Models of Core-Collapse SNe and Shock Breakout

Melina Cecilia Bersten

Facultad de Ciencias Astronómicas y Geofísicas

L P

L

P

CONICET

U

Importance of Supernovae

Astrophysics

- Death of a star \longrightarrow Stellar evolution
- Chemical enrichment of interstelar medium
- Energetics events —> trigger new star formation, remanants

Cosmology

- Powerful distance indicators
- Accelerated expansion of the Universe - Dark energy

Nobel Prize 2011

Supernova diversity

- Normal SN: $E_k \sim 10^{51}$ erg, $\sim 1-10\% E_k$ during weeks/months ($\sim 10^{10}L_{\odot}$)
- Broad line Ic ($v \sim 30000$ km s⁻¹) connected to LGRBs ($E \sim 10^{52}$ erg)
- Superluminous SN: \approx 10 100 \times more luminous than "ordinary" SNe

Core-Collapse Supernovae

- End of massive stars ($M_0 \gtrsim 8M_{\odot}$) Stellar evolution test
- Which type of progenitor corresponds to each type of SN?
- How do massive stars lose their envelopes?
- Isolated stars or interacting binary systems?

CCSNe - p.4/18

Credit: M. Modjaz

Core-Collapse Supernovae

- End of massive stars ($M_0 \gtrsim 8M_{\odot}$) Stellar evolution test
- Which type of progenitor corresponds to each type of SN?
- How do massive stars lose their envelopes?
- Isolated stars or interacting binary systems?

Progenitor Stars

- Archival pre-explosion imaging
- Environmental and metallicity studies
- SN rates
- Mass-loss rates from radio & X-rays
- Spectropolarimetry
- Flash spectroscopy
- Light-curve and spectrum modeling

Progenitor Stars

- High-resolution, deep archival imaging (HST) (\leq 30 Mpc) \approx 30 detections + 38 upper limits (Van Dyk, Smartt, etc.)
 - Most are RSG SNe II
 - A few YSG SNe IIb
 - One detections for SN Ib
 - One candidate for SN Ic
 - LBV SNe IIn
 - BSG SN 1987A
 - Deficiency of progenitors with log L/L $_{\odot} \gtrsim 5.1 \Longrightarrow$ M_{ZAMS} $\lesssim 16-18 M_{\odot}$?

Progenitor Stars

- Hydrodynamic modeling: LC + expansion velocities
- Progenitor mass, radius, explosion energy, ⁵⁶Ni mass

Hydrodynamical Models

- Different time scales for core and envelope => ejection of the envelope treated independently of core collapse
- Numerical integration of the hydro equations + radiative transfer
 1-D code with flux-limited radiation + gray transfer for γ -rays (Bersten+11)
- Pre-SN structures: stellar evolution and parametric models

H-poor Supernovae

- Type IIb-Ib-Ic: Stripped envelope SNe
- Cooling phase with strong dependence on progenitor radius
- Second peak powered by radioactive decay Depends on E_{exp} , M_{ej} , M_{Ni} and ${}^{56}Ni$ distribution

Shock Breakout (SBO)

- A luminous burst in UV/X-ray: shock-wave emerges on the stellar surface ($\tau < v_{sock}/c$)
- Produces an emission peak in the optical
- SBO emission \neq shock cooling emission

Supernova 2016gkg

Discovered on Sept. 20th 2016 by amateur Víctor Buso

The "Observatorio Busoniano" in Rosario

Buso with his 40cm Newtonian

Supernova 2016gkg

The SN appears during Víctor's observations

NGC 613

Supernova 2016gkg

The SN appears during Víctor's observations

NGC 613

SN IIb 2016gkg

- No sign in 40 images (in \approx 20 min). SN became visible 45 min later
- Unprecedented time sampling of the initial rise at a rate of 43 mag/day

SN IIb 2016gkg

- No sign in 40 images (in \approx 20 min). SN became visible 45 min later
- Unprecedented time sampling of the initial rise at a rate of 43 mag/day

SBO rise time

The lowest luminosity and the fastest rise ever observed (in optical) a different physical origin for the initial rise

SBO rise time

The lowest luminosity and the fastest rise ever observed (in optical) a different physical origin for the initial rise

- First-time, self-consistent model for the whole SN evolution
- Fast initial rise and brightness naturally reproduced

Physical origin of Víctor's data: SBO or post shock-cooling (PSC)?

- The rise to the SBO peak is significantly faster than that of the (PSC)
- No physical parameter can reconcile the slopes

- Fast initial rise and brightness only compatible with the SBO
- No physical parameter can reconcile the SBO and cooling slopes

- Our model shows slightly higher SBO slope
- Possible solution presence of some circumstellar material (CSM)

CCSNe - p.15/18

Progenitor of SN 2016gkg

- HST pre-SN images \implies YSG star
- Binary calculations: progenitor is a H-deficient YSG star
- New HST images obtained to confirm progenitor

see also Tartaglia+17, Arcavi+17 & Kilpatrick+17

CCSNe - p.16/18

Summary

- Light-curve modeling a useful tool to derive physical properties of SN progenitors and thus to test stellar evolution models
- This methodology is particularly powerful when combined with stellar evolution calculations and direct imaging of nearby SN
- Detailed analysis of the SBO signal gives unique diagnostics of the outermost progenitor structure and of the physical processes that occur during the shock emergence.
- A chance probability of $\approx 10^{-7} 10^{-8}$ is estimated for this discovery \implies systematic studies are extremely difficult
- SN16gkg model explains for the first time three distinct phases of IIb
- SBO in SN16gkg may suggest low-density CSM
- SBO detections require minute/hour cadence observations

Mass-loss Mechanisms

- Single, massive (\gtrsim 25 M_{\odot}) Wolf-Rayet stars with strong winds \implies He core mass \gtrsim 8 M_{\odot}
- Interacting binaries can make lower-mass stars lose their envelopes

Binary-star mass-transfer

H-poor Supernovae

- Low ejecta masses \approx 1-4 M_☉ from LC of SE-SN sample (Drout+11, Taddia+18, ...) \implies binarity
- SNe IIb: four YSG confirmed. Three possible companion detections
- SN Ib: one confirmed progenitor (iPTF13bvn; Eldrige+Maund 16, Folatelli+16)
- SN Ic: one progenitor candidate (SN 2017ein; Van Dyk+18)

Folatelli, MB+14