New ideas in light dark matter direct detection

Zhengkang "Kevin" Zhang UC Berkeley & Caltech

Tanner Trickle, ZZ, Kathryn Zurek, arXiv: 1905.13744. Tanner Trickle, ZZ, Kathryn Zurek, Katherine Inzani, Sinead Griffin, arXiv: 1910.08092. Sinead Griffin, Katherine Inzani, Tanner Trickle, ZZ, Kathryn Zurek 1910.10716.

Dark matter direct detection

Dark matter direct detection

Many well-motivated theories predict **sub-GeV** dark matter (asymmetric DM, SIMP, etc.).

They are beyond reach of conventional WIMP searches, so we need new ideas.

Key words when pursuing new ideas

Is there an experimental scheme to efficiently read out the excitations?

4

Outline of the talk

⁵

Zhengkang "Kevin" Zhang (UC Berkeley & Caltech)

IPMU, Jan. 2020

Kinematic matching

$$\Delta E = \frac{1}{2m_{\chi}} \left((m_{\chi}v)^2 - (m_{\chi}v - q)^2 \right) \le vq - \frac{q^2}{2m_{\chi}}$$

Zhengkang "Kevin" Zhang (UC Berkeley & Caltech)

7

Band gap: O(eV). DOS DOS Γ_{20} 20<u>–</u> $X \quad W \quad K$ $X \quad W \quad K$ $\Gamma [eV^{-1}]$ $[eV^{-1}]L$ Γ 15 15 10 10 5 E 5 E [eV] -5 -10-10 Si Ge Brillouin zone path Brillouin zone path 5 0

Essig, Mardon, Volansky, 1108.5383. Graham, Kaplan, Rajendran, Walters, 1203.2531. Lee, Lisanti, Mishra-Sharma, Safdi, 1508.07361. Essig, Fernandez-Serra, Mardon, Soto, Volansky, Yu, 1509.01598. Derenzo, Essig, Massari, Soto, Yu, 1607.01009. Hochberg, Lin, Zurek, 1608.01994. Bloch, Essig, Tobioka, Volansky, Yu, 1608.02123. Essig, Volansky, Yu, 1703.00910. Kurinsky, Yu, Hochberg, Cabrera, 1901.07569. Emken, Essig, Kouvaris, Sholapurka, 1905.06348. Griffin, Inzani, Trickle, ZZ, Zurek, 1910.08092, 1910.10716, in prep. IPMU, Jan. 2020

Kinematic matching

$$\Delta E = \frac{1}{2m_{\chi}} \left((m_{\chi}v)^2 - (m_{\chi}v - q)^2 \right) \le vq - \frac{q^2}{2m_{\chi}}$$

Collective excitations, e.g. phonons/magnons in crystals with energies up to O(100meV).

Knapen, Lin, Pyle, Zurek, 1712.06598.
Griffin, Knapen, Lin, Zurek, 1807.10291.
Trickle, ZZ, Zurek, 1905.13744.
Griffin, Inzani, Trickle, ZZ, Zurek, 1910.08092, 1910.10716.
Campbell-Deem, Cox, Knapen, Lin, Melia, 1911.03482.

Kinematic matching

$$\Delta E = \frac{1}{2m_{\chi}} \left((m_{\chi}v)^2 - (m_{\chi}v - q)^2 \right) \le vq - \frac{q^2}{2m_{\chi}}$$

Zhengkang "Kevin" Zhang (UC Berkeley & Caltech)

IPMU, Jan. 2020

Outline of the talk

Theoretical framework

- * Assume spin-independent (SI) interactions.
- * For given DM mass and incoming velocity,

$$\Gamma = \int \frac{d^3 q}{(2\pi)^3} |\mathcal{M}|^2 S(\boldsymbol{q}, \omega) \Big|_{\omega = \boldsymbol{q} \cdot \boldsymbol{v} - \frac{q^2}{2m_{\chi}}}$$

- * \mathcal{M} : particle-level $\chi \psi \rightarrow \chi \psi$ matrix element (ψ is SM particle).
- * $S(q, \omega)$: dynamic structure factor (target response to an energy-momentum transfer).

$$S(\boldsymbol{q},\omega) \equiv \frac{1}{V} \sum_{f} \left| \langle f | \mathcal{F}_{T}(\boldsymbol{q}) | i \rangle \right|^{2} 2\pi \delta \left(E_{f} - E_{i} - \omega \right)$$
$$\mathcal{F}_{T}(\boldsymbol{q}) = \frac{f_{p}(\boldsymbol{q}) \, \widetilde{n}_{p}(-\boldsymbol{q}) + f_{n}(\boldsymbol{q}) \, \widetilde{n}_{n}(-\boldsymbol{q}) + f_{e}(\boldsymbol{q}) \, \widetilde{n}_{e}(-\boldsymbol{q})}{f_{\psi}^{0}}$$

DM couplings to proton, neutron, electron

Theoretical framework

$$\Gamma = \int \frac{d^3 q}{(2\pi)^3} |\mathcal{M}|^2 S(\boldsymbol{q}, \omega) \Big|_{\omega = \boldsymbol{q} \cdot \boldsymbol{v} - \frac{q^2}{2m_{\chi}}}$$

$$S(\boldsymbol{q},\omega) \equiv \frac{1}{V} \sum_{f} \left| \langle f | \mathcal{F}_{T}(\boldsymbol{q}) | i \rangle \right|^{2} 2\pi \delta \left(E_{f} - E_{i} - \omega \right)$$

$$\mathcal{F}_T(\boldsymbol{q}) = \frac{f_p(\boldsymbol{q})\,\widetilde{n}_p(-\boldsymbol{q}) + f_n(\boldsymbol{q})\,\widetilde{n}_n(-\boldsymbol{q}) + f_e(\boldsymbol{q})\,\widetilde{n}_e(-\boldsymbol{q})}{f_{\psi}^0}$$

- * For any target system, the rate can be calculated from first principles by
 - * Identifying accessible final states (low energy d.o.f.).
 - * Quantizing number density operators in the appropriate Hilbert space.

Dynamic structure factor

$$\Gamma = \int \frac{d^3 q}{(2\pi)^3} |\mathcal{M}|^2 S(q, \omega) \Big|_{\omega = q \cdot v - \frac{q^2}{2m_{\chi}}} \\ * \text{ Nuclear response of the second se$$

З

Nuclear recoils:

$$S(\boldsymbol{q},\omega) = 2\pi \frac{\rho_T}{m_N} \frac{f_N^2}{f_n^2} F_N^2 \,\delta\left(\omega - \frac{q^2}{2m_N}\right)$$

$$f_N \equiv f_p Z + f_n (A - Z)$$

$$F_N = \frac{3j_1(qr_n)}{qr_n} e^{-(qs)^2/2}$$

$$r_n \simeq 1.14 \, A^{1/3} \, \text{fm}, \ s \simeq 0.9 \, \text{fm}$$

IPMU, Jan. 2020

Zhengkang "Kevin" Zhang (UC Berkeley & Caltech)

13

Dynamic structure factor

Zhengkang "Kevin" Zhang (UC Berkeley & Caltech)

14

IPMU, Jan. 2020

Dynamic structure factor

Zhengkang "Kevin" Zhang (UC Berkeley & Caltech)

15

Outline of the talk

Zhengkang "Kevin" Zhang (UC Berkeley & Caltech)

IPMU, Jan. 2020

* Consider a 1D lattice:

$$U^{\text{harm}} = \frac{1}{2} K \sum_{n} \left[u(na) - u([n+1]a) \right]^2,$$

- Diagonalize the Hamiltonian => canonical oscillation modes.
- Quantize => (acoustic) phonons.
 - Quanta of sound waves.
 - Gapless (Goldstone mode of broken translation symmetry).

Ashcroft, Mermin, Solid State Physics.

* Now suppose there are two inequivalent atoms in the primitive cell:

- * Two phonon branches:
 - Acoustic phonons (as before).
 - In-phase oscillations, gapless.
 - Optical phonons.
 - * Out-of-phase oscillations, gapped.

Ashcroft, Mermin, Solid State Physics.

- * Analogous in 3D.
 - GaAs: 1 Ga + 1 As per primitive cell => 3 acoustic + 3 optical.

- * Analogous in 3D.
 - GaAs: 1 Ga + 1 As per primitive cell => 3 acoustic + 3 optical.
 - * $CaWO_4$: 2 Ca + 2 W + 8 O per primitive cell => 3 acoustic + 33 optical.

Zhengkang "Kevin" Zhang (UC Berkeley & Caltech)

IPMU, Jan. 2020

Phonons from DM scattering

* Recall:
$$\Gamma = \int \frac{d^3q}{(2\pi)^3} |\mathcal{M}|^2 S(q,\omega)|_{\omega=q \cdot v - \frac{q^2}{2m_{\chi}}}$$

$$S(q,\omega) \equiv \frac{1}{V} \sum_{j} |\langle f| \mathcal{F}_{T}(q) |i\rangle|^2 2\pi \delta(E_f - E_i - \omega)$$
* $\mathcal{F}_{T}(q) = \frac{f_{\nu}(q) \tilde{n}_{\nu}(-q) + f_{n}(q) \tilde{n}_{n}(-q) + f_{e}(q) \tilde{n}_{e}(-q)}{f_{\mu}^{0}} \text{ depends on atom positions}$
* Phonons cl $S(q,\omega) = \frac{\pi}{\Omega} \sum_{\nu} \frac{1}{\omega_{\nu,k}} \left| \sum_{j} \frac{e^{-W_{j}(q)}}{\sqrt{m_{j}}} e^{iG \cdot x_{j}^{0}} (Y_{j} \cdot \epsilon_{\nu,k,j}^{*}) \right|^{2} \delta(\omega - \omega_{\nu,k}) \text{ ents}$):
*j*th atom/ion in the *l*th primitive cell phonon creation/annihilation operators
$$u_{lj} = x_{lj} - x_{lj}^{0} = \sum_{\nu} \sum_{k \in IBZ} \frac{1}{\sqrt{2Nm_{j}\omega_{\nu,k}}} \left(\hat{a}_{\nu,k} \epsilon_{\nu,k,j} e^{ik \cdot x_{lj}^{0}} + \hat{a}_{\nu,k}^{\dagger} \epsilon_{\nu,k,j}^{*} e^{-ik \cdot x_{lj}^{0}} \right)$$
equilibrium position phonon branch phonon energies phonon polarization vectors

Acoustic vs. optical phonons

- If DM couples to all atoms/ions with the same sign => dominantly excites acoustic phonons (in-phase oscillations).
 - * Example: coupling to nucleon number via a heavy scalar mediator.

IPMU, Jan. 2020

Acoustic vs. optical phonons

- If DM couples to different atoms/ions with the opposite signs => dominantly excites optical phonons (out-of-phase oscillations).
 - * Example: coupling to electric charge via a dark photon mediator.

Outline of the talk

Zhengkang "Kevin" Zhang (UC Berkeley & Caltech)

IPMU, Jan. 2020

Spin independent (SI) vs. spin dependent (SD)

- * In the Standard Model, the neutron is electrically neutral. Its leading interaction with the photon is via a magnetic dipole moment.
- * Something similar can happen in the dark sector. The DM may be neutral under the dark photon, but interacts via a multipole moment.

Magnetic dipole DM	${\cal L} = rac{g_\chi}{\Lambda_\chi} ar\chi \sigma^{\mu u} \chi V_{\mu u} + g_e ar e \gamma^\mu e V_\mu$	$\hat{\mathcal{O}}^{lpha}_{\chi} = rac{4g_{\chi}g_e}{\Lambda_{\chi}m_e} \left(\delta^{lphaeta} - rac{q^{lpha}q^{eta}}{q^2} ight) \hat{S}^{eta}_{\chi}$
Anapole DM	${\cal L} = rac{g_\chi}{\Lambda_\chi^2} ar\chi \gamma^\mu \gamma^5 \chi \partial^ u V_{\mu u} + g_e ar e \gamma^\mu e V_\mu$	$\hat{\mathcal{O}}^lpha_\chi = rac{2g_\chi g_e}{\Lambda_\chi^2 m_e} \epsilon^{lphaeta\gamma} i q^eta \hat{S}^\gamma_\chi$

* In these scenarios, DM couples to the electron **spin** at low energy:

$$\mathcal{L} = -\sum_{lpha=1}^{3} \hat{\mathcal{O}}^{lpha}_{\chi}(oldsymbol{q}) \hat{S}^{lpha}_{e}$$

* SD interactions can also arise from scalar mediator models.

Pseudo-mediated DM $\mathcal{L} = g_{\chi} \bar{\chi} \chi \phi + g_e \bar{e} i \gamma^5 e \phi$ $\hat{\mathcal{O}}^{\alpha}_{\chi} = -\frac{g_{\chi} g_e}{q^2 m_e} i q^{\alpha} \mathbb{1}_{\chi}$

Magnons: what they are and how they couple to DM

- * Crystal lattice sites occupied by effective spins (from electrons of magnetic ions.)
- Exchange couplings between neighboring spins => ordered ground state.

* Excitations about such a ground state are **magnons**.

Magnons: what they are and how they couple to DM

 Technically, we need to expand the spins in terms of bosonic creation/annihilation operators via the Holstein-Primakoff transformation...

$$S_{lj}^{\prime+} = \left(2S_j - \hat{a}_{lj}^{\dagger} \hat{a}_{lj}\right)^{1/2} \hat{a}_{lj}, \qquad S_{lj}^{\prime-} = \hat{a}_{lj}^{\dagger} \left(2S_j - \hat{a}_{lj}^{\dagger} \hat{a}_{lj}\right)^{1/2}, \qquad S_{lj}^{\prime3} = S_j - \hat{a}_{lj}^{\dagger} \hat{a}_{lj}$$
where $S_{lj}^{\alpha} = \sum_{\beta} R_j^{\alpha\beta} S_{lj}^{\prime\beta}, \quad \{\langle S_{lj}^{\prime1} \rangle, \langle S_{lj}^{\prime2} \rangle, \langle S_{lj}^{\prime3} \rangle\} = \{0, 0, S_j\}$
global coordinates local coordinates (ground state spin points in +z direction

* ... and then diagonalize the Hamiltonian via a Bogoliubov transformation...

Magnons: what they are and how they couple to DM

 Technically, we need to expand the spins in terms of bosonic creation/annihilation operators via the Holstein-Primakoff transformation...

$$S_{lj}^{\prime +} = \left(2S_j - \hat{a}_{lj}^{\dagger} \hat{a}_{lj}\right)^{1/2} \hat{a}_{lj}, \qquad S_{lj}^{\prime -} = \hat{a}_{lj}^{\dagger} \left(2S_j - \hat{a}_{lj}^{\dagger} \hat{a}_{lj}\right)^{1/2}, \qquad S_{lj}^{\prime 3} = S_j - \hat{a}_{lj}^{\dagger} \hat{a}_{lj}$$
where $S_{lj}^{\alpha} = \sum_{\beta} R_j^{\alpha\beta} S_{lj}^{\prime\beta}, \quad \{\langle S_{lj}^{\prime 1} \rangle, \langle S_{lj}^{\prime 2} \rangle, \langle S_{lj}^{\prime 3} \rangle\} = \{0, 0, S_j\}$
global coordinates local coordinates (ground state spin points in +z direction

* ... and then diagonalize the Hamiltonian via a Bogoliubov transformation...

$$\begin{pmatrix} \hat{a}_{j,\boldsymbol{k}} \\ \hat{a}_{j,-\boldsymbol{k}}^{\dagger} \end{pmatrix} = \mathbf{T}_{\boldsymbol{k}} \begin{pmatrix} \hat{b}_{\nu,\boldsymbol{k}} \\ \hat{b}_{\nu,-\boldsymbol{k}}^{\dagger} \end{pmatrix} \quad \text{where} \quad \mathbf{T}_{\boldsymbol{k}} \begin{pmatrix} \mathbb{1}_{n} & \mathbb{0}_{n} \\ \mathbb{0}_{n} & -\mathbb{1}_{n} \end{pmatrix} \mathbf{T}_{\boldsymbol{k}}^{\dagger} = \begin{pmatrix} \mathbb{1}_{n} & \mathbb{0}_{n} \\ \mathbb{0}_{n} & -\mathbb{1}_{n} \end{pmatrix} \quad H = \sum_{\nu=1}^{n} \sum_{\boldsymbol{k} \in 1 \mathrm{BZ}} \omega_{\nu,\boldsymbol{k}} \hat{b}_{\nu,\boldsymbol{k}}^{\dagger} \hat{b}_{\nu,\boldsymbol{k}} \hat{b}_{\nu,\boldsymbol{k}$$

* DM-spin coupling => DM-magnon coupling.

canonical magnon modes (quanta of collective precession patterns)

IPMU, Jan. 2020

$$\mathcal{L} = -\sum_{\alpha=1}^{3} \hat{\mathcal{O}}_{\chi}^{\alpha}(\boldsymbol{q}) \hat{S}_{e}^{\alpha} \implies \mathcal{M}_{\nu,\boldsymbol{k}}^{s_{i}s_{f}}(\boldsymbol{q}) = \frac{1}{N\Omega} \langle s_{f} | \hat{\mathcal{O}}_{\chi}^{\alpha}(\boldsymbol{q}) | s_{i} \rangle \langle \nu, \boldsymbol{k} | \sum_{lj} \hat{S}_{lj}^{\alpha} e^{i\boldsymbol{q}\cdot\boldsymbol{x}_{lj}} | 0 \rangle$$

spin operators create magnons (cf. position operators create phonons)

Projected reach

- * We consider a **yttrium iron garnet (YIG, Y₃Fe₅O₁₂)** target.
 - * 20 magnetic ions Fe^{3+} (spin 5/2) in the unit cell => 20 magnon branches.
 - * Anti-ferromagnetic exchange couplings. Ground state: 12 up, 8 down.

Magnon dispersion calculated by including up to 3rd nearest neighbor exchange couplings taken from: Cherepanov, Kolokolov, L'vov, Physics Reports 229, 81 (1993).

Projected reach

- We consider a **yttrium iron garnet (YIG, Y₃Fe₅O₁₂)** target. *
- Dark photon mediator (unconstrained by astro/cosmo): •

Projected reach

- * We consider a **yttrium iron garnet (YIG, Y₃Fe₅O₁₂)** target.
- Scalar mediator (impose white dwarf cooling constraint, consider SIDM subcomponent):

Gapless vs. gapped magnons

- * YIG has 1 gapless and 19 gapped magnon branches.
- * They have different responses to DM scattering.

Gapless vs. gapped magnons

$$\mathcal{L} = -\sum_{lpha=1}^{3} \hat{\mathcal{O}}^{lpha}_{\chi}(oldsymbol{q}) \hat{S}^{lpha}_{e}$$

- * Consider the limit $q \rightarrow 0$.
- * The DM coupling acts like a uniform magnetic field.
- * All the spins precess in phase => no change in energy.
- This corresponds to Goldstone mode excitation, i.e. only gapless magnons can be produced.
- * Gapped magnon contributions become significant only for *q* beyond the first Brillouin zone.

Effective theory of gapless magnons

- * Integrate out short-distance degrees of freedom within the unit cell.
- * The only low-energy d.o.f. is the spin density: (12-8)x5/2=10 per unit cell.
- * Effective theory is a Heisenberg ferromagnet on a bcc lattice, which has only 1 gapless magnon branch.

Effective theory of gapless magnons

- * Integrate out short-distance degrees of freedom within the unit cell.
- * The only low-energy d.o.f. is the spin density: (12-8)x5/2=10 per unit cell.
- * Effective theory is a Heisenberg ferromagnet on a bcc lattice, which has only 1 gapless magnon branch.

$$\mathcal{M}_{\nu,\boldsymbol{k}}^{s_{i}s_{f}}(\boldsymbol{q}) = \delta_{\boldsymbol{q},\boldsymbol{k}+\boldsymbol{G}} \frac{1}{\sqrt{N\Omega}} \sum_{\alpha=1}^{3} \langle s_{f} | \hat{\mathcal{O}}_{\chi}^{\alpha}(\boldsymbol{q}) | s_{i} \rangle \epsilon_{\nu,\boldsymbol{k},\boldsymbol{G}}^{\alpha}$$
$$\boldsymbol{\epsilon}_{\nu,\boldsymbol{k},\boldsymbol{G}} = \sum_{j=1}^{n} \sqrt{\frac{S_{j}}{2}} \left(V_{j\nu,-\boldsymbol{k}} \boldsymbol{r}_{j}^{*} + U_{j\nu,\boldsymbol{k}}^{*} \boldsymbol{r}_{j} \right) e^{i\boldsymbol{G}\cdot\boldsymbol{x}_{j}} \quad \boldsymbol{\epsilon} = \sqrt{S/2} \left(1, i, 0 \right)$$

Effective theory of gapless magnons

- * Integrate out short-distance degrees of freedom within the unit cell.
- * The only low-energy d.o.f. is the spin density: (12-8)x5/2=10 per unit cell.
- * Effective theory is a Heisenberg ferromagnet on a bcc lattice, which has only 1 gapless magnon branch.

$$\begin{split} R \simeq 3 \, (\mathrm{kg\cdot yr})^{-1} \left(\frac{n_s}{(4.6 \, \mathrm{\AA})^{-3}} \right) & \left(\frac{4.95 \, \mathrm{g/cm^3}}{\rho_T} \right) \left(\frac{0.1 \, \mathrm{MeV}}{m_\chi} \right) \int d^3 v_\chi \, f(v_\chi) \left(\frac{10^{-3}}{v_\chi} \right) \left(\frac{\hat{R}}{4 \times 10^{-27}} \right) \\ \hat{R} = \begin{cases} \frac{2g_\chi^2 g_e^2 (1 + \langle c^2 \rangle)}{\Lambda_\chi^2} (q_{\mathrm{max}}^2 - q_{\mathrm{min}}^2) & (\mathrm{magnetic \ dipole}) \,, \\ \frac{g_\chi^2 g_e^2 (1 + \langle c^2 \rangle)}{4\Lambda_\chi^4} (q_{\mathrm{max}}^4 - q_{\mathrm{min}}^4) & (\mathrm{anapole}) \,, \\ g_\chi^2 g_e^2 \langle s^2 \rangle \log(q_{\mathrm{max}}/q_{\mathrm{min}}) & (\mathrm{pseudo-mediated}) \,. \end{cases} \end{split}$$

- * $q_{\text{max}} = 2m_{\chi}v_{\chi}$, q_{min} determined by detector threshold.
- * Dependence on *q* follows from effective field theory expectations.

Effective theory vs. full theory

Effective theory calculation (dashed) reproduced full results in the intermediate mass region.Zhengkang "Kevin" Zhang (UC Berkeley & Caltech)37IPMU, Jan. 2020

Effective theory vs. full theory

Momentum transfer too small. Only gapped magnons are kinematically accessible.

Momentum transfer beyond the first Brillouin zone. Gapped magnons dominate.Zhengkang "Kevin" Zhang (UC Berkeley & Caltech)38IPMU, Jan. 2020

Summary

- * New ideas beyond conventional nuclear recoils are needed to detect sub-GeV DM.
- * Starting point is to find materials with excitations that match DM kinematics.

IPMU, Jan. 2020

Summary

* Target response is captured by the dynamic structure factor, calculable from first principles. $\Gamma = \int \frac{d^3q}{(2\pi)^3} |\mathcal{M}|^2 S(\boldsymbol{q}, \omega) \Big|_{\omega = \boldsymbol{q} \cdot \boldsymbol{v} - \frac{q^2}{2m_{\chi}}}$

Summary

- **Collective excitations** in CM systems offer a promising path forward. **
 - Acoustic and optical **phonons** probe different types of SI couplings. *

Magnons can probe SD couplings. $\mathbf{\mathbf{x}}$

The End

Thank you for your attention!

- The dynamic structure factor $S(q, \omega)$ can be highly anisotropic. *
- DM wind comes in from different directions at different times of the day * => daily modulation.

IPMU, Jan. 2020

- * The dynamic structure factor $S(q, \omega)$ can be highly anisotropic.
- * O(1) daily modulations in:
 - * Electron transitions in hexagonal BN. [Griffin, Inzani, Trickle, ZZ, Zurek, 1910.08092]

- * The dynamic structure factor $S(q, \omega)$ can be highly anisotropic.
- * O(1) daily modulations in:
 - * Electron transitions in hexagonal BN. [Griffin, Inzani, Trickle, ZZ, Zurek, 1910.08092]
 - * Electron transitions in Dirac material ZrTe₅. [Coskuner, Mitridate, Olivares, Zurek, 1909.09170]

- * The dynamic structure factor $S(q, \omega)$ can be highly anisotropic.
- * O(1) daily modulations in:
 - * Electron transitions in hexagonal BN. [Griffin, Inzani, Trickle, ZZ, Zurek, 1910.08092]
 - * Electron transitions in Dirac material ZrTe₅. [Coskuner, Mitridate, Olivares, Zurek, 1909.09170]
 - Single phonon excitations in sapphire (Al₂O₃). [Griffin, Knapen, Lin, Zurek, 1807.10291]

46

