

Distinguishing neutrino mass hierarchy from DM annihilation

Ipsita Saha

Berkeley Week 2020

JCAP 1512 (2015), no 12, 003 R. Allahverdi, B. Dutta, D. Ghosh, B. Knockel, IS

WIMP DM

NEUTRINO MASS AND MIXING

- Neutrino mixing : Gauge eigenstates would be a superposition of mass eigenstates.
- **Dirac** or **Majorana** fermion ??
- Majorana particles are their own antiparticles \Rightarrow violates generational Lepton number (L_e, L_μ, L_τ) .
- ν_R = right-handed gauge singlet. - $\mathcal{L}_{\text{Dirac}}^{\text{mass}} = \sum_{i,j} \bar{\nu}_{iL} (M_{\nu})_{ij} \nu_{Rj} + h.c.$,

SEESAW MECHANISM

- Introduce Majorana mass term : $-\mathcal{L}_M = \frac{1}{2} \sum_{i,j} \overline{N_{iR}} (M_R)_{ij} N_{Rj}^c + h.c.$
- Breaks the (B-L) symmetry of the SM.

H`\

• The neutrino mass term using the fields $\nu_L, N_R, (\nu_L^c), N_R^c$:

$$-\mathcal{L}_{\text{mass}} = \frac{1}{2} \begin{pmatrix} \bar{\nu}_L & \overline{N_L^c} \end{pmatrix} \begin{pmatrix} M_L & m_D \\ m_D^T & M_R \end{pmatrix} \begin{pmatrix} \nu_R^c \\ N_R \end{pmatrix}$$

• $M_{\nu} = \text{diag}(m_1, m_2, m_3) \approx M_L - m_D M_R^{-1} (m_D)^T$.

N

- $\nu_L^T C^{-1} \nu_L$ breaks the gauge symmetry \Rightarrow Requires $SU(2)_L$ triplet.
- Tiny neutrino mass from the heavy degrees of freedom and lepton number violation.
- Three tree-level realization of Effective dimension 5 Weinberg operators : $LL\phi\phi$.

Ή

Σ

CONNECTING NEUTRINO WITH DM

We consider Type-II Seesaw with a scalar singlet DM

Study DM annihilation into neutrino final state at the IceCube

IceCube Neutrino Observatory

- Atmospheric muon mimics high energy neutrino signal.
- Earth acts as shield but only in austral winter.
- Alternative : contained muons at DeepCore
- Atmospheric neutrino is dominant background.
- Energy threshold decreased from 100 GeV 10 GeV at the DeepCore

 1 cubic Km Antarctic Ice. 5160 PMTs are part of Digital Optical Modules.

- 8 strings with 60 DOMs

 of high efficiency PMTs along
 with 7 regular strings consists the
 sub-detector DeepCore.
- Records the Cherenkov Radiation

 in the neutrino interaction with Ice.
 Both charged and neutral
 current interaction.
- Shower-like cascade events from Electron and tau neutrinos. Track from muon neutrinos.

The Example Model

TYPE II SEESAW

[Magg, Wetterich '80; Cheng, Li '80; Lazarides, Shafi, Wetterich '80; Schechter, Valle '80; Mohapatra, Senjanovic '81]

Features :

- Additional $SU(2)_L$ scalar triplet.
- Generates neutrino mass through seesaw mechanism.
- Seesaw scale can be $\mathcal{O}(100)$ GeV unlike Type I seesaw.
- Electroweak ρ -parameter puts an upper bound on triplet vev ($v_{\Delta} \leq 5 \text{ GeV}$).
- Mixing between doublet and triplet is small.
- Five physical scalar : $(m_h, m_H, m_A, m_{H^{\pm}}, m_{H^{\pm\pm}})$.
- Doubly charged Higgs has phenomenological implications ⇒ detectable at the LHC.

Theoretical Constraints and Phenomenological Implications:

- $m_h = 125 \text{ GeV}.$
- Constraints from S, T, U parameters $\Rightarrow \Delta M \simeq |M_{H^{\pm\pm}} M_{H^{\pm}}| \leq 40 \text{ GeV}.$ [Chun,Lee,Sharma '12]
- Loop induced Higgs decay mode $(h \to \gamma \gamma, h \to Z \gamma)$ can be modified through charged scalars.

TYPE II SEESAW

• Potential : [M. A. Schmidt '07]

$$\mathcal{V}(\Phi, \Delta) = -m_{\Phi}^{2}(\Phi^{\dagger}\Phi) + \frac{\lambda}{2}(\Phi^{\dagger}\Phi)^{2} + M_{\Delta}^{2}\mathrm{Tr}(\Delta^{\dagger}\Delta) + \frac{\lambda_{1}}{2}\left[\mathrm{Tr}(\Delta^{\dagger}\Delta)\right]^{2} + \frac{\lambda_{2}}{2}\left(\left[\mathrm{Tr}(\Delta^{\dagger}\Delta)\right]^{2} - \mathrm{Tr}\left[(\Delta^{\dagger}\Delta)^{2}\right]\right) + \lambda_{4}(\Phi^{\dagger}\Phi)\mathrm{Tr}(\Delta^{\dagger}\Delta) + \lambda_{5}\Phi^{\dagger}[\Delta^{\dagger}, \Delta]\Phi + \left(\frac{\Lambda_{6}}{\sqrt{2}}\Phi^{\mathsf{T}}i\sigma_{2}\Delta^{\dagger}\Phi + \mathrm{H.c.}\right)$$

• Lagrangian :

$$\mathcal{L} = \mathcal{L}_{\text{kinetic}}^{\text{SM}} + \mathcal{L}_{Y}^{\text{SM}} - \mathcal{V}(\Phi, \Delta) + \text{Tr}\left[(D_{\mu}\Delta)^{\dagger} (D^{\mu}\Delta) \right]$$
$$- \left[\frac{1}{\sqrt{2}} (Y_{\Delta})_{ij} L_{i}^{\mathsf{T}} C i \sigma_{2} \Delta L_{j} + \text{H.c.} \right]$$
$$D_{\mu}\Delta = \partial_{\mu}\Delta + i \frac{g}{2} [\sigma^{a} W_{\mu}^{a}, \Delta] + i \frac{g'}{2} B_{\mu}\Delta \qquad (a = 1, 2, 3)$$

• Majorana mass matrix for the neutrinos : $(M_{\nu})_{ij} = v_{\Delta}(Y_{\Delta})_{ij}$.

TYPE II SEESAW

• Fix the Yukawa structure from neutrino oscillation data:

$$Y_{\Delta} = \frac{M_{\nu}}{v_{\Delta}} = \frac{1}{v_{\Delta}} U^{\mathsf{T}} M_{\nu}^{\mathrm{diag}} U$$

where $M_{\nu}^{\text{diag}} = \text{diag}(m_1, m_2, m_3)$ and U is the PMNS mixing matrix.

$$U = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \\ \times \operatorname{diag}(e^{i\alpha_{1}/2}, e^{i\alpha_{2}/2}, 1), & & \\ \end{pmatrix}$$

• For illustration purposes, take normal hierarchy with $m_1 = 0$.

$$Y_{\Delta} = \frac{10^{-2} \text{ eV}}{v_{\Delta}} \times \begin{pmatrix} 1.08 - 0.29i & -1.55 + 0.09i & 1.23 - 0.31i \\ -1.55 + 0.09i & 2.07 + 0.26i & -1.59 - 0.21i \\ 1.23 - 0.31i & -1.59 - 0.21i & 2.59 - 0.00i \end{pmatrix}$$

• v_{Δ} can not be arbitrarily small due to perturbativity.

• From EWPT constraints, $\frac{v_{\Delta}}{v} < 0.02$

DM in TYPE II SeeSaw

Addition of extra singlet(D) odd under Z_2 symmetry, provides a valid DM candidate. [I. Gogoladze, N. Okada and Q. Shafi '09] The Scalar Potential relevant for the DM physics:

$$\mathcal{V}_{\rm DM}(\Phi, \mathbf{\Delta}, D) = \frac{1}{2}m_D^2 D^2 + \lambda_D D^4 + \underbrace{\lambda_\Phi D^2(\Phi^{\dagger}\Phi)}_{\mathbf{\Delta}} + \underbrace{\lambda_\Delta D^2 \text{Tr}(\mathbf{\Delta}^{\dagger}\mathbf{\Delta})}_{\mathbf{\Delta}}$$

In terms of the physical scalar mass eigenstates,

$$\mathcal{V}_{DM} = \frac{1}{2}m_{DM}^2 D^2 + \lambda_D D^4 + \lambda_\Phi v D^2 h + \frac{1}{2}\lambda_\Phi D^2 h^2 + \lambda_\Delta D^2 \left(H^{++} H^{--} + H^+ H^- + \frac{1}{2} \left[(H^0)^2 + (A^0)^2 \right] + v_\Delta H^0 \right)$$

In the non-relativistic limit (CDM),

$$\langle \sigma v \rangle = \frac{1}{16\pi m_{\rm DM}^2} \left[\lambda_{\Phi}^2 \sqrt{1 - \frac{m_h^2}{m_{\rm DM}^2}} + 6\lambda_{\Delta}^2 \sqrt{1 - \frac{m_{\Delta}^2}{m_{\rm DM}^2}} \right]$$

which should match the observed cold DM relic density of $\Omega_{\rm CDM} h^2 = 0.1199 \pm 0.0027.$

DM Scenario

Features :

- Only couple to triplet scalars or SM-like Higgs.
- For $v_{\Delta} \ge 0.1$ MeV, scalar triplets decay to **leptonic** final states with almost 100% branching ratio.
- Dominant annihilation to triplet scalars \Rightarrow Leptophilic.
- The final state lepton flavor depends on the structure of the Yukawa coupling matrix. A correlation with Neutrino oscillation data.
- $H^0, A^0 \to \nu\nu \Rightarrow$ cosmic ray neutrino flux.

- The couplings are chosen to satisfy the correct relic abundance.
- λ_{ϕ} controls the SI direct detection cross section.
- On shell production of triplets.

We consider both the annihilation at the **Galactic Center** and inside the **Sun**.

Model Specification

$$\Gamma(H^{++} \to \ell_i^+ \ell_j^+) = \frac{m_{H^{++}}}{8\pi (1+\delta_{ij})} \left[\frac{U^T M_{\nu}^{\text{diag}} U}{v_{\Delta}} \right]^2 ,$$

$$\Gamma(H^{++} \to W^+ W^+) = \frac{g^4 v_{\Delta}^2}{8\pi m_{H^{++}}} \sqrt{1 - \frac{4M_W^2}{m_{H^{++}}^2}} \left[2 + \left(\frac{m_{H^{++}}^2}{2M_W^2} - 1\right)^2 \right] .$$

leptonic and gauge boson final states are respectively inversely and directly proportional to the square of the triplet vev. In particular, for $v_{\Delta} < 0.1$ MeV, the triplets decay to leptonic final state with almost 100% branching fraction.

- Two Choices of benchmarks depending on triplet vev.
- Limit from Fermi-LAT gamma ray flux is considered.
- For IceCube, both through-going and contained muons are considered.

- Constraint on doubly charged scalar from LHC same-sign dilepton searches.
- Degenerate triplet mass equals to 400 GeV.

DM Annihilation at the Galactic Center

- Clear distinction in NH and IH case for neutrino flux, no difference in photon fluxes which is obvious.
- Neutrinos encounter oscillation during its travel.
- No significant change due to neutrino oscillation parameter uncertainties.
- On-shell triplets decay to neutrinos. Box like feature due to kinematics.
- NH produces more $\tau(\nu_{\tau})$ which further give rise to ν_{μ} .

- In NH, triplets decay to third generation leptons are maximum Yukawa structure.
- More τ s and ν_{τ} s which subsequently give more muon neutrinos.
- For IH, the first generation lepton production is maximum.

DM Annihilation inside the Sun

- Most relevant final states $H^0/A^0/H^+$ produces prompt neutrinos inside the Sun. Other final states (e, μ , lighter quarks) lose energy and produce neutrino with energy below threshold.
- τ and to a lesser extent ν_{μ} decays before losing a significant amount of energy and produces neutrinos.
- ν_e absorption is effective for neutrino energy > 300 GeV while ν_{τ} feels the regeneration effect.
- Sharp features like the Galactic Center spectrum are not prominent due to regeneration/absorption effect.

- DarkSUSY software to simulate neutrino production inside the Sun, propagation to the south pole and muon neutrino interaction with the ice.
- WimpSim for prompt neutrino channels.

Muon Spectra

Sun

Theoretical Predictions

- Non-thermal production of DM can enhance the annihilation cross-section.
- Being consistent with Fermi-LAT limit from dwarf Spheroidal galaxy, $\langle \sigma_{\rm ann} v \rangle$ can be increased by a factor of 10.
- Contained muons from DM annihilation inside the Sun provide the best detection opportunity.
- For a neutrino telescope with same capability as IceCube DeepCore array may take 8 (12) years respectively to have a 3σ discovery of NH and IH scenarios.

Within energy interval of 100-400 GeV, the no. of contained muons from NH and IH are respectively 9 and 11 compared to 95 background events.

Summary

- * We have discussed the possibilities of distinguishing neutrino mass hierarchy using DM annihilation signal at the IceCube.
- * We have studied the possible neutrino signal from both the Galactic Center and inside the Sun.
- * We have found that the neutrino flux from Galactic Center depends on the mass hierarchy (NH or IH) while the photon flux has no dependence.
- * The NH produces larger flux and its the same for DM annihilation inside the Sun.
- * Although the signal is more prominent if it arises at the Galactic Center since the neutrinos suffer from attenuation due to matter interaction inside the Sun.
- * The same results hold for both contained and though-going muons at the detector.
- * The prescription is general and can be applied to other models.

Benchmarks	v_{Δ}	$m_{\rm DM}({\rm GeV})$	$m_{\Delta}(\text{GeV})$	λ_{Δ}	λ_{Φ}	relic	σ_{SI} (pb)
				1.1.1.1.		density	
BP1	1 eV	500	400	0.055	0.04	0.117	2.25×10^{-10}
BP2	1 eV	700	400	0.075	0.05	0.122	1.79×10^{-10}
BP3	1 GeV	500	400	0.055	0.04	0.117	2.25×10^{-10}
BP4	1 GeV	700	400	0.075	0.05	0.122	1.79×10^{-10}

 $\sigma_{\nu N}(E_{\nu}) = 7.30 \times 10^{-39} (E/\text{GeV}) \text{cm}^2,$ $\sigma_{\bar{\nu}N}(E_{\nu}) = 3.77 \times 10^{-39} (E/\text{GeV}) \text{cm}^2,$