GC formation

Globular cluster vs Pop I/II

- SFR integral a factor of ~ 0.01
- Formation efficiency difference < 10
- Delays a factor between 0.5 and 0.1

• Summary: GC rate is 0.05 to 0.01 of the field rate

How to distinguish them

- Masses?
 - Same distribution
 - Second generation of mergers
- Spins
 - Isotropy
 - Second generation with large spins
- Ellipticity
 - A few percent of elliptical systems (detectable by LIGO/Virgo)
- Rate density at high redshift (CE and ET)
 - Maximum at z=2-3 ?