J-factor estimation of Draco, Sculptor, and Ursa Minor dwarf spheroidal galaxies with the member/foreground mixture model

Shunichi Horigome, Kavli IPMU

(Collaboration with Koji Ichikawa, Miho Ishigaki, Shigeki Matsumoto, Masahiro Ibe, Hajime Sugai and Kohei Hayashi)

JSPS: 18J21186

Abstract & Contents

Abstract

- To obtain precise sensitivity of dark matter (DM) indirect detection, we must know precise amounts of DM in target objects.
- We have developed a new method to predict the DM amount with considering the **foreground contamination**, which remained ambiguous in conventional works.
- Using this method, we estimate actual DM amounts (J-factors) of promising targets, namely, Draco, Sculptor and Ursa Minor dSphs.

Contents

- Indirect detection of WIMP dark matter
- J-factor estimation of dSphs
- Uncertainty of J-factor: foreground contamination.
- Member/Foreground mixture model
 - Flowchart
 - Likelihoods & Models
- Results: J-factor of Draco, Sculptor, & Ursa Minor
- Summary

Dark matter (DM) Ω_{DM} = 0.258 (Planck 2015)

Indirect detection of WIMP dark matter

- What is the DM?
 - PBH
 - Axion
 - Sterile neutrino
 - WIMP (Weakly Interacting Massive Particle)
 - colorless, neutral
 - Ω_{DM} naturally achieved by the *freeze out* mechanism
 - Some BSM predict WIMP DM
 - e.g. wino with its mass $M_{wino} \sim \text{TeV}$ (SUSY)

Dark Matter

Dark Energy

Irdinary Matter 4.9%

26.8%

68.3%

arXiv:1608.01749 arXiv:1706.05481 Indirect detection of WIMP dark matter arXiv:20XX:XXXX

How to detect WIMP

u'+u

J-factor estimation of dSphs

- Indirect detection
 - Observing DM rich targets to find DM annihilation signal
 - To calculate the sensitivity, we must estimate the amount of signal flux
 - Annihilation signal flux $\Phi(E, \Delta\Omega)$ is proportional to a "*J*-factor":

$$\Phi(E,\Delta\Omega) = \underbrace{\left[\frac{\langle \sigma v \rangle}{8\pi m_{\rm DM}^2} \sum_f b_f \left(\frac{dN_{\gamma}}{dE}\right)_f\right]}_{\text{particle physics factor}} \times \underbrace{\left[\int_{\Delta\Omega} d\Omega \int_{l.o.s} dl \rho^2(l,\Omega)\right]}_{\text{astrophysical factor}(\equiv J)}$$

dark matter

signal flux (gamma-ray etc.)

- Targets:
 - Galactic center
 - Center of galaxies
 - Dwarf spheroidal galaxies
 - DM halo

...Which astrophysical object has a large *J*-factor?

(7)

J-factor estimation of dSphs

• Dwarf Spheroidal galaxy (dSph):

- · close to the earth
- DM rich
- without gamma-ray noise

Galaxy	Other Names			R.A. J2000	J2000	Original Publication
		The MW sub-group (in order of distance from the MW)				
The Galaxy	The MW	G	S(B)bc	17h45m4080	-29 ^d 00 ^m 28 ^s	
Canis Major		G	2222	07h12m35s0	$-27^{d}40^{m}00^{s}$	Martin et al. (2004a)
Sagittarius dSph		G	dSph	18h55m195	$-30^{d}32^{m}43^{s}$	Ibata et al. (1994)
Segue (I)		G	dSph	10 ^h 07 ^m 0450	+16 ^d 04 ^m 55 ^s	Belokurov et al. (2007)
Ursa Major II		G	dSph	08h51m3050	+63 ^d 07 ^m 48 ^s	Zucker et al. (2006a)
Bootes II		G	dSph	13h58m0080	+12 ^d 51 ^m 00 ^s	Walsh et al. (2007)
Segue II		G	dSph	02 ^h 19 ^m 16 ^s 0	+20 ^d 10 ^m 31 ^s	Belokurov et al. (2009)
Willman 1	SDSS J1049+5103	G	dSph	10 ^h 49 ^m 21 ^s 0	+51 ^d 03 ^m 00 ^s	Willman et al. (2005a)
Coma Berenices		G	dSph	12h26m5990	+23d54m15s	Belokurov et al. (2007)
Bootes III		G	dSph?	13h57m12s0	+26 ^d 48 ^m 00 ^s	Grillmair (2009)
LMC	Nubecula Major	G	Irr	05h23m3435	-69 ^d 45 ^m 22 ^s	
SMC	Nubecula Minor NGC 292	G	dIrr	00 ^h 52 ^m 44 ^s 8	$-72^{d}49^{m}43^{s}$	(****)
Bootes (I)		G	dSph	14 ^h 00 ^m 06 ^s 0	+14 ^d 30 ^m 00 ^s	Belokurov et al. (2006)
Draco	UGC 10822 DDO 208	G	dSph	17h20m12s4	+57 ^d 54 ^m 55 ^s	Wilson (1955)
Ursa Minor	UGC 9749 DDO 199	G	dSph	15 ^h 09 ^m 08 ^s 5	+67 ^d 13 ^m 21 ^s	Wilson (1955)
Sculptor		G	dSph	01h00m09%4	-33 ^d 42 ^m 33 ^s	Shapley (1938a)
Sextans (I)		G	dSph	10 ^h 13 ^m 03 ^s 0	-01d36m53s	Irwin et al. (1990)
Ursa Major (I)		G	dSph	10h34m52s8	+51 ^d 55 ^m 12 ^s	Willman et al. (2005b)
Carina		G	dSph	06h41m3687	-50 ^d 57 ^m 58 ^s	Cannon et al. (1977)
Hercules		G	dSph	16h31m02s0	+12 ^d 47 ^m 30 ^s	Belokurov et al. (2007)
Fornax		G	dSph	02h39m5953	-34 ^d 26 ^m 57 ^s	Shapley (1938b)
Leo IV		G	dSph	11h32m5750	$-00^{d}32^{m}00^{s}$	Belokurov et al. (2007)
Canes Venatici II	SDSS J1257+3419	G	dSph	12h57m1080	+34 ^d 19 ^m 15 ^s	Sakamoto & Hasegawa (2006) Belokurov et al. (2007)
Leo V		G	dSph	11h31m0956	+02 ^d 13 ^m 12 ^s	Belokurov et al. (2008)
Pisces II		G	dSph	22h58m31s0	+05d 57m09s	Belokurov et al. (2010)
Canes Venatici (I)		G	dSph	13h28m03s5	+33d33m21s	Zucker et al. (2006b)
Leo II	Leo B UGC 6253 DDO 93	G	dSph	11 ^h 13 ^m 28 ^s 8	+22 ^d 09 ^m 06 ^s	Harrington & Wilson (1950)
Leo I	UGC 5470 DDO 74 Regulus Dwarf	G/L	dSph	10 ^h 08 ^m 28 ^s 1	+12 ^d 18 ^m 23 ^s	Harrington & Wilson (1950)

Table 1 Basic Information

(6)

Many dSphs have been observed.

Some of them are reported to have large *J*-factors.

... How can we know their J-factors or DM distributions?

(1)

(2)

(3)

(4)

J-factor estimation of dSphs

- The J-factor of a dSph is estimated by observing the velocity of dSph member stars by spectroscopic telescopes.
 - e.g. Prime Focus Spectrograph (PFS):
 - Large FoV! (~1.3 deg)
 - 2400 fibers!
 - → We will observe all the dSph stars simultaneously.

Uncertainty of J-factor: foreground effect

• (Spherical) Jeans equation: Kinematics of dSph

This Jeans analysis has some biases:

- Anisotropy modelling (Some works assume $\beta(r) = \text{const.}$ for simplicity)
- Non-sphericity (dwarf spheroidal galaxy) ← Hayashi+(2016)
- Prior bias (few stars to determine DM distribution sufficiently)
- Foreground (FG) contamination ← Walker+(2009), Bonnivard+(2015) and our works: Ichikawa+(2017, 2018), Shunichi+(in prep.)

We should take care of these assumptions or uncertainty.

In particular, **FG contamination** is important even for future observations yielding a large amount of stellar velocity data.

So, what is the **FG contamination**?

 \star or \star ???

★

Uncertainty of J-factor: foreground effect

Foreground contamination

arXiv:1608.01749 arXiv:1706.05481

arXiv:20XX:XXXX

 FG stars distort the velocity dispersion curve → biased *J*-factors

Uncertainty of J-factor: foreground effect

conventional method to remove FG stars

- In a conventional analysis, foreground stars are removed based on *membership probabilities* P_M, calculated by the expectation-maximization (EM) algorithm.
 - e.g. selecting the stars with $P_M > 0.95$ (95% member-like stars)
- However, even if we try to remove FG-like stars, some FG stars remain.
 - \rightarrow biased *J*-factors (e.g. UMa II)

Mock dSph demonstration

arXiv: [1709.05481]

Uncertainty of J-factor: foreground effect

conventional method to remove FG stars

- We developed a mixture model, which includes a foreground model as well as a member model.
- Foreground stars are not removed.
 Their distribution is also fitted by the model.
- This model can reproduce input parameter of mock dSphs (even for UMaII).

\rightarrow Mem/FG analysis for actual observation data?

arXiv: [1709.05481]

Our Analysis: Member/Foreground model

Our Analysis: Member/Foreground model

arXiv:1608.01749 arXiv:1706.05481 arXiv:20XX:XXXX

• Feature:

- Separated into two parts
 - Photometric part
 - Spectroscopic part
- Generalized models & Model selection

Our Analysis: Member/Foreground model arXiv:1706.05481

Likelihoods :

(parameters) $\Theta_{tot} = \Theta_{photo} + \Theta_{spec}$

1. Photometric part

 $\mathcal{L}_{\text{photo}}(\Theta_{\text{photo}}|D_{\text{photo}}) = s \Sigma_{\text{Mem}}(R) + (1-s)\Sigma_{\text{FG}}$

- + $\boldsymbol{\Sigma}$: stellar number density
- s: total contamination rate
- Θ_{photo}: parameters (local contamination rate & half-light-radius)
- \rightarrow determine the contamination rate in advance (obtain a prior $\pi(\Theta_{photo})$)
- 2. Spectroscopic part

$$\mathcal{L}_{\text{spec}}(\Theta_{\text{tot}}|D_{\text{spec}}) = \prod_{i} \left(s \mathcal{G}_{\text{mem}}(v_{i}; v_{\text{mem}}, \sigma_{\text{l.o.s.}}(R_{i})) + (1-s) \prod_{c} \mathcal{G}_{\text{FG}}(v_{i}; v_{c}, \sigma_{c}) \right) \times \pi(\Theta_{\text{photo}})$$

- *G* : Gaussian function:
- Estimate the posterior probability of all parameters by using a MCMC sampler (*emcee*)
 - \rightarrow posterior of J-factor!

arXiv:1608.01749

Our Analysis: Member/Foreground model arXiv:1706.05481

- Models:
 - DM profile: Generalized NFW (Zhao) profile

$$\rho_{\rm DM}(r) = \rho_s (r/r_s)^{-\gamma} \left(1 + (r/r_s)^{\frac{-\beta+\gamma}{\alpha}}\right)^{\alpha}$$

• γ : power of inner region (core ($\gamma = 0$) vs. cusp ($\gamma > 0$))

Stellar profile: <u>Plummer or exponential</u> profile & Jeans analysis

$$\Sigma_{1}(R) = \begin{cases} \frac{1}{\pi R_{1/2}^{2}} \left[1 + (R/R_{1/2})^{2} \right]^{-2} & \text{(Plummer profile)} \\ \frac{1}{2\pi R_{e}^{2}} \exp(-R/R_{e}) & \text{(Exponential profile)} \end{cases} \xrightarrow[0.100]{0.001}_{10^{-5}} & \text{Plummer} \\ \frac{1}{2\pi R_{e}^{2}} \exp(-R/R_{e}) & \text{(Exponential profile)} \end{cases}$$

- Foreground profile: up to 3-components (thin disk, thick disk, halo)
 - Gaussian mixture model (GMM)

$$p_{\mathrm{FG}}(v|R) = \sum_{\substack{i \in \mathrm{thin, thick} \ \mathrm{halo}}} s_i \mathcal{G}[v, ar{v}_{\mathrm{FG, i}}, \sigma_{\mathrm{FG, i}}]$$

We select suitable models based on their Bayes factor.

arXiv:1608.01749

Model selection

- arXiv:1608.01749 arXiv:1706.05481 arXiv:20XX:XXXX
- We select suitable models (Plummer or exp., up to three FG components) based on their **Bayes Factor:**

$$BF = \frac{\mathcal{E}_1}{\mathcal{E}_0} \qquad \text{Evidence: } \mathcal{E} = \int d\Theta \,\mathcal{L}(\Theta) \pi(\Theta)$$

• BIC ~ - ln(\mathcal{E})
 $BIC = -\ln \mathcal{L}(\widehat{\Theta}) + \frac{d}{2} \ln(\# \text{sample})$
 $\widehat{\Theta}$: Maximum likelihood
• WBIC ~ - ln(\mathcal{E})
 $WBIC = \frac{\int d\Theta \ln(\mathcal{L}(\Theta)) \,\mathcal{L}(\Theta)^{\beta} \pi(\Theta)}{\int d\Theta \,\mathcal{L}(\Theta)^{\beta} \pi(\Theta)}$

 $\beta = 1/\log(\#\text{sample})$

- WBIC can be easily evaluated by a MCMC sampling
- Even for the case of multimodal likelihoods (cf. GMM), WBIC gives a good approximation of the evidence

Our Analysis: Member/Foreground model arXiv

- Results: J-factor of Draco, Sculptor, and Ursa Minor dSphs (preliminary, arXiv:20XX:XXXX...)
 - Estimate the J-factors of hopeful dSphs: Draco, Sculptor, Ursa Minor
 - Data set: photometry & spectroscopy
 - Draco: SDSS & MMT/Hectochelle
 - Sculptor: DES & MMFS
 - Ursa Minor: Pan-STARRS & MMT/Hectochelle

workshop @ Shilla Stav Jeiu

Our Analysis: Member/Foreground model arXiv:1706.05481

- Results: J-factor of Draco, Sculptor, and Ursa Minor dSphs (preliminary, arXiv:20XX:XXXX...)
 - We found that distance to dSphs (=D) has a correlation with J-factor (J ∝ D⁻³)
 e.g. the Draco dSph
 - $\frac{\Delta D}{D} \approx 0.1$
 - Further studies of distance determination are required to achieve more precise results

Estimated J-factor:

dSph	$\log_{10}(J(0.5^{\circ})/[{\rm GeV^2 cm^{-5}}])$
Draco	$18.96\substack{+0.21\\-0.17}$
Sculptor	$18.53_{-0.11}^{+0.12}$
Ursa Minor	$18.75_{-0.13}^{+0.17}$

arXiv:1608.01749

Summary

- dSphs are good targets of the indirect detection of DM.
- The sensitivity of the indirect detection has an uncertainty due to the foreground contamination of the J-factor estimation.
- We present the Member/Foreground mixture model to calculate accurate J-factors. Our method can work even for the case of highly-contaminated dSphs.
- Using the Member/Foreground mixture model, we obtain the J-factors of the Draco, Sculptor, and Ursa Minor dSphs.
- Reducing distance error improves the uncertainty of *J*-factors.
 - Future work:
 - J-factors of other dSphs, the J-factor table of all dSphs
 - other systematic uncertainties (e.g. non-sphericity, anisotropy, etc.)

JSPS: 18J21186

Back Up

JSPS: 18J21186

Shunichi Horigome, Kavli IPMU 1st AEI workshop @ Shilla Stay Jeju

20 /19

Comparison to other works

- The fluctuation of the J-factors by several works
 - In particular, Draco and Ursa Minor
 - We found that the contamination rates of these two dSphs are relatively higher than that of the Sculptor dSph
 - → It suggests the importance of Member/FG model

dSph Modelling toolkit

- dSph Modelling toolkits (provisional) can:
 - Implement major dSph models
 - Anisotropy profile
 - Foreground effect
 - Stellar & DM profile
 - compare models based on Bayes factors
 - define user custom model
 - Switch a sampling algorithm among MCMC samplers (emcee, Multinest, ...)

arXiv:1608.01749 arXiv:1706.05481 arXiv:20XX:XXXX