RECENT ADVANCES in the BLACK HOLE INFORMATION PARADOX

Liz Wildenhain (UC Berkeley) Berkeley Week, IPMU January 17, 2020

THE INFORMATION PARADOX: BLACK HOLE EVAPORATION

Hawking (1975) showed that, semiclassically, black holes should emit radiation and eventually evaporate. This radiation comes out in a mixed state. Event horizon –

Singularity

Origin (of polar coordinates) Photons

Hawking

THE INFORMATION PARADOX: BLACK HOLE EVAPORATION

Singularity

The Minkowski vacuum can be decomposed along any plane into an entangled pure state: $|\Omega\rangle = \frac{1}{\sqrt{Z}} \sum_{i} e^{-\pi\omega_{i}} |i^{*}\rangle_{A} |i\rangle_{B}$

Tracing out region A \rightarrow thermal state in region B: $\rho_B = \frac{1}{Z} \sum_{i} e^{-2\pi\omega_i} |i\rangle_B \langle i|$

Origin (of polar coordinates)

Event horizon ·

Hawking radiation

Photons

THE INFORMATION PARADOX: THE S-MATRIX

 $P(\text{out}|\text{in}) = |\langle \text{out}|S|\text{in}\rangle|^2$

If the S-Matrix is unitary...

Pure Initial State —

THE INFORMATION PARADOX: A STATEMENT OF THE PARADOX

- 1. The (unitary) S-matrix maps pure in-states to pure outstates. In other words, no information is lost.
- 2. We expect a process in asymptotically-flat quantum gravity to be described by an S-matrix.
- 3. According to Hawking's calculation, a black hole formed from matter in a pure state will evaporate into radiation in a mixed state.
- 4. If a black hole is formed from matter in a pure state and evaporates into a mixed state, the process cannot be described by a unitary S-matrix. The whole process involves information loss.

WHY FAVOR UNITARITY NONETHELESS?

1. We think QFT works in weakly-gravitating regions.

2. The AdS/CFT Correspondence.

Anti de Sitter space:

Maximally symmetric solution to Einstein's equations with negative cosmological constant

AdS Space

Non-Gravitational **CFT**_d

physically

equivalent

CFT is unitary, so black hole evaporation should be unitary

6

Quantities in the bulk

> Holographic dictionary

> > Quantities on the boundary

r = 0

AdS Space with evaporating black hole

Quantities in the bulk

> Holographic dictionary

> > Quantities on the boundary

r = 0AdS Space with evaporating

black hole

Quantities in the bulk

> Holographic dictionary

Evaporating black hole in AdS space

Quantities on the boundary

A RECENT LOOK AT EVAPORATING BH'S: THE SETUP

JT (1+1D) gravity with Hawking State

Auxiliary System

arXiv:1905.08255 arXiv:1905.08762

TRACKING INFORMATION IN BLACK HOLE EVAPORATION

Von Neumann Entropy: $S(\rho) \equiv -tr(\rho \log \rho)$

Entanglement Entropy: $S_A \equiv -\text{tr}(\rho_A \log \rho_A)$ $\langle a' | \rho_A | a \rangle \equiv \sum_b \langle a' b | \rho_{AB} | ab \rangle$ Pure total state implies $S_A = S_B$

THE PREDICTION OF UNITARY EVAPORATION: THE PAGE CURVE

A USEFUL HOLOGRAPHIC RELATIONSHIP: THE (H)RT PRESCRIPTION AND QUANTUM EXTREMAL SURFACES

Generalized Entropy: $S_{\text{gen}}[\sigma] = \frac{\mathcal{A}(\sigma)}{4G\hbar} + S[\text{Ext}(\sigma)]$ Quantum Extremal Surface (QES): A surface whose generalized entropy is stationary with respect to all deformations.

A USEFUL HOLOGRAPHIC RELATIONSHIP: THE (H)RT PRESCRIPTION AND QUANTUM EXTREMAL SURFACES

Generalized Entropy:

 $S_{\text{gen}}[\sigma] = \frac{\mathcal{A}(\sigma)}{4G\hbar} + S[\text{Ext}(\sigma)]$

Quantum (H)RT Prescription: $S_{CFT}[A] = S_{gen}[\gamma_{RT}[A]],$ where γ_{RT} is the QES homologous to A with the smallest S_{gen} .

Entanglement Wedge of A Quantum Extremal Surface (QES): A surface whose generalized entropy is stationary with respect to all deformations.

Α

A RECENT LOOK AT EVAPORATING BH'S: THE CALCULATION

General Approach: Taking the boundary region (A) to be the whole boundary at a particular time (t), find the QES's.

The QES's: 1. The empty surface 2. $\gamma(t)$

JT gravity with Hawking State

Auxiliary System

A RECENT LOOK AT EVAPORATING BH'S: THE CALCULATION

Before the Page Time: Minimal QES = empty surface

 $S_{\rm CFT} = 0 + S_{\rm bulk} = S_{\rm interior}$ $S_{\rm interior} = S_{\rm R}$

 S_{CFT} increases monotonically before the Page time

JT gravity with Hawking State

Auxiliary System

A RECENT LOOK AT EVAPORATING BH'S: THE CALCULATION

After the Page Time: Minimal QES = $\gamma(t)$ $S_{\text{CFT}} = \frac{\mathcal{A}(t)}{4G\hbar} + 0$

> S_{CFT} decreases monotonically after the Page time

JT gravity with Hawking State

Auxiliary System

A RECENT LOOK AT EVAPORATING BH'S: THE RESULTS

 $S_{\rm CFT}$ starts at zero and increases monotonically until the Page time.

After the Page time, S_{CFT} decreases monotonically until it reaches zero.

Therefore, S_{CFT} follows the Page Curve.

This is surprising because the calculation was semiclassical (Hawking's calculation) in the bulk.

WHAT ABOUT THE RADIATION?

Entanglement Wedge Complementarity

EW(R)7

Before the Page Time

JT gravity with Hawking State

Auxiliary System

JT gravity with Hawking State

 $A(t_2)$

EW(A)

 $\gamma(t_2)$

After the Page Time

SOME PUZZLES AND FURTHER RELEVANT WORK

What does the observer detect? Information loss or not? Contradiction between mixed out-state and purity of the CFT? Significance of ensemble of CFTs on the boundary? *arXiv:1911.06305.*

Computing the Page curve for the radiation with double holography: arXiv:1908.10996.

Applying the gravitational path integral (via replica wormholes) to this setup: *arXiv:1911.12333*, *arXiv:1911.11977*.

Double-holography in higher dimensions: *arXiv:1911.09666*.

REFERENCES

- A. Almheiri et al. "The entropy of bulk quantum fields and the entanglement wedge of an evaporating black hole," (2019). arXiv:1905.08762.
- A. Almheiri et al. "The Page curve of Hawking radiation from semiclassical geometry," (2019). arXiv:1908.10996.
- A. Almheiri et al. "Replica Wormholes and the Entropy of Hawking Radiation," (2019). arXiv:1911.12333.
- A. Almheiri, R. Mahajan, and J. Santos. "Entanglement islands in higher dimensions," (2019). arXiv:1911.09666.
- R. Bousso and M. Tomasevic. "Unitarity From a Smooth Horizon?" (2019). arXiv:1911.06305.
- D. Harlow. "Jerusalem Lectures on Black Holes and Quantum Information," *Rev. Mod. Phys.* 88 (2016) 015002. arXiv:1405.1995.
- G. Penington. "Entanglement Wedge Reconstruction and the Information Paradox," (2019). arXiv:1905.08255.
- G. Penington et al. "Replica wormholes and the black hole interior," (2019). arXiv:1911.11977.
- T. Takayanagi. "Holographic dual of BCFT," *Phys. Rev. Lett.* **107** (2011) 101602. arXiv:1105.5165.

THANK YOU FOR YOUR ATTENTION!

EXTRA SLIDES

ADS GEOMETRY

 $Metric of AdS_{d+1}$ $ds^{2} = \ell^{2} \left(-\cosh^{2}\rho \, dt^{2} + d\rho^{2} + \sinh^{2}\rho d\Omega_{d-1}^{2} \right)$

Construction of Penrose diagram $d\sigma = \frac{d\rho}{\cosh \rho} \rightarrow \sigma = 2 \tan^{-1} \tanh\left(\frac{\rho}{2}\right)$ ρ runs from 0 to ∞ , σ runs from 0 to $\frac{\pi}{2}$.

JT GRAVITY AND THE SYK MODEL

JT Gravity

Action of JT gravity: $I = I_0 + I_G + I_M$, where $I_0 = \frac{\phi_0}{16\pi G_N} \left[\int_{\mathcal{M}} d^2 x \sqrt{-gR} + 2 \int_{\partial \mathcal{M}} K \right]$ $I_G = \frac{1}{16\pi G_N} \left[\int_{\mathcal{M}} d^2 x \sqrt{-g} \phi(R+2) + 2 \int_{\partial \mathcal{M}} \phi_b K \right]$ $I_M = I_{CFT}[g]$

Solving the action yields a 1+1D metric that is locally AdS_2 .

SYK Model

SKY model: 0+1D QM model of N Majorana fermions (ψ_i).

Hamiltonian: $H = \sum_{iklm} j_{iklm} \psi_i \psi_k \psi_l \psi_m$, where j_{iklm} are independent Gaussian random couplings.

DOUBLE-LAYER HOLOGRAPHY: THE BATH AS A CFT

Gravity + CFT d

BCFT

CFT_d

arXiv:1908.10996

DOUBLE-LAYER HOLOGRAPHY: THE BATH AS A CFT

Entanglement Wedge Complementarity

RT for BCFTs

A

JT gravity with Hawking State

EW(R)

DOUBLE-LAYER HOLOGRAPHY: THE PAGE CURVE OF THE RADIATION

Before the Page Time

R

After the Page Time

R

DOUBLE-LAYER HOLOGRAPHY: THE PAGE CURVE OF THE RADIATION

The entropy of the radiation follows the Page curve.

A New Prescription: $S(A) = \operatorname{Min} \operatorname{Ext}_{\mathcal{I}_g \quad \mathcal{I}_g} \left[S_{\operatorname{eff}} (A \cup \mathcal{I}_g) + \frac{\operatorname{Area} [\partial \mathcal{I}_g]}{4G_N} \right]$

RINDLER COORDINATES

Rindler Space metric: $ds^2 = dR^2 - R^2 d\eta^2, R > 0, \eta = \text{anything}$

Coordinate transformation makes the Rindler patch more evident: $x = R \cosh \eta$ $t = R \sinh \eta$

 $ds^2 = -dt^2 + dx^2, x > 0, |t| < x$