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What is Axion?

QCD Axion | (Peccei & Quinn, 1977, ...)

A pseudo NG boson of PQ mechanism in order to
solve the strong CP problem in QCD physics

Lqcp D HGG, 6] < 1019
0 —>0g=0+¢/f <1

Axion-like particles (ALPs, string axion) | (witten 1984, .)

A plentitude of axion-like particles provided by the
compactifications of extra dimensions

B A scalar field with small mass, tiny interactions

— candidate for dark matter
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Axion as Dark Matter (misalighment mechanism)
V(o)

é -+ 3H¢ -+ m2¢ =0 (background evolution) I - >gb

B |n early universe (m < H), gb ~ CcOnst. (frozen due to the Hubble friction)

B In late universe (m > H), q5 ~ CL_3/2¢0 COS(mt) (start to oscillate)

B After oscillation begins, axion behaves as a pressureless matter fluid

.o 1 5 2, PO
p = §¢ + 5 O° 3

1. 1 Fy .
il §¢ - §m ¢ a> H(th) ~ 0 (ePrDe;:E:\?IL:tS!raWty)
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Conventional Way for Axion Search

B Axion generically couples to photon via the topological term

gzv aFWFW = go0l - B

a : axion
v : photon
B : magnetic field

B Axion is converted into photon under the background
magnetic field (“axion-photon conversion”) 4/20



Axion-photon Conversion Experiments (1)

Axion Haloscope ® ADMX (Axion Dark Matter eXperiment)
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B A microwave resonant cavity using a superconducting magnet B ~ 8T.

B |t can probe the power signal of QCD axion dark matter m ~ peV (narrow mass region).
5/20



Axion-photon Conversion Experiments (2)

Axion Solar Telescope

CAST 2017
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® CAST (CERN Axion Solar Telescope)
® |AXO (International Axion Observatory) : Next generation

B A telescope to search for axion particles thermally produced in the Sun.
B The strong magnet converts the solar axion flux into X-rays.

B Possible to probe the axion-photon coupling with broad mass range.
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Astronomical Observation of Axion-Photon

-0~ .
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nasa-fermi-mission
B Axion-photon conversion will modify the spectrum of cosmic rays.

B The prediction depends on the uncertainty of magnetic filed in the cluster background.



Overview of Target Spaces
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Axion DM - Photon Interaction

(without using a background magnetic field)

%aFwﬁ’“” = gar 0 A;€;50; Ax + (total derivative)
EOM for photon : A,L — V2A, + Ga~y Q€ 0j A = 0,

Axion DM : a(t) = ag cos(mt + 6,)

B Decomposing two circular polarized photons, we get

A 4 AL =
Gaya@otn
k

wi/R = k? (1 + sin(mt + 57))
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Axion DM - Photon Interaction

B The phase velocity of each polarized photon is given by

1/2

CL/R = wI]’C/R — (1 + ngOm sin(mt + 57))

B The difference of phase velocities between two modes:

c/r(t) @ 1xdc(t) = 1% dcpsin(mt + 0,(t))

0% 1.3 x 1072 Jor 4 P B
c 10-12 GeV ! 1550 nm / \ 0.3 GeV/cm?

How to measure this phase modulation?
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Modulation of Linear Polarization

LY Propagating direction

E"% = E° £ (E"

Axion DM modulates the plane -
of linear-polarized light! ,

- -o

Photon @
poIarizatiqr),,-—;‘-\;'\ B Its magnitude depends on

the axion-photon coupling

B Its frequency depends on
the axion mass
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Expe rimenta I Setu P | kNagano, TFujita, Y.Michimura, 10

Laser

: HWP PBS BD:

Detection port (b) Detection port (a)

B As a carrier wave, we input the linearly-polarized monochromatic laser light.

B The linear cavity consists of front and end mirrors. The cavity is kept to
resonate with a phase measurement.

B The signal is detected in detection port (a) or (b) as polarization modulation.
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Inside Cavity

B Electric vector inside cavity is represented as the superposition of reflected beams:

Ecay(t) = t1 Ege™ (e ZA ( ) :

Apii1(t) = A, (ORIT(t — 2L(n ~1)) R; : reflection matrix
XRoT(t —2L(n —1/2)) (n>1) T(t): transfer matrix for one way
Ay =1 L : cavity length 13/ 20



Inside Cavity

B When the resonant condition is met, the beam is accumulated inside cavity:

B tlEoeikt I+ 25¢(t) 0 ! !
Be(t) = 1= (e € ( 0 1- fiégb(t)) V2 (1)

__ b [EP(t) — 6pE5(t)] (2kL = 27N)
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Frequency Response in Signal
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Detectability (Detection Port (a))

Laser
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Detection port (a)

De!c'ecti?)n_port (b)

B The polarization of transmitted light from the cavity is slightly rotated by
the half wave plate.

B The PD receives the s-polarized light as a beatnote with faint carrier wave.

B The interferometer with large t2 mirror is available (DEClGO).

Note : We would not apply this scheme to LISA interferometer (LISA is not resonant cavity)
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Detectability (Detection Port (b))

Laser

1 ! r11 t1
1 PDre |

Detection port (b) Detection port (a)

B The PD receives the signal reflected by the Fl as a beatnote with faint
carrier wave again.

B The mixed carrier wave would be generated by the non-ideal birefringence
between Fl and cavity (there have been equipped several apparatuses in a
real detector).

B The interferometer with small t2 mirror is available (aLIGO, KAGRA, 1C7:F)d
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B We assume the sensitivity is determined by the quantum shot noise:

Een(t) = ﬁ<a—5¢<t>>+E‘m“>]Es<t>7 VT= o1

EO 1 — 172

Ppp(t) < |Epp(t)]>? = \/Sahot(m) =

f Tobs a(t) = ag cos(mt + 57)
660 ( obs < 7-) ____________________________________
2+/S ( ~ (coherent time of axion DM)
SNR = ¢ (4 Sh";l 14 e
obs? oco (Tons 2 7) = 2—7T2 ~ 1yr(10~ 16eV/m)
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Potential Sensitivity Curves
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Summary & Outlook

0 We suggest an experimental scheme to search for axion dark
matter with the linear optical cavity used in gravitational wave
detectors.

0 We found that these sensitivities can reach beyond the current
limit with a wide range of axion mass and our new scheme can
coexist with the observation run for gravitational waves.

0 Which detection port (a) or (b) can be constructed depends on the
gravitational wave detectors.

O As a first step, we want to apply our scheme to KAGRA.
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