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Introduction

• Extending the gauge sector of SM
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Introduction

• Extending the gauge sector of SM

• Transforming the lepton sector nontrivially
compatible with the existing experimental data?
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Introduction

• Light neutrino mass → adding RH neutrinos

! mass terms tightly restricted by the U(1)&'(&) symmetry
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this simple structure fails to explain the sizable neutrino mixing…

Seesaw mechanism

block-diagonal

P. Minkowski, Phys. Lett. B67 (1977) 421–428 
T. Yanagida, Conf. Proc. C7902131 (1979) 95–99 



Introduction

• Spontaneous breaking of U(1)%&'%( symmetry

introduce only one additional scalar field

)*'+ ≃
∗ ∗ ∗
∗ 0 ∗
∗ ∗ 0

Two-zero structure leads into strong predictive power!
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A brief summary
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The Standard Model

⨂
an extra scalar singlet
an extra scalar doublet⨂

⨂
normal mass ordering
inverted mass ordering

3(1)7897:
3(1)7897;
3(1)7:97;

⨂

3 RH neutrinos
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The Standard Model

⨂
an extra scalar singlet
an extra scalar doublet⨂

⨂

1(1)56758
1(1)56759
1(1)58759

⨂

3 RH neutrinos

Phys.Rev. D99 (2019) no.5, 055029

normal mass ordering
inverted mass orderingexcluded by neutrino oscillation data,

cosmological bound on ∑=>=, etc
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• Charge assignment

an SM(-like) Higgs field, i.e. an SU(2)L doublet scalar with hypercharge +1/2 and the
U(1)Lµ�L⌧ charge zero; this scalar field is responsible for giving masses to the SM fields.

As we discussed in the previous section, we further introduce one extra scalar field to
break the U(1)Lµ�L⌧ gauge symmetry. There are only three possibilities for the quantum
numbers of the scalar field that can yield a neutrino mass matrix with which all of the
three active neutrinos mix with each other:

(i) An SU(2)L singlet with hypercharge Y = 0 and the U(1)Lµ�L⌧ charge +1.

(ii) An SU(2)L doublet with hypercharge Y = 1/2 and the U(1)Lµ�L⌧ charge +1.

(iii) An SU(2)L doublet with hypercharge Y = 1/2 and the U(1)Lµ�L⌧ charge �1.

For the case (i), one may also think of the U(1)Lµ�L⌧ charge �1 case. However, this case
is just the complex conjugate of the case (i) and thus these two are equivalent. Similarly,
the choice of Y = �1/2 in the cases of (ii) and (iii) is the complex conjugate of the cases
(iii) and (ii), respectively.

In what follows, we discuss each case separately, showing the Lagrangian terms relevant
to the neutrino mass structure.

2.1 Singlet

The interaction terms in the leptonic sector of the case (i) are given by
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c
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c
⌧ + h.c. , (2)

where H and � denote the SM Higgs and the U(1)Lµ�L⌧ -breaking singlet scalar, respec-
tively, and L↵ are the left-handed lepton doublets. The dots indicate the contraction
of the SU(2)L indices. After the Higgs field H and the singlet scalar � acquire VEVs
hHi = v/

p
2 and h�i,3 respectively, these interaction terms lead to neutrino mass terms
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3We can always take these VEVs to be real by using the gauge transformations.
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and the charged lepton mass terms
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It is found that both the neutrino and charged-lepton Dirac mass matrices are diagonal—
they are assured by the U(1)Lµ�L⌧ gauge symmetry. All of the components of these Dirac
mass matrices are taken to be real and positive without loss of generality. In this basis,
the matrix M` in Eq. (6) is in general has a form (1).

In this model, the U(1)Lµ�L⌧ breaking scale is set by the VEV of �. Since � is
singlet under the SM gauge group, this breaking scale can be much higher than the
electroweak scale so that the seesaw mechanism [59–62] naturally explains the smallness
of the active neutrino masses. Another interesting possibility for the U(1)Lµ�L⌧ breaking
scale is motivated by the muon g � 2 anomaly [5–8]. It is known that the observed
deviation in the anomalous magnetic dipole moment of the muon from the SM prediction
can be accounted for by the contribution of the U(1)Lµ�L⌧ gauge boson at one-loop level
[9, 10] without conflicting with the existing experiments if the mass of the gauge boson
is mZ0 ⇠ 10� 100 MeV and the U(1)Lµ�L⌧ gauge coupling is gZ0 ⇠ (5� 10)⇥ 10�4. The
lower edge of the mass range is due to the limit imposed by the Borexino experiment
[81], which gives a bound on the ⌫-e interactions induced at loop level in this model.
mZ0 . 10 MeV is also disfavored in cosmology as it contributes to the e↵ective neutrino
degrees of freedom [42]. On the other hand, the large mass region mZ0 & 100 MeV is
constrained by the measurements of the neutrino trident production process [11, 82–84]
and by the BABAR experiment searching for eē ! µµ̄Z

0, Z 0
! µµ̄ [85]. Since the mass

of the U(1)Lµ�L⌧ boson is given by mZ0 =
p
2gZ0h�i, the muon g � 2 anomaly can be

explained for h�i ⇠ 10 � 100 GeV. In the following discussion, however, we do not stick
to this range but regard h�i as just a free parameter.
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For the case (i), one may also think of the U(1)Lµ�L⌧ charge �1 case. However, this case
is just the complex conjugate of the case (i) and thus these two are equivalent. Similarly,
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an SM(-like) Higgs field, i.e. an SU(2)L doublet scalar with hypercharge +1/2 and the
U(1)Lµ�L⌧ charge zero; this scalar field is responsible for giving masses to the SM fields.

As we discussed in the previous section, we further introduce one extra scalar field to
break the U(1)Lµ�L⌧ gauge symmetry. There are only three possibilities for the quantum
numbers of the scalar field that can yield a neutrino mass matrix with which all of the
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(i) An SU(2)L singlet with hypercharge Y = 0 and the U(1)Lµ�L⌧ charge +1.
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For the case (i), one may also think of the U(1)Lµ�L⌧ charge �1 case. However, this case
is just the complex conjugate of the case (i) and thus these two are equivalent. Similarly,
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Figure 1.1: The CP asymmetry in type-I seesaw leptogenesis results from the interference between tree
and 1-loop wave and vertex diagrams. For the 1-loop wave diagram, there is an additional contribution
from L-conserving diagram to the CP asymmetry which vanishes when summing over lepton flavours.

1.2.3 Classical Boltzmann equations

We work in the one flavour regime and consider only the decays and inverse decays ofN1. If leptogenesis
occurs at T >

⇠ 1012GeV, then the charged lepton Yukawa interactions are out of equilibrium, and this
defines the one flavour regime. The assumption that only the dynamics of N1 is relevant can be
realized if for example the reheating temperature after inflation is TRH ⌧ M2,3 such that N2,3 are
not produced. In order to scale out the e↵ect of the expansion of the Universe, we will introduce the
abundances, i.e. the ratios of the particle densities ni =

R
d3pfi to the entropy density s = 2⇡2

45 g⇤T 3:

Yi ⌘
ni

s
. (1.18)

The evolution of the N1 density and the lepton asymmetry Y�L = 2Y�` ⌘ 2(Y`�Y¯̀) 4 can be described
by the following classical Boltzmann equations (BE)[53]

dYN1

dz
= �D1(YN1 � Y eq

N1
), (1.19)

dY�L

dz
= ✏1D1(YN1 � Y eq

N1
)�W1Y�L, (1.20)

where z ⌘ M1/T and the decay and washout terms are respectively given by

D1(z) =
�N1z
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= K1z

K1(z)

K2(z)
, W1(z) =

1

2
D1(z)

Y eq
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with Kn the n-th order modified Bessel function of second kind. Y eq

N1
and Y eq

`
read:5

Y eq

N
(z) =

45

2⇡4g⇤
z2K2(z), Y eq

`
=

15

4⇡2g⇤
. (1.22)

From eq. (1.19) and eq. (1.20), the solution for Y�L can be written down as follows

Y�L(z) = Y�L(zi)e
�
R

z

zi

dz
0
W1(z0)

�

Z
z

zi

dz0✏1(z
0)
dYN1

dz0
e�

R
z

z0 dz
00
W1(z00) (1.23)

where zi is some initial temperature when N1 leptogenesis begins, and we have assumed that any
preexisting lepton asymmetry vanishes Y 0

�L
(zi) = 0. Notice that ignoring thermal e↵ects, the CP

asymmetry is independent of the temperature ✏1(z) = ✏1 (c.f. eq. (1.17)).

4
The factor of 2 comes from the SU(2)L degrees of freedoms.

5
To write down a simple analytic expression for the equilibrium density of N1, we assume Maxwell-Boltzmann distri-

bution. However, follwing [54], the normalization factor Y
eq

`
is obtained from a Fermi-Dirac distribution.

8
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• Including a fourth lepton generation allows thermal leptogenesis at T ⇠ TeV [172–174].
• Consider the case that the number of heavy singlet neutrinos is larger than three. Their contribution to the effective

operator (`�)(`�) has no effect on the bounds on the flavoured asymmetries ✏↵↵ . In contrast, the contribution ofmany
singlets in weak washout can enhance the final baryon asymmetry, allowing thermal leptogenesis at Treheat that is a
factor ⇠30 lower than in the case of three singlet neutrinos [175]. In the case where leptogenesis is unflavoured, extra
singlets weaken the upper bound on |✏| from 3M1(m3 � m1)/(16⇡v2) to 3M1m3/(16⇡v2) [175,176].

4. For degenerate light neutrinos,mmax > matm, so the individual flavour asymmetries can be larger. However, the efficiency
factor is smaller, so formmax . eV (a conservative interpretation of the cosmological bound [177–179]) the lower bound
onM1 is similar to Eq. (5.12) [62,180,181].

One can go beyond the effective theory and incorporate the N2,3 states as dynamical degrees of freedom. For a not-too
degenerate Ni spectrum,Mi � Mj � �D (the case ofMi � Mj ⇠ �D is discussed in Section 10.2.2), one obtains
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where

xj ⌘ M2
j /M

2
1 ,

and, within the SM [56],

g(x) =
p
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In the MSSM, N1 decays to a slepton+Higgsino, as well as to lepton+Higgs. The sum of the asymmetries to leptons and to
sleptons is about twice larger than the SM asymmetry [56]:
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x
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The first term of Eq. (5.13) corresponds to the first two loop diagrams in Fig. 5.1 while the second line [56,63,66,95]
corresponds to the last diagram. This contribution violates the single lepton flavours but conserves the total lepton number,
and thus it vanishes when summed over ↵:
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As discussed in Sections 5.2 and 9.4.3, the upper bound on the flavoured CP asymmetries ✏↵↵ can be used to obtain a
lower bound on the reheat temperature. Here we discuss the upper bound on the total CP asymmetry ✏ =

P
↵ ✏↵↵ of Eq.

(5.16) [73,74]:

|✏| <
3

16⇡
(mmax � mmin)M1

v2
u

⇥ �(m̃,mmax,mmin) (5.17)

wheremmax (mmin) is the largest (smallest) light neutrino mass, and � ⇠ 1 can be found in [162].
The interesting feature of the bound (5.17), is that it decreases for degenerate light neutrinos. This was used to obtain

an upper bound on the light neutrino mass scale from unflavoured leptogenesis [135,182] (discussed in Section 9.4.1), and
explains the interest in the form of the function � . However, themaximumCP asymmetry in a given flavour is unsuppressed
for degenerate light neutrinos [62], so flavoured leptogenesis can be tuned to work for degenerate light neutrinos, as
discussed in Section 9.4.1.

5.3. Implications of CPT and unitarity for CP violation in decays

S-matrix unitarity and CPT invariance give useful constraints on CP violation (see e.g. [24,31,183]). This section is a brief
review of some relevant results for CP violation in decays. CP transforms a particle `↵ into its antiparticlewhichwe represent
as `↵ .

Useful relations, between matrix elements and their CP conjugates, can be obtained from the unitarity of the S-matrix
S = 1 + iT:

1 = SSÑ = (1 + iT)(1 � iTÑ) (5.18)

which implies that iTab = iT⇤

ba � [TTÑ]ab. Assuming that the transition matrix T can be perturbatively expanded in some
coupling constant �, it follows from

|Tab|
2
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2
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Figure 1. One of the 12-fermion processes which are in thermal equilibrium in the

high-temperature phase of the standard model.

topological charge, i.e. a transition from one vacuum to another one, corresponds to a

change in baryon and lepton numbers,

∆B = ∆L = nf∆NCS , (2)

where nf is the number of generations of quarks and leptons, i.e. nf = 3 in the SM.

Note that, although both baryon and lepton number are violated, the linear combination

B − L is still conserved at the quantum level.

At low temperatures, when the electroweak symmetry is broken, the different

vacua are separated by a potential barrier, whose height is determined by the vacuum

expectation value (VEV) of the Higgs field, v = 〈φ〉, i.e. the scale of electroweak
symmetry breaking. Hence, processes changing the topological charge are tunneling

processes whose rate is unobservably small, due to the smallness of the electroweak

coupling constant. In the low temperature regime being probed at accelerator

experiments, B and L are therefore conserved to a very good approximation, in accord

with experimental observations (cf. [10]).

When the standard model particles form a heat bath of temperature T the situation
changes. At high temperatures, T ≥ TEW ∼ 100 GeV, the Higgs VEV ‘evaporates’,

leading to a restoration of the electroweak symmetry and the disappearance of the

potential barriers separating the different vacua. B and L violating transitions are then

no longer suppressed [11].

The rate at which these processes occur is related to the free energy of field

configurations which carry topological charge. In the electroweak part of the SM these
so-called sphaleron processes lead to an effective interaction of all left-handed fermions

[7] (cf. Fig. 1),

OB+L =
∏

i

(qLiqLiqLilLi) , (3)

V. A. Kuzmin et al., Phys. Lett. 155B (1985) 36 



Right-handed neutrino sector

29

• RH neutrino mass matrix !" = −!%
&!'()!%



Right-handed neutrino sector

30

• RH neutrino mass matrix

• Parameters

!" = −!%
&!'()!%

(+,, +., +/) ≡ + cos 5, sin 5 cos8, sin 5 sin8



Right-handed neutrino sector

31

• RH neutrino mass matrix

• Parameters

ed

h?Bb Bb i?2 umF�r� +QmTHBM; K�i`Bt i?�i r2 ?�p2 iQ BMb2`i BMiQ i?2 7Q`KmH� Q7 i?2 *S

�bvKK2i`vX h?2 `2H�i2/ T�`i Q7 i?2 H�;`�M;B�M BM i?2 K�bb 2B;2M#�bBb Q7 `B;?i@?�M/2/

M2mi`BMQb Bb

�L = �

X

↵=e,µ,⌧

3X

i=1

�̂↵i

�
L↵ ·H

�
N̂

c

i �
1

2

3X

i=1

M
/B�;
Ri

N̂
c

i N̂
c

i + ?X+X , U9X3dV

r?2`2

MR = ⌦
⇤
M

/B�;
R

⌦
†
, N̂

c

i =

X

↵

⌦
†
i↵
N

c

↵ , �̂↵i =

X

�

�↵�⌦�i , ⌦
†
⌦ = I . U9X33V

LQr i?2 T`2T�`�iBQMb �`2 /QM2X h?2 7QHHQrBM; `2bmHib �`2 Q#i�BM2/ #v +?QQbBM; i?2 #2bi@

}i p�Hm2b Q7 i?2 BMTmi T�`�K2i2`b- ✓12- ✓13- �m
2
21 �M/ �m

2
31- T2`7Q`K2/ #v i?2 Lm6Ah

;HQ#�H@}i ;`QmT (Rk) HBbi2/ BM h�#H2 RXk �M/ i?2 KBtBM; �M;H2 ✓23 Bb b2i iQ #2 52
� BM Q`/2`

iQ #2 +QMbBbi2Mi rBi? i?2 +QMbi`�BMi 7`QK i?2 SH�M+F 2tT2`BK2MiX �b r2 ?�p2 �H`2�/v

6B;m`2 9X8, h?2 H2TiQM �bvKK2i`v �b � 7mM+iBQM Q7 i?2 T�`�K2i2` � �i bQK2 }t2/
p�Hm2b Q7 ✓X

/Bb+mbb2/ �i i?2 2M/ Q7 b2+iBQM 9XR- i?2 #�`vQM �bvKK2i`v +QMM2+ib rBi? i?2 B � L

[m�MimK MmK#2`X AM i?2 H2TiQ;2M2bBb i?2 H2TiQM �bvKK2i`v Bb }`bi ;2M2`�i2/ �M/ #v 1[X

U9XjjV r2 b22 i?�i BM i?Bb +�b2 i?2 bB;M Q7 #�`vQM �M/ H2TiQM �bvKK2i`B2b �`2 QTTQbBi2X

h?Bb K2�Mb i?�i 7Q` � bm++2bb7mH H2TiQ;2M2bBb- �M �KQmMi Q7 M2;�iBp2 H2TiQM MmK#2` Kmbi

#2 T`Q/m+2/ BM i?2 *S@pBQH�iBM; /2+�vb Q7 i?2 `B;?i@?�M/2/ M2mi`BMQb (e9)X >2M+2- r2

M22/ iQ +?2+F r?2i?2` � M2;�iBp2 H2TiQM MmK#2` +�M #2 `2�HBx2/ BM i?2 7`�K2rQ`F Q7 i?2

KBMBK�H ;�m;2/ lURVLµ�L⌧ KQ/2HX 6B;X 9X8 b?Qrb i?2 H2TiQM �bvKK2i`v �b � 7mM+iBQM

ed

h?Bb Bb i?2 umF�r� +QmTHBM; K�i`Bt i?�i r2 ?�p2 iQ BMb2`i BMiQ i?2 7Q`KmH� Q7 i?2 *S

�bvKK2i`vX h?2 `2H�i2/ T�`i Q7 i?2 H�;`�M;B�M BM i?2 K�bb 2B;2M#�bBb Q7 `B;?i@?�M/2/

M2mi`BMQb Bb

�L = �

X

↵=e,µ,⌧

3X

i=1

�̂↵i

�
L↵ ·H

�
N̂

c

i �
1

2

3X

i=1

M
/B�;
Ri

N̂
c

i N̂
c

i + ?X+X , U9X3dV

r?2`2

MR = ⌦
⇤
M

/B�;
R

⌦
†
, N̂

c

i =

X

↵

⌦
†
i↵
N

c

↵ , �̂↵i =

X

�

�↵�⌦�i , ⌦
†
⌦ = I . U9X33V

LQr i?2 T`2T�`�iBQMb �`2 /QM2X h?2 7QHHQrBM; `2bmHib �`2 Q#i�BM2/ #v +?QQbBM; i?2 #2bi@

}i p�Hm2b Q7 i?2 BMTmi T�`�K2i2`b- ✓12- ✓13- �m
2
21 �M/ �m

2
31- T2`7Q`K2/ #v i?2 Lm6Ah

;HQ#�H@}i ;`QmT (Rk) HBbi2/ BM h�#H2 RXk �M/ i?2 KBtBM; �M;H2 ✓23 Bb b2i iQ #2 52
� BM Q`/2`

iQ #2 +QMbBbi2Mi rBi? i?2 +QMbi`�BMi 7`QK i?2 SH�M+F 2tT2`BK2MiX �b r2 ?�p2 �H`2�/v

6B;m`2 9X8, h?2 H2TiQM �bvKK2i`v �b � 7mM+iBQM Q7 i?2 T�`�K2i2` � �i bQK2 }t2/
p�Hm2b Q7 ✓X

/Bb+mbb2/ �i i?2 2M/ Q7 b2+iBQM 9XR- i?2 #�`vQM �bvKK2i`v +QMM2+ib rBi? i?2 B � L

[m�MimK MmK#2`X AM i?2 H2TiQ;2M2bBb i?2 H2TiQM �bvKK2i`v Bb }`bi ;2M2`�i2/ �M/ #v 1[X

U9XjjV r2 b22 i?�i BM i?Bb +�b2 i?2 bB;M Q7 #�`vQM �M/ H2TiQM �bvKK2i`B2b �`2 QTTQbBi2X

h?Bb K2�Mb i?�i 7Q` � bm++2bb7mH H2TiQ;2M2bBb- �M �KQmMi Q7 M2;�iBp2 H2TiQM MmK#2` Kmbi

#2 T`Q/m+2/ BM i?2 *S@pBQH�iBM; /2+�vb Q7 i?2 `B;?i@?�M/2/ M2mi`BMQb (e9)X >2M+2- r2

M22/ iQ +?2+F r?2i?2` � M2;�iBp2 H2TiQM MmK#2` +�M #2 `2�HBx2/ BM i?2 7`�K2rQ`F Q7 i?2

KBMBK�H ;�m;2/ lURVLµ�L⌧ KQ/2HX 6B;X 9X8 b?Qrb i?2 H2TiQM �bvKK2i`v �b � 7mM+iBQM

!" = −!%
&!'()!%

(+,, +., +/) ≡ + cos 5, sin 5 cos8, sin 5 sin8



Non-thermal leptogenesis

32

• RH neutrino non-thermal decay :                                      < "#



Non-thermal leptogenesis

33

• RH neutrino non-thermal decay :                                      < "#

• Pairs of RH neutrinos generated from inflaton decays

• Taking $ as inflaton

an SM(-like) Higgs field, i.e. an SU(2)L doublet scalar with hypercharge +1/2 and the
U(1)Lµ�L⌧ charge zero; this scalar field is responsible for giving masses to the SM fields.

As we discussed in the previous section, we further introduce one extra scalar field to
break the U(1)Lµ�L⌧ gauge symmetry. There are only three possibilities for the quantum
numbers of the scalar field that can yield a neutrino mass matrix with which all of the
three active neutrinos mix with each other:

(i) An SU(2)L singlet with hypercharge Y = 0 and the U(1)Lµ�L⌧ charge +1.

(ii) An SU(2)L doublet with hypercharge Y = 1/2 and the U(1)Lµ�L⌧ charge +1.

(iii) An SU(2)L doublet with hypercharge Y = 1/2 and the U(1)Lµ�L⌧ charge �1.

For the case (i), one may also think of the U(1)Lµ�L⌧ charge �1 case. However, this case
is just the complex conjugate of the case (i) and thus these two are equivalent. Similarly,
the choice of Y = �1/2 in the cases of (ii) and (iii) is the complex conjugate of the cases
(iii) and (ii), respectively.

In what follows, we discuss each case separately, showing the Lagrangian terms relevant
to the neutrino mass structure.

2.1 Singlet

The interaction terms in the leptonic sector of the case (i) are given by
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where H and � denote the SM Higgs and the U(1)Lµ�L⌧ -breaking singlet scalar, respec-
tively, and L↵ are the left-handed lepton doublets. The dots indicate the contraction
of the SU(2)L indices. After the Higgs field H and the singlet scalar � acquire VEVs
hHi = v/

p
2 and h�i,3 respectively, these interaction terms lead to neutrino mass terms
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3We can always take these VEVs to be real by using the gauge transformations.
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• RH neutrino non-thermal decay :                                      < "#

• Pairs of RH neutrinos generated from inflaton decays

• Taking $ as inflaton

from CMB normalization
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• Inflaton !

• Pairs of RH neutrinos generated from inflaton decays

• RH neutrino non-thermal decay :                                      < #$

• Baryon asymmetry 
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• all neutrino oscillation 
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Summary

• Among minimal U(1)%&'%( models, only one survives constraints
U(1)%)'%* extension with an extra SU(2)% scalar singlet

• Minimal gauged U(1)%&'%( models are driven into a corner

• Potential of successful leptogenesis

44
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• Taking ! as inflaton
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• Case (i)
one SU(2)& scalar singlet σ with Y = 0 and Q(U(1)&)*&+) = +1

• Case (ii)

one SU(2)& scalar doublet Φ- with Y = +1/2 and Q(U(1)&)*&+) = +1

• Case (iii)

one SU(2)& scalar doublet Φ- with Y = +1/2 and Q(U(1)&)*&+) = -1
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• Case (i)

• Case (ii)

• Case (iii)

an SM(-like) Higgs field, i.e. an SU(2)L doublet scalar with hypercharge +1/2 and the
U(1)Lµ�L⌧ charge zero; this scalar field is responsible for giving masses to the SM fields.

As we discussed in the previous section, we further introduce one extra scalar field to
break the U(1)Lµ�L⌧ gauge symmetry. There are only three possibilities for the quantum
numbers of the scalar field that can yield a neutrino mass matrix with which all of the
three active neutrinos mix with each other:

(i) An SU(2)L singlet with hypercharge Y = 0 and the U(1)Lµ�L⌧ charge +1.

(ii) An SU(2)L doublet with hypercharge Y = 1/2 and the U(1)Lµ�L⌧ charge +1.

(iii) An SU(2)L doublet with hypercharge Y = 1/2 and the U(1)Lµ�L⌧ charge �1.

For the case (i), one may also think of the U(1)Lµ�L⌧ charge �1 case. However, this case
is just the complex conjugate of the case (i) and thus these two are equivalent. Similarly,
the choice of Y = �1/2 in the cases of (ii) and (iii) is the complex conjugate of the cases
(iii) and (ii), respectively.

In what follows, we discuss each case separately, showing the Lagrangian terms relevant
to the neutrino mass structure.

2.1 Singlet

The interaction terms in the leptonic sector of the case (i) are given by
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where H and � denote the SM Higgs and the U(1)Lµ�L⌧ -breaking singlet scalar, respec-
tively, and L↵ are the left-handed lepton doublets. The dots indicate the contraction
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It is found that both the neutrino and charged-lepton Dirac mass matrices are diagonal—
they are assured by the U(1)Lµ�L⌧ gauge symmetry. All of the components of these Dirac
mass matrices are taken to be real and positive without loss of generality. In this basis,
the matrix M` in Eq. (6) is in general has a form (1).

In this model, the U(1)Lµ�L⌧ breaking scale is set by the VEV of �. Since � is
singlet under the SM gauge group, this breaking scale can be much higher than the
electroweak scale so that the seesaw mechanism [59–62] naturally explains the smallness
of the active neutrino masses. Another interesting possibility for the U(1)Lµ�L⌧ breaking
scale is motivated by the muon g � 2 anomaly [5–8]. It is known that the observed
deviation in the anomalous magnetic dipole moment of the muon from the SM prediction
can be accounted for by the contribution of the U(1)Lµ�L⌧ gauge boson at one-loop level
[9, 10] without conflicting with the existing experiments if the mass of the gauge boson
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constrained by the measurements of the neutrino trident production process [11, 82–84]
and by the BABAR experiment searching for eē ! µµ̄Z

0, Z 0
! µµ̄ [85]. Since the mass

of the U(1)Lµ�L⌧ boson is given by mZ0 =
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2gZ0h�i, the muon g � 2 anomaly can be

explained for h�i ⇠ 10 � 100 GeV. In the following discussion, however, we do not stick
to this range but regard h�i as just a free parameter.

2.2 Doublet with the U(1)Lµ�L⌧ charge +1

The generic interaction Lagrangian in the lepton sector for the case (ii) is given by

�L =� yee
c
RLe�

†
2 � yµµ

c
RLµ�

†
2 � y⌧⌧

c
RL⌧�

†
2 � yµee

c
RLµ�

†
1 � ye⌧⌧

c
RLe�

†
1

� �eN
c
e (Le · �2)� �µN

c
µ(Lµ · �2)� �⌧N

c
⌧ (L⌧ · �2)

� �⌧eN
c
e (L⌧ · �1)� �eµN

c
µ(Le · �1)�

1

2
MeeN

c
eN

c
e �Mµ⌧N

c
µN

c
⌧ + h.c. , (7)

5

where �1 (�2) is an SU(2)L doublet scalar field with hypercharge 1/2 and the U(1)Lµ�L⌧

charge +1 (0). We denote the VEVs of these fields by4

h�ii =
1
p
2

 
0

vi

!
, (8)

for i = 1, 2, and define v ⌘
p
v
2
1 + v

2
2. The Dirac and Majorana neutrino mass matrices

are then given by

MD =
1
p
2

0

BB@

�ev2 �eµv1 0

0 �µv2 0

�⌧ev1 0 �⌧v2

1

CCA , MR =

0

BB@

Mee 0 0

0 0 Mµ⌧

0 Mµ⌧ 0

1

CCA , (9)

while for the charged lepton mass matrix we have

M` =
1
p
2

0

BB@

yev2 0 ye⌧v1

yµev1 yµv2 0

0 0 y⌧v2

1

CCA . (10)

Notice that in this case M` has o↵-diagonal components. Their e↵ect on the charged
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2 ' 246 GeV. Therefore, this setup predicts the U(1)Lµ�L⌧ gauge boson to

have a mass below the electroweak scale.

2.3 Doublet with the U(1)Lµ�L⌧ charge �1

The relevant Lagrangian terms for the case (iii) are

�L =� yee
c
RLe�

†
2 � yµµ

c
RLµ�

†
2 � y⌧⌧

c
RL⌧�

†
2 � y⌧ee

c
RL⌧�

†
1 � yeµµ

c
RLe�

†
1

� �eN
c
e (Le · �2)� �µN

c
µ(Lµ · �2)� �⌧N

c
⌧ (L⌧ · �2)

� �µeN
c
e (Lµ · �1)� �e⌧N

c
⌧ (Le · �1)�

1

2
MeeN

c
eN

c
e �Mµ⌧N

c
µN

c
⌧ + h.c. , (11)

where �1 (�2) is an SU(2)L doublet scalar field with hypercharge 1/2 and the U(1)Lµ�L⌧

charge �1 (0). We define the VEVs of these fields in the same way as above. The Dirac
and Majorana neutrino mass matrices are then given by

MD =
1
p
2

0

BB@

�ev2 0 �e⌧v1

�µev1 �µv2 0

0 0 �⌧v2

1

CCA , MR =

0

BB@

Mee 0 0

0 0 Mµ⌧

0 Mµ⌧ 0

1

CCA , (12)

4We can take both v1 and v2 to be real and positive through gauge transformations without loss of
generality.

6



• Case (i)

• Case (ii)

• Case (iii)

After the SSB…

56

an SM(-like) Higgs field, i.e. an SU(2)L doublet scalar with hypercharge +1/2 and the
U(1)Lµ�L⌧ charge zero; this scalar field is responsible for giving masses to the SM fields.

As we discussed in the previous section, we further introduce one extra scalar field to
break the U(1)Lµ�L⌧ gauge symmetry. There are only three possibilities for the quantum
numbers of the scalar field that can yield a neutrino mass matrix with which all of the
three active neutrinos mix with each other:

(i) An SU(2)L singlet with hypercharge Y = 0 and the U(1)Lµ�L⌧ charge +1.

(ii) An SU(2)L doublet with hypercharge Y = 1/2 and the U(1)Lµ�L⌧ charge +1.

(iii) An SU(2)L doublet with hypercharge Y = 1/2 and the U(1)Lµ�L⌧ charge �1.

For the case (i), one may also think of the U(1)Lµ�L⌧ charge �1 case. However, this case
is just the complex conjugate of the case (i) and thus these two are equivalent. Similarly,
the choice of Y = �1/2 in the cases of (ii) and (iii) is the complex conjugate of the cases
(iii) and (ii), respectively.

In what follows, we discuss each case separately, showing the Lagrangian terms relevant
to the neutrino mass structure.

2.1 Singlet

The interaction terms in the leptonic sector of the case (i) are given by
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where H and � denote the SM Higgs and the U(1)Lµ�L⌧ -breaking singlet scalar, respec-
tively, and L↵ are the left-handed lepton doublets. The dots indicate the contraction
of the SU(2)L indices. After the Higgs field H and the singlet scalar � acquire VEVs
hHi = v/

p
2 and h�i,3 respectively, these interaction terms lead to neutrino mass terms
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3We can always take these VEVs to be real by using the gauge transformations.
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It is found that both the neutrino and charged-lepton Dirac mass matrices are diagonal—
they are assured by the U(1)Lµ�L⌧ gauge symmetry. All of the components of these Dirac
mass matrices are taken to be real and positive without loss of generality. In this basis,
the matrix M` in Eq. (6) is in general has a form (1).

In this model, the U(1)Lµ�L⌧ breaking scale is set by the VEV of �. Since � is
singlet under the SM gauge group, this breaking scale can be much higher than the
electroweak scale so that the seesaw mechanism [59–62] naturally explains the smallness
of the active neutrino masses. Another interesting possibility for the U(1)Lµ�L⌧ breaking
scale is motivated by the muon g � 2 anomaly [5–8]. It is known that the observed
deviation in the anomalous magnetic dipole moment of the muon from the SM prediction
can be accounted for by the contribution of the U(1)Lµ�L⌧ gauge boson at one-loop level
[9, 10] without conflicting with the existing experiments if the mass of the gauge boson
is mZ0 ⇠ 10� 100 MeV and the U(1)Lµ�L⌧ gauge coupling is gZ0 ⇠ (5� 10)⇥ 10�4. The
lower edge of the mass range is due to the limit imposed by the Borexino experiment
[81], which gives a bound on the ⌫-e interactions induced at loop level in this model.
mZ0 . 10 MeV is also disfavored in cosmology as it contributes to the e↵ective neutrino
degrees of freedom [42]. On the other hand, the large mass region mZ0 & 100 MeV is
constrained by the measurements of the neutrino trident production process [11, 82–84]
and by the BABAR experiment searching for eē ! µµ̄Z
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! µµ̄ [85]. Since the mass
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explained for h�i ⇠ 10 � 100 GeV. In the following discussion, however, we do not stick
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Notice that in this case M` has o↵-diagonal components. Their e↵ect on the charged
lepton-flavor-violating processes is discussed in Sec. 3.

Contrary to the previous case, the U(1)Lµ�L⌧ -symmetry breaking scale, which is de-
termined by the VEV v1, is bounded from above in the present case since v1 should satisfy
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2
2 ' 246 GeV. Therefore, this setup predicts the U(1)Lµ�L⌧ gauge boson to

have a mass below the electroweak scale.
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while for the charged lepton mass matrix we have

M` =
1
p
2

0

BB@

yev2 yeµv1 0

0 yµv2 0

y⌧ev1 0 y⌧v2

1

CCA . (13)

Again there are o↵-diagonal components in M`, whose implications for the lepton-flavor
violating processes will be discussed in Sec. 3.

As before, there is an upper limit on the U(1)Lµ�L⌧ -symmetry breaking scale since v1

should be below the electroweak scale, and thus a light gauge boson is again predicted in
this case.

3 Lepton flavor violating decay of charged leptons

As we see in Eqs. (10) and (13), in the doublet cases the charged lepton mass matrix is
not diagonal. It is diagonalized by using unitary matrices UL and UR as
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where the gauge eigenstates `L,R are related to the mass eigenstates `
0
L,R as `L,R =

UL,R`
0
L,R. In the mass eigenbasis, the interactions of the U(1)Lµ�L⌧ gauge boson with

the charged leptons are given by
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where PL/R = (1⌥ �5)/2, Z 0
µ denotes the U(1)Lµ�L⌧ gauge field, and
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We see that the interaction in Eq. (15) in general induces flavor mixings in the charged lep-
ton sector. The lepton-flavor-violating processes are severely constrained by experiments,
which thus give stringent limits on such mixing.

As discussed in the previous section, the U(1)Lµ�L⌧ -symmetry breaking scale in the
doublet cases should be below the electroweak scale. Moreover, to evade the experimental
limits such as the neutrino trident bound [11, 82–84], we need gZ0 . 10�2 for v1 .
100 GeV. As a consequence, mZ0 . m⌧ is generically expected. In this case, the ⌧ ! eZ

0
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an SM(-like) Higgs field, i.e. an SU(2)L doublet scalar with hypercharge +1/2 and the
U(1)Lµ�L⌧ charge zero; this scalar field is responsible for giving masses to the SM fields.

As we discussed in the previous section, we further introduce one extra scalar field to
break the U(1)Lµ�L⌧ gauge symmetry. There are only three possibilities for the quantum
numbers of the scalar field that can yield a neutrino mass matrix with which all of the
three active neutrinos mix with each other:

(i) An SU(2)L singlet with hypercharge Y = 0 and the U(1)Lµ�L⌧ charge +1.

(ii) An SU(2)L doublet with hypercharge Y = 1/2 and the U(1)Lµ�L⌧ charge +1.

(iii) An SU(2)L doublet with hypercharge Y = 1/2 and the U(1)Lµ�L⌧ charge �1.

For the case (i), one may also think of the U(1)Lµ�L⌧ charge �1 case. However, this case
is just the complex conjugate of the case (i) and thus these two are equivalent. Similarly,
the choice of Y = �1/2 in the cases of (ii) and (iii) is the complex conjugate of the cases
(iii) and (ii), respectively.

In what follows, we discuss each case separately, showing the Lagrangian terms relevant
to the neutrino mass structure.

2.1 Singlet

The interaction terms in the leptonic sector of the case (i) are given by

�L =� yee
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eN

c
⌧ + h.c. , (2)

where H and � denote the SM Higgs and the U(1)Lµ�L⌧ -breaking singlet scalar, respec-
tively, and L↵ are the left-handed lepton doublets. The dots indicate the contraction
of the SU(2)L indices. After the Higgs field H and the singlet scalar � acquire VEVs
hHi = v/

p
2 and h�i,3 respectively, these interaction terms lead to neutrino mass terms

L
(N)
mass = �(⌫e, ⌫µ, ⌫⌧ )MD

0

BB@

N
c
e

N
c
µ

N
c
⌧

1

CCA�
1

2
(N c

e , N
c
µ, N

c
⌧ )MR

0

BB@

N
c
e

N
c
µ

N
c
⌧

1

CCA+ h.c. , (3)

with

MD =
v
p
2

0

BB@

�e 0 0

0 �µ 0

0 0 �⌧

1

CCA , MR =

0

BB@

Mee �eµh�i �e⌧ h�i

�eµh�i 0 Mµ⌧

�e⌧ h�i Mµ⌧ 0

1

CCA , (4)

3We can always take these VEVs to be real by using the gauge transformations.
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and the charged lepton mass terms

L
(L)
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with
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It is found that both the neutrino and charged-lepton Dirac mass matrices are diagonal—
they are assured by the U(1)Lµ�L⌧ gauge symmetry. All of the components of these Dirac
mass matrices are taken to be real and positive without loss of generality. In this basis,
the matrix M` in Eq. (6) is in general has a form (1).

In this model, the U(1)Lµ�L⌧ breaking scale is set by the VEV of �. Since � is
singlet under the SM gauge group, this breaking scale can be much higher than the
electroweak scale so that the seesaw mechanism [59–62] naturally explains the smallness
of the active neutrino masses. Another interesting possibility for the U(1)Lµ�L⌧ breaking
scale is motivated by the muon g � 2 anomaly [5–8]. It is known that the observed
deviation in the anomalous magnetic dipole moment of the muon from the SM prediction
can be accounted for by the contribution of the U(1)Lµ�L⌧ gauge boson at one-loop level
[9, 10] without conflicting with the existing experiments if the mass of the gauge boson
is mZ0 ⇠ 10� 100 MeV and the U(1)Lµ�L⌧ gauge coupling is gZ0 ⇠ (5� 10)⇥ 10�4. The
lower edge of the mass range is due to the limit imposed by the Borexino experiment
[81], which gives a bound on the ⌫-e interactions induced at loop level in this model.
mZ0 . 10 MeV is also disfavored in cosmology as it contributes to the e↵ective neutrino
degrees of freedom [42]. On the other hand, the large mass region mZ0 & 100 MeV is
constrained by the measurements of the neutrino trident production process [11, 82–84]
and by the BABAR experiment searching for eē ! µµ̄Z

0, Z 0
! µµ̄ [85]. Since the mass

of the U(1)Lµ�L⌧ boson is given by mZ0 =
p
2gZ0h�i, the muon g � 2 anomaly can be

explained for h�i ⇠ 10 � 100 GeV. In the following discussion, however, we do not stick
to this range but regard h�i as just a free parameter.

2.2 Doublet with the U(1)Lµ�L⌧ charge +1

The generic interaction Lagrangian in the lepton sector for the case (ii) is given by
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Notice that in this case M` has o↵-diagonal components. Their e↵ect on the charged
lepton-flavor-violating processes is discussed in Sec. 3.
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while for the charged lepton mass matrix we have

M` =
1
p
2

0

BB@

yev2 yeµv1 0

0 yµv2 0

y⌧ev1 0 y⌧v2

1

CCA . (13)

Again there are o↵-diagonal components in M`, whose implications for the lepton-flavor
violating processes will be discussed in Sec. 3.

As before, there is an upper limit on the U(1)Lµ�L⌧ -symmetry breaking scale since v1

should be below the electroweak scale, and thus a light gauge boson is again predicted in
this case.

3 Lepton flavor violating decay of charged leptons

As we see in Eqs. (10) and (13), in the doublet cases the charged lepton mass matrix is
not diagonal. It is diagonalized by using unitary matrices UL and UR as

M` = U
⇤
L

0

BB@

me 0 0

0 mµ 0

0 0 m⌧

1

CCAU
T
R , (14)

where the gauge eigenstates `L,R are related to the mass eigenstates `
0
L,R as `L,R =

UL,R`
0
L,R. In the mass eigenbasis, the interactions of the U(1)Lµ�L⌧ gauge boson with

the charged leptons are given by

LZ0 = gZ0`0�µ
h
U

†
LQµ�⌧ULPL + U

†
RQµ�⌧URPR

i
`
0
Z

0
µ , (15)

where PL/R = (1⌥ �5)/2, Z 0
µ denotes the U(1)Lµ�L⌧ gauge field, and

`
0 =

0

BB@

e
0

µ
0

⌧
0

1

CCA , Qµ�⌧ =

0

BB@

0 0 0

0 1 0

0 0 �1

1

CCA . (16)

We see that the interaction in Eq. (15) in general induces flavor mixings in the charged lep-
ton sector. The lepton-flavor-violating processes are severely constrained by experiments,
which thus give stringent limits on such mixing.

As discussed in the previous section, the U(1)Lµ�L⌧ -symmetry breaking scale in the
doublet cases should be below the electroweak scale. Moreover, to evade the experimental
limits such as the neutrino trident bound [11, 82–84], we need gZ0 . 10�2 for v1 .
100 GeV. As a consequence, mZ0 . m⌧ is generically expected. In this case, the ⌧ ! eZ

0

7

! cases (ii), (iii),

! = !#$ + !$$ ≃ 246 GeV
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FIGURES

FIG. 1. Feynman diagram which generates a non-zero ∆aµ
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(290.3 ± 0.5) ⇥ 10�15 s [87], we obtain a limit on the mixing angle ✓L from the ARGUS
limit as

| sin 2✓L| <

(
7⇥ 10�5 for mZ0 = 100 MeV and gZ0 = 10�3

1⇥ 10�5 for mZ0 = 10 MeV and gZ0 = 5⇥ 10�4
. (22)

This shows that the mixing angle should be extremely close to either 0 or ⇡/2. Note
that this limit remains quite strong even if we take gZ0 to be very small. In this case,
mZ0 also gets small, and �(⌧ ! eZ

0) goes as / g
2
Z0/m

2
Z0 ⇠ 1/v21, remaining constant.

The ⌧ -e mixing for the case (iii), induced by the o↵-diagonal component in Eq. (13),
is also constrained by the ARGUS limit in a similar manner. Even if the two-body
decay processes are kinematically forbidden, the three-body lepton-flavor changing decay
processes can still occur, such as ⌧

�
! e

�
µ
+
µ
�. The present limit on this decay mode

is BR(⌧� ! e
�
µ
+
µ
�) < 2.7 ⇥ 10�8 [88], which is found to constrain the mixing angle

at the O(10�(3�5)) level, depending on the mass of Z 0. This limit is also applicable for
2mµ < mZ0 . m⌧ , where the two-body decay process ⌧ ! eZ

0 is allowed and accompanied
by Z

0
! µ

+
µ
�, and it again results in a very strong limit on the mixing angle. The limit

on the ⌧ ! e� channel, BR(⌧ ! e�) < 3.3⇥ 10�8 [89], also gives a severe constraint. We
thus conclude that the ⌧ -e mixing should be strongly suppressed in the doublet scenarios.

For the µ-e mixing induced by the (1,2) component of the Z 0-coupling in Eq. (15), we
may use the limit on the µ ! eX decay if µ ! eZ

0 is kinematically allowed. Currently,
the most stringent limit on this decay channel is BR(µ ! eX)/BR(µ ! e⌫⌫̄) < 2.6⇥10�6

for a massless Z
0 [90]; a similarly strong limit is obtained for mZ0 . 16 MeV [90]. The

TWIST collaboration also gives an upper limit, BR(µ ! eX) . 10�5 for mZ0 = 13–
80 MeV [91]. For heavier Z

0, the limit gets weaker to be . 10�4 [92]. In addition to
this direct two-body decay channel, Z 0 can also give rise to µ ! e� at loop level through
kinetic mixing of Z 0 with � induced by the µ and ⌧ loops. For this decay channel, an
extremely strong limit is obtained by the MEG Experiment: BR(µ ! e�) < 4.2⇥ 10�13

[93]. In any cases, the µ-e mixing is again severely restricted.
As a consequence, we are forced to make the charged lepton-flavor mixing extremely

small in the cases (ii) and (iii). For the e-⌧ mixing, this means ✓L = 0 or ⇡/2 in Eq. (18).
✓L = 0 merely indicates M` = diag(me,mµ,m⌧ ) as UL,R = 1l. For ✓L = ⇡/2, on the other
hand, we have

UL,R =

0

BB@

0 0 e
�i�

0 1 0

�e
i� 0 0

1

CCA =

0

BB@

0 0 1

0 1 0

1 0 0

1

CCA

0

BB@

�e
i� 0 0

0 1 0

0 0 e
�i�

1

CCA , (23)

with which Eq. (14) leads to

M` =

0

BB@

0 0 1

0 1 0

1 0 0

1

CCA

0

BB@

me 0 0

0 mµ 0

0 0 m⌧

1

CCA

0

BB@

0 0 1

0 1 0

1 0 0

1

CCA . (24)
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;&' below EW scale

decay occurs if the (1,3) component of the Z 0-coupling in Eq. (15) is nonzero. The partial
decay width of this channel is computed as

�(⌧ ! eZ
0) =

g
2
Z0m⌧

32⇡

⇥���U †
LQµ�⌧UL

�
13

��2 +
���U †

RQµ�⌧UR

�
13

��2⇤
✓
2 +

m
2
⌧

m
2
Z0

◆✓
1�

m
2
Z0

m2
⌧

◆2

,

(17)
where we have neglected the electron mass. Notice that when mZ0 ⌧ m⌧ , the decay
width is enhanced by a factor m2

⌧/m
2
Z0 ; this enhancement originates from the longitudinal

component of Z 0 in the final state. For the µ ! eZ
0 channel, the corresponding expression

can be obtained by replacing (U †
L/RQµ�⌧UL/R)13 with (U †

L/RQµ�⌧UL/R)12 and ⌧ with µ in
Eq. (17).

To see how strong the limits from the lepton-flavor-violating processes are, let us
consider the case (ii) with M` in Eq. (10), and focus on the ⌧ ! eZ

0 channel as an
example. To simplify the discussion, we set yµe = 0 and yµv2/

p
2 = mµ, and examine the

e↵ect of ye⌧ . We can always take yev2, yµv2, and y⌧v2 to be real and positive without loss
of generality. In this basis, ye⌧v1 is in general complex. The unitary matrices UL and UR

in Eq. (14) are then parametrized as follows:

UL,R =

0

BB@

cos ✓L,R 0 e
�i� sin ✓L,R

0 1 0

�e
i� sin ✓L,R 0 cos ✓L,R

1

CCA , (18)

where � = arg(ye⌧v1) and
tan ✓R
tan ✓L

=
me

m⌧
. (19)

The mixing angle is related to the o↵-diagonal component through the following equation:

|ye⌧v1| =
(m2

⌧ �m
2
e) sin 2✓Lp

(m2
⌧ +m2

e) + (m2
⌧ �m2

e) cos 2✓L
. (20)

Using this mixing angle, the decay width of the ⌧ ! eZ
0 channel in Eq. (17) is expressed

as

�(⌧ ! eZ
0) =

g
2
Z0m⌧

128⇡
sin2 2✓L

✓
2 +

m
2
⌧

m
2
Z0

◆✓
1�

m
2
Z0

m2
⌧

◆2

. (21)

On the other hand, there is an experimental upper limit on the two-body decay of
⌧ into an electron and a missing particle imposed by the ARGUS Collaboration [86]. If
the mass of the missing particle X is smaller than about 500 MeV, the limit is BR(⌧ !

eX)/BR(⌧ ! e⌫⌫̄) . 0.015, with BR(⌧ ! e⌫⌫̄) = 0.1782(4) [87]. For a larger mass of
X, the limit gets weaker—the weakest bound is BR(⌧ ! eX)/BR(⌧ ! e⌫⌫̄) . 0.035
for an X mass of ⇠ 1 GeV—and then more stringent limits are set for masses larger
than 1 GeV up to 1.6 GeV. For mZ0 < 2mµ, Z 0 dominantly decays into neutrinos and
thus it is invisible in experiments. Therefore, we can directly apply the ARGUS limit,
BR(⌧ ! eX) . 2.7 ⇥ 10�3, in this case. By using Eq. (21) as well as the lifetime of ⌧ ,

8

13

and averaging over the spins and polarizations is
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The decay width is then
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The constraint from the experiment is

Br(⌧� ! e
� + Z

0) =
�(⌧ ! e+ Z

0)

�total
< 2.7⇥ 10�3

. (1.38)
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Using this mixing angle, the decay width of the ⌧ ! eZ
0 channel in Eq. (17) is expressed

as
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On the other hand, there is an experimental upper limit on the two-body decay of
⌧ into an electron and a missing particle imposed by the ARGUS Collaboration [86]. If
the mass of the missing particle X is smaller than about 500 MeV, the limit is BR(⌧ !

eX)/BR(⌧ ! e⌫⌫̄) . 0.015, with BR(⌧ ! e⌫⌫̄) = 0.1782(4) [87]. For a larger mass of
X, the limit gets weaker—the weakest bound is BR(⌧ ! eX)/BR(⌧ ! e⌫⌫̄) . 0.035
for an X mass of ⇠ 1 GeV—and then more stringent limits are set for masses larger
than 1 GeV up to 1.6 GeV. For mZ0 < 2mµ, Z 0 dominantly decays into neutrinos and
thus it is invisible in experiments. Therefore, we can directly apply the ARGUS limit,
BR(⌧ ! eX) . 2.7 ⇥ 10�3, in this case. By using Eq. (21) as well as the lifetime of ⌧ ,
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at the tree-level. At the one-loop level, the induced kinetic
mixing parameter is given by,

ϵ ¼ 8

3

egZ0

16π2
log

mτ

mμ
; ð8Þ

where e is the QED coupling constant.5

Once Z0 has a kinetic mixing to the photon, Z0 obtains
couplings to the QED current jμQED

L≃ −ϵeZ0
μj

μ
QED; ð9Þ

after eliminating the kinetic mixing term by shifting the
photon fields. Thus, the Lμ − Lτ model can be further
tested through the interactions of Z0 with the electrons and
quarks.6 In particular, the neutrino-electron scattering
experiments put severe constraints [12,13].
In Fig. 1, we show the limits from the neutrino-electron

scattering experiments at the 90% CL exclusion limit,
which are translated from the ones obtained in [13]. It
should be noted that the Lμ − Lτ model cannot be
constrained by the experiments using νe nor ν̄e unless
they oscillate into other flavors. Thus, the TEXONO

experiments [47–49] which put the most stringent limits
on the flavor universal gauge interactions do not constrain
the Lμ − Lτ model. As a consequence, we find that the
primary constraints come from the CHARM-II experiment
[50,51] for mZ0 ≳ 200 MeV which uses the νμ and ν̄μ
beams, and from the BOREXINO experiment [52] for
mZ0 ≲ 200 MeV where about a half of 7Be solar neutrinos
oscillate into other neutrinos.

D. eþþ e− collider experiment
The BABAR experiments put constraints on the μþμ−

pair production associated with Z0 where Z0 decays into
μþμ− [39]. In Fig. 1, we show the constraints at the 90%CL
translated from [39] (the cyan shaded region).
Let us also comment on the beam dump experiments

utilizing the electron or the proton beams which put severe
limits on the sub-GeV dark photon models with a kinetic
mixing to the photon of ϵ ∼ 10−ð5–6Þ [53]. In the Lμ − Lτ
model, however, Z0 in the Lμ − Lτ model immediately
decays into neutrinos, andhence, they do not lead to stringent
limits, despite the nonvanishing kinetic mixing as in Eq. (8).

E. Other constraints
Before closing this section, let us discuss other con-

straints which are not shown in Fig. 1. First, in order not to
spoil the success of the big-bang nucleosynthesis (BBN),
additional contributions to the effective number of relativ-
istic species at around the BBN temperature, Neff , are
limited to be ΔNeff ≲ 1 [54,55]. This constraint puts a
lower limit on the Z0 mass, mZ0 ≳ 5 MeV [56].
When the Z0 mass is around or below the typical core

temperature of the supernovae, T ∼ 30 MeV, Z0 can be
produced inside the cores of the supernovae. The presence
of Z0 in the supernova cores can affect the diffusion times of
the neutrinos which should be around 10 s estimated from
the observed duration of the neutrino burst of SN1987A
[57,58]. According to Ref. [56], this constraints exclude the
parameter region favored by the muon anomalous magnetic
moment with mZ0 ≲ 30–50 MeV.
For mZ0 > 2mμ, the SM Z boson decays into a pair of

μþμ− associated with the Z0 production which subsequently
decays into μþμ− [30,46,59]. However, the resultant limits
from the LHC experiments are less stringent from the ones
shown in Fig. 1.
In summary, the Lμ − Lτ interactions can successfully

resolve the discrepancy of the muon anomalous magnetic
moment for Oð1Þ MeV≲mZ0 ≲ 400 MeV and gZ0 ∼ 10−3,
while evading all the experimental constraints. In the
following, we discuss how we can test the remaining
parameter region by using the rare kaon decay.7

FIG. 1. The parameter region which explains the muon anoma-
lous magnetic moment within the 1σ (red) and the 2σ (pink)
ranges. The dark blue, gray and cyan shaded regions are excluded
by the neutrino trident production experiments [38], neutrino-
electron scattering experiments [12,13] and μþμ− pair production
searches associated with Z0 decaying into μþμ− [39] (Similar
figure is given in [40]), respectively.

5At the level of the QED, the kinetic mixing is forbidden by a
discrete symmetry, μ ↔ τ, Fμν → Fμν, and Fμν

Z0 → −Fμν
Z0 in the

limit of mμ ¼ mτ. By the soft symmetry breaking mμ ≠ mτ,
radiative corrections generate a finite kinetic mixing.

6The interactions of Z0 with electron-type neutrinos are still
suppressed since the effects of the kinetic mixing to Z boson are
suppressed by m0

Z
2=m2

Z.

7In [60], it is proposed to look for Z0 in the μþ Z → μþ Z þ
Z0ð→ νν̄Þ reaction, which reaches down to gZ0 ¼ Oð10−5Þ by
using Oð1012Þ incident muons at the energy Eμ ¼ 150 GeV.
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decay occurs if the (1,3) component of the Z 0-coupling in Eq. (15) is nonzero. The partial
decay width of this channel is computed as
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where we have neglected the electron mass. Notice that when mZ0 ⌧ m⌧ , the decay
width is enhanced by a factor m2

⌧/m
2
Z0 ; this enhancement originates from the longitudinal

component of Z 0 in the final state. For the µ ! eZ
0 channel, the corresponding expression

can be obtained by replacing (U †
L/RQµ�⌧UL/R)13 with (U †

L/RQµ�⌧UL/R)12 and ⌧ with µ in
Eq. (17).

To see how strong the limits from the lepton-flavor-violating processes are, let us
consider the case (ii) with M` in Eq. (10), and focus on the ⌧ ! eZ

0 channel as an
example. To simplify the discussion, we set yµe = 0 and yµv2/

p
2 = mµ, and examine the

e↵ect of ye⌧ . We can always take yev2, yµv2, and y⌧v2 to be real and positive without loss
of generality. In this basis, ye⌧v1 is in general complex. The unitary matrices UL and UR

in Eq. (14) are then parametrized as follows:
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The mixing angle is related to the o↵-diagonal component through the following equation:
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Using this mixing angle, the decay width of the ⌧ ! eZ
0 channel in Eq. (17) is expressed

as
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On the other hand, there is an experimental upper limit on the two-body decay of
⌧ into an electron and a missing particle imposed by the ARGUS Collaboration [86]. If
the mass of the missing particle X is smaller than about 500 MeV, the limit is BR(⌧ !

eX)/BR(⌧ ! e⌫⌫̄) . 0.015, with BR(⌧ ! e⌫⌫̄) = 0.1782(4) [87]. For a larger mass of
X, the limit gets weaker—the weakest bound is BR(⌧ ! eX)/BR(⌧ ! e⌫⌫̄) . 0.035
for an X mass of ⇠ 1 GeV—and then more stringent limits are set for masses larger
than 1 GeV up to 1.6 GeV. For mZ0 < 2mµ, Z 0 dominantly decays into neutrinos and
thus it is invisible in experiments. Therefore, we can directly apply the ARGUS limit,
BR(⌧ ! eX) . 2.7 ⇥ 10�3, in this case. By using Eq. (21) as well as the lifetime of ⌧ ,
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The decay width is then
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The constraint from the experiment is
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✓⌧e ⇡ 1.57076 ⇠ ⇡

2

�
mZ0 = 0.1 GeV, gZ0 = 10�3

�

✓⌧e ⇡ 1.57079 ⇠ ⇡

2

�
mZ0 = 0.01 GeV, gZ0 = 5⇥ 10�4

� (1.39)

⌧
�

e
�

p1

p2

Z
0
k

Figure 1.6: The Feynmen diagram of ⌧� ! e
�
Z
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Similarly, we can check the result using a LFV three-body decay process as shown in

figure 1.7. Ignoring the electron mass in the calculation, the decay width as a function of
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where we have neglected the electron mass. Notice that when mZ0 ⌧ m⌧ , the decay
width is enhanced by a factor m2
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2 = mµ, and examine the
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of generality. In this basis, ye⌧v1 is in general complex. The unitary matrices UL and UR

in Eq. (14) are then parametrized as follows:
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On the other hand, there is an experimental upper limit on the two-body decay of
⌧ into an electron and a missing particle imposed by the ARGUS Collaboration [86]. If
the mass of the missing particle X is smaller than about 500 MeV, the limit is BR(⌧ !

eX)/BR(⌧ ! e⌫⌫̄) . 0.015, with BR(⌧ ! e⌫⌫̄) = 0.1782(4) [87]. For a larger mass of
X, the limit gets weaker—the weakest bound is BR(⌧ ! eX)/BR(⌧ ! e⌫⌫̄) . 0.035
for an X mass of ⇠ 1 GeV—and then more stringent limits are set for masses larger
than 1 GeV up to 1.6 GeV. For mZ0 < 2mµ, Z 0 dominantly decays into neutrinos and
thus it is invisible in experiments. Therefore, we can directly apply the ARGUS limit,
BR(⌧ ! eX) . 2.7 ⇥ 10�3, in this case. By using Eq. (21) as well as the lifetime of ⌧ ,
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while for the charged lepton mass matrix we have

M` =
1
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y⌧ev1 0 y⌧v2

1
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Again there are o↵-diagonal components in M`, whose implications for the lepton-flavor
violating processes will be discussed in Sec. 3.

As before, there is an upper limit on the U(1)Lµ�L⌧ -symmetry breaking scale since v1

should be below the electroweak scale, and thus a light gauge boson is again predicted in
this case.

3 Lepton flavor violating decay of charged leptons

As we see in Eqs. (10) and (13), in the doublet cases the charged lepton mass matrix is
not diagonal. It is diagonalized by using unitary matrices UL and UR as

M` = U
⇤
L

0

BB@

me 0 0

0 mµ 0

0 0 m⌧

1

CCAU
T
R , (14)

where the gauge eigenstates `L,R are related to the mass eigenstates `
0
L,R as `L,R =

UL,R`
0
L,R. In the mass eigenbasis, the interactions of the U(1)Lµ�L⌧ gauge boson with
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We see that the interaction in Eq. (15) in general induces flavor mixings in the charged lep-
ton sector. The lepton-flavor-violating processes are severely constrained by experiments,
which thus give stringent limits on such mixing.

As discussed in the previous section, the U(1)Lµ�L⌧ -symmetry breaking scale in the
doublet cases should be below the electroweak scale. Moreover, to evade the experimental
limits such as the neutrino trident bound [11, 82–84], we need gZ0 . 10�2 for v1 .
100 GeV. As a consequence, mZ0 . m⌧ is generically expected. In this case, the ⌧ ! eZ

0

7
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where we have neglected the electron mass. Notice that when mZ0 ⌧ m⌧ , the decay
width is enhanced by a factor m2
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Z0 ; this enhancement originates from the longitudinal

component of Z 0 in the final state. For the µ ! eZ
0 channel, the corresponding expression
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On the other hand, there is an experimental upper limit on the two-body decay of
⌧ into an electron and a missing particle imposed by the ARGUS Collaboration [86]. If
the mass of the missing particle X is smaller than about 500 MeV, the limit is BR(⌧ !

eX)/BR(⌧ ! e⌫⌫̄) . 0.015, with BR(⌧ ! e⌫⌫̄) = 0.1782(4) [87]. For a larger mass of
X, the limit gets weaker—the weakest bound is BR(⌧ ! eX)/BR(⌧ ! e⌫⌫̄) . 0.035
for an X mass of ⇠ 1 GeV—and then more stringent limits are set for masses larger
than 1 GeV up to 1.6 GeV. For mZ0 < 2mµ, Z 0 dominantly decays into neutrinos and
thus it is invisible in experiments. Therefore, we can directly apply the ARGUS limit,
BR(⌧ ! eX) . 2.7 ⇥ 10�3, in this case. By using Eq. (21) as well as the lifetime of ⌧ ,
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decay occurs if the (1,3) component of the Z 0-coupling in Eq. (15) is nonzero. The partial
decay width of this channel is computed as

�(⌧ ! eZ
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RQµ�⌧UR
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✓
2 +
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2
⌧
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2
Z0

◆✓
1�

m
2
Z0

m2
⌧

◆2

,

(17)
where we have neglected the electron mass. Notice that when mZ0 ⌧ m⌧ , the decay
width is enhanced by a factor m2

⌧/m
2
Z0 ; this enhancement originates from the longitudinal

component of Z 0 in the final state. For the µ ! eZ
0 channel, the corresponding expression

can be obtained by replacing (U †
L/RQµ�⌧UL/R)13 with (U †

L/RQµ�⌧UL/R)12 and ⌧ with µ in
Eq. (17).

To see how strong the limits from the lepton-flavor-violating processes are, let us
consider the case (ii) with M` in Eq. (10), and focus on the ⌧ ! eZ

0 channel as an
example. To simplify the discussion, we set yµe = 0 and yµv2/

p
2 = mµ, and examine the

e↵ect of ye⌧ . We can always take yev2, yµv2, and y⌧v2 to be real and positive without loss
of generality. In this basis, ye⌧v1 is in general complex. The unitary matrices UL and UR
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where � = arg(ye⌧v1) and
tan ✓R
tan ✓L

=
me
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. (19)
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e) + (m2
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✓
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eX)/BR(⌧ ! e⌫⌫̄) . 0.015, with BR(⌧ ! e⌫⌫̄) = 0.1782(4) [87]. For a larger mass of
X, the limit gets weaker—the weakest bound is BR(⌧ ! eX)/BR(⌧ ! e⌫⌫̄) . 0.035
for an X mass of ⇠ 1 GeV—and then more stringent limits are set for masses larger
than 1 GeV up to 1.6 GeV. For mZ0 < 2mµ, Z 0 dominantly decays into neutrinos and
thus it is invisible in experiments. Therefore, we can directly apply the ARGUS limit,
BR(⌧ ! eX) . 2.7 ⇥ 10�3, in this case. By using Eq. (21) as well as the lifetime of ⌧ ,
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width is enhanced by a factor m2
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0 channel, the corresponding expression
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On the other hand, there is an experimental upper limit on the two-body decay of
⌧ into an electron and a missing particle imposed by the ARGUS Collaboration [86]. If
the mass of the missing particle X is smaller than about 500 MeV, the limit is BR(⌧ !

eX)/BR(⌧ ! e⌫⌫̄) . 0.015, with BR(⌧ ! e⌫⌫̄) = 0.1782(4) [87]. For a larger mass of
X, the limit gets weaker—the weakest bound is BR(⌧ ! eX)/BR(⌧ ! e⌫⌫̄) . 0.035
for an X mass of ⇠ 1 GeV—and then more stringent limits are set for masses larger
than 1 GeV up to 1.6 GeV. For mZ0 < 2mµ, Z 0 dominantly decays into neutrinos and
thus it is invisible in experiments. Therefore, we can directly apply the ARGUS limit,
BR(⌧ ! eX) . 2.7 ⇥ 10�3, in this case. By using Eq. (21) as well as the lifetime of ⌧ ,
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(290.3 ± 0.5) ⇥ 10�15 s [87], we obtain a limit on the mixing angle ✓L from the ARGUS
limit as

| sin 2✓L| <

(
7⇥ 10�5 for mZ0 = 100 MeV and gZ0 = 10�3

1⇥ 10�5 for mZ0 = 10 MeV and gZ0 = 5⇥ 10�4
. (22)

This shows that the mixing angle should be extremely close to either 0 or ⇡/2. Note
that this limit remains quite strong even if we take gZ0 to be very small. In this case,
mZ0 also gets small, and �(⌧ ! eZ

0) goes as / g
2
Z0/m

2
Z0 ⇠ 1/v21, remaining constant.

The ⌧ -e mixing for the case (iii), induced by the o↵-diagonal component in Eq. (13),
is also constrained by the ARGUS limit in a similar manner. Even if the two-body
decay processes are kinematically forbidden, the three-body lepton-flavor changing decay
processes can still occur, such as ⌧

�
! e

�
µ
+
µ
�. The present limit on this decay mode

is BR(⌧� ! e
�
µ
+
µ
�) < 2.7 ⇥ 10�8 [88], which is found to constrain the mixing angle

at the O(10�(3�5)) level, depending on the mass of Z 0. This limit is also applicable for
2mµ < mZ0 . m⌧ , where the two-body decay process ⌧ ! eZ

0 is allowed and accompanied
by Z

0
! µ

+
µ
�, and it again results in a very strong limit on the mixing angle. The limit

on the ⌧ ! e� channel, BR(⌧ ! e�) < 3.3⇥ 10�8 [89], also gives a severe constraint. We
thus conclude that the ⌧ -e mixing should be strongly suppressed in the doublet scenarios.

For the µ-e mixing induced by the (1,2) component of the Z 0-coupling in Eq. (15), we
may use the limit on the µ ! eX decay if µ ! eZ

0 is kinematically allowed. Currently,
the most stringent limit on this decay channel is BR(µ ! eX)/BR(µ ! e⌫⌫̄) < 2.6⇥10�6

for a massless Z
0 [90]; a similarly strong limit is obtained for mZ0 . 16 MeV [90]. The

TWIST collaboration also gives an upper limit, BR(µ ! eX) . 10�5 for mZ0 = 13–
80 MeV [91]. For heavier Z

0, the limit gets weaker to be . 10�4 [92]. In addition to
this direct two-body decay channel, Z 0 can also give rise to µ ! e� at loop level through
kinetic mixing of Z 0 with � induced by the µ and ⌧ loops. For this decay channel, an
extremely strong limit is obtained by the MEG Experiment: BR(µ ! e�) < 4.2⇥ 10�13

[93]. In any cases, the µ-e mixing is again severely restricted.
As a consequence, we are forced to make the charged lepton-flavor mixing extremely

small in the cases (ii) and (iii). For the e-⌧ mixing, this means ✓L = 0 or ⇡/2 in Eq. (18).
✓L = 0 merely indicates M` = diag(me,mµ,m⌧ ) as UL,R = 1l. For ✓L = ⇡/2, on the other
hand, we have

UL,R =

0

BB@

0 0 e
�i�

0 1 0

�e
i� 0 0

1

CCA =

0

BB@

0 0 1

0 1 0

1 0 0

1

CCA

0

BB@

�e
i� 0 0

0 1 0

0 0 e
�i�

1

CCA , (23)

with which Eq. (14) leads to

M` =

0

BB@

0 0 1

0 1 0

1 0 0

1

CCA

0

BB@

me 0 0

0 mµ 0

0 0 m⌧

1

CCA

0

BB@

0 0 1

0 1 0

1 0 0

1

CCA . (24)
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. (22)
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2
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is also constrained by the ARGUS limit in a similar manner. Even if the two-body
decay processes are kinematically forbidden, the three-body lepton-flavor changing decay
processes can still occur, such as ⌧
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+
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�. The present limit on this decay mode
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µ
�) < 2.7 ⇥ 10�8 [88], which is found to constrain the mixing angle

at the O(10�(3�5)) level, depending on the mass of Z 0. This limit is also applicable for
2mµ < mZ0 . m⌧ , where the two-body decay process ⌧ ! eZ

0 is allowed and accompanied
by Z

0
! µ

+
µ
�, and it again results in a very strong limit on the mixing angle. The limit

on the ⌧ ! e� channel, BR(⌧ ! e�) < 3.3⇥ 10�8 [89], also gives a severe constraint. We
thus conclude that the ⌧ -e mixing should be strongly suppressed in the doublet scenarios.

For the µ-e mixing induced by the (1,2) component of the Z 0-coupling in Eq. (15), we
may use the limit on the µ ! eX decay if µ ! eZ

0 is kinematically allowed. Currently,
the most stringent limit on this decay channel is BR(µ ! eX)/BR(µ ! e⌫⌫̄) < 2.6⇥10�6

for a massless Z
0 [90]; a similarly strong limit is obtained for mZ0 . 16 MeV [90]. The

TWIST collaboration also gives an upper limit, BR(µ ! eX) . 10�5 for mZ0 = 13–
80 MeV [91]. For heavier Z

0, the limit gets weaker to be . 10�4 [92]. In addition to
this direct two-body decay channel, Z 0 can also give rise to µ ! e� at loop level through
kinetic mixing of Z 0 with � induced by the µ and ⌧ loops. For this decay channel, an
extremely strong limit is obtained by the MEG Experiment: BR(µ ! e�) < 4.2⇥ 10�13

[93]. In any cases, the µ-e mixing is again severely restricted.
As a consequence, we are forced to make the charged lepton-flavor mixing extremely

small in the cases (ii) and (iii). For the e-⌧ mixing, this means ✓L = 0 or ⇡/2 in Eq. (18).
✓L = 0 merely indicates M` = diag(me,mµ,m⌧ ) as UL,R = 1l. For ✓L = ⇡/2, on the other
hand, we have

UL,R =
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BB@

0 0 e
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with which Eq. (14) leads to
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1
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while for the charged lepton mass matrix we have

M` =
1
p
2

0

BB@

yev2 yeµv1 0

0 yµv2 0

y⌧ev1 0 y⌧v2

1

CCA . (13)

Again there are o↵-diagonal components in M`, whose implications for the lepton-flavor
violating processes will be discussed in Sec. 3.

As before, there is an upper limit on the U(1)Lµ�L⌧ -symmetry breaking scale since v1

should be below the electroweak scale, and thus a light gauge boson is again predicted in
this case.

3 Lepton flavor violating decay of charged leptons

As we see in Eqs. (10) and (13), in the doublet cases the charged lepton mass matrix is
not diagonal. It is diagonalized by using unitary matrices UL and UR as

M` = U
⇤
L

0

BB@

me 0 0

0 mµ 0

0 0 m⌧

1

CCAU
T
R , (14)

where the gauge eigenstates `L,R are related to the mass eigenstates `
0
L,R as `L,R =

UL,R`
0
L,R. In the mass eigenbasis, the interactions of the U(1)Lµ�L⌧ gauge boson with

the charged leptons are given by

LZ0 = gZ0`0�µ
h
U

†
LQµ�⌧ULPL + U

†
RQµ�⌧URPR

i
`
0
Z

0
µ , (15)

where PL/R = (1⌥ �5)/2, Z 0
µ denotes the U(1)Lµ�L⌧ gauge field, and

`
0 =

0

BB@

e
0

µ
0

⌧
0

1

CCA , Qµ�⌧ =

0

BB@

0 0 0

0 1 0

0 0 �1

1

CCA . (16)

We see that the interaction in Eq. (15) in general induces flavor mixings in the charged lep-
ton sector. The lepton-flavor-violating processes are severely constrained by experiments,
which thus give stringent limits on such mixing.

As discussed in the previous section, the U(1)Lµ�L⌧ -symmetry breaking scale in the
doublet cases should be below the electroweak scale. Moreover, to evade the experimental
limits such as the neutrino trident bound [11, 82–84], we need gZ0 . 10�2 for v1 .
100 GeV. As a consequence, mZ0 . m⌧ is generically expected. In this case, the ⌧ ! eZ

0
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decay occurs if the (1,3) component of the Z 0-coupling in Eq. (15) is nonzero. The partial
decay width of this channel is computed as

�(⌧ ! eZ
0) =

g
2
Z0m⌧

32⇡

⇥���U †
LQµ�⌧UL

�
13

��2 +
���U †

RQµ�⌧UR

�
13

��2⇤
✓
2 +

m
2
⌧

m
2
Z0

◆✓
1�

m
2
Z0

m2
⌧

◆2

,

(17)
where we have neglected the electron mass. Notice that when mZ0 ⌧ m⌧ , the decay
width is enhanced by a factor m2

⌧/m
2
Z0 ; this enhancement originates from the longitudinal

component of Z 0 in the final state. For the µ ! eZ
0 channel, the corresponding expression

can be obtained by replacing (U †
L/RQµ�⌧UL/R)13 with (U †

L/RQµ�⌧UL/R)12 and ⌧ with µ in
Eq. (17).

To see how strong the limits from the lepton-flavor-violating processes are, let us
consider the case (ii) with M` in Eq. (10), and focus on the ⌧ ! eZ

0 channel as an
example. To simplify the discussion, we set yµe = 0 and yµv2/

p
2 = mµ, and examine the

e↵ect of ye⌧ . We can always take yev2, yµv2, and y⌧v2 to be real and positive without loss
of generality. In this basis, ye⌧v1 is in general complex. The unitary matrices UL and UR

in Eq. (14) are then parametrized as follows:

UL,R =

0

BB@

cos ✓L,R 0 e
�i� sin ✓L,R

0 1 0

�e
i� sin ✓L,R 0 cos ✓L,R

1

CCA , (18)

where � = arg(ye⌧v1) and
tan ✓R
tan ✓L

=
me

m⌧
. (19)

The mixing angle is related to the o↵-diagonal component through the following equation:

|ye⌧v1| =
(m2

⌧ �m
2
e) sin 2✓Lp

(m2
⌧ +m2

e) + (m2
⌧ �m2

e) cos 2✓L
. (20)

Using this mixing angle, the decay width of the ⌧ ! eZ
0 channel in Eq. (17) is expressed

as

�(⌧ ! eZ
0) =

g
2
Z0m⌧

128⇡
sin2 2✓L

✓
2 +

m
2
⌧

m
2
Z0

◆✓
1�

m
2
Z0

m2
⌧

◆2

. (21)

On the other hand, there is an experimental upper limit on the two-body decay of
⌧ into an electron and a missing particle imposed by the ARGUS Collaboration [86]. If
the mass of the missing particle X is smaller than about 500 MeV, the limit is BR(⌧ !

eX)/BR(⌧ ! e⌫⌫̄) . 0.015, with BR(⌧ ! e⌫⌫̄) = 0.1782(4) [87]. For a larger mass of
X, the limit gets weaker—the weakest bound is BR(⌧ ! eX)/BR(⌧ ! e⌫⌫̄) . 0.035
for an X mass of ⇠ 1 GeV—and then more stringent limits are set for masses larger
than 1 GeV up to 1.6 GeV. For mZ0 < 2mµ, Z 0 dominantly decays into neutrinos and
thus it is invisible in experiments. Therefore, we can directly apply the ARGUS limit,
BR(⌧ ! eX) . 2.7 ⇥ 10�3, in this case. By using Eq. (21) as well as the lifetime of ⌧ ,
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where we have neglected the electron mass. Notice that when mZ0 ⌧ m⌧ , the decay
width is enhanced by a factor m2
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as
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On the other hand, there is an experimental upper limit on the two-body decay of
⌧ into an electron and a missing particle imposed by the ARGUS Collaboration [86]. If
the mass of the missing particle X is smaller than about 500 MeV, the limit is BR(⌧ !

eX)/BR(⌧ ! e⌫⌫̄) . 0.015, with BR(⌧ ! e⌫⌫̄) = 0.1782(4) [87]. For a larger mass of
X, the limit gets weaker—the weakest bound is BR(⌧ ! eX)/BR(⌧ ! e⌫⌫̄) . 0.035
for an X mass of ⇠ 1 GeV—and then more stringent limits are set for masses larger
than 1 GeV up to 1.6 GeV. For mZ0 < 2mµ, Z 0 dominantly decays into neutrinos and
thus it is invisible in experiments. Therefore, we can directly apply the ARGUS limit,
BR(⌧ ! eX) . 2.7 ⇥ 10�3, in this case. By using Eq. (21) as well as the lifetime of ⌧ ,
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Z’ contributes to ! → #0 loop corrections
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Analysis of !" : Model 1

66

!!"# = − !$
"# %!&!$

"# =
∗ ∗ ∗
∗ 0 ∗
∗ ∗ 0

= '!(!!')"#'!% = *((+)')*+,(!!')"#')*+,% *(%(+)

an SM(-like) Higgs field, i.e. an SU(2)L doublet scalar with hypercharge +1/2 and the
U(1)Lµ�L⌧ charge zero; this scalar field is responsible for giving masses to the SM fields.

As we discussed in the previous section, we further introduce one extra scalar field to
break the U(1)Lµ�L⌧ gauge symmetry. There are only three possibilities for the quantum
numbers of the scalar field that can yield a neutrino mass matrix with which all of the
three active neutrinos mix with each other:

(i) An SU(2)L singlet with hypercharge Y = 0 and the U(1)Lµ�L⌧ charge +1.

(ii) An SU(2)L doublet with hypercharge Y = 1/2 and the U(1)Lµ�L⌧ charge +1.

(iii) An SU(2)L doublet with hypercharge Y = 1/2 and the U(1)Lµ�L⌧ charge �1.

For the case (i), one may also think of the U(1)Lµ�L⌧ charge �1 case. However, this case
is just the complex conjugate of the case (i) and thus these two are equivalent. Similarly,
the choice of Y = �1/2 in the cases of (ii) and (iii) is the complex conjugate of the cases
(iii) and (ii), respectively.

In what follows, we discuss each case separately, showing the Lagrangian terms relevant
to the neutrino mass structure.
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where H and � denote the SM Higgs and the U(1)Lµ�L⌧ -breaking singlet scalar, respec-
tively, and L↵ are the left-handed lepton doublets. The dots indicate the contraction
of the SU(2)L indices. After the Higgs field H and the singlet scalar � acquire VEVs
hHi = v/
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2 and h�i,3 respectively, these interaction terms lead to neutrino mass terms
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Group [87], where m
2
2 � m

2
1 ⌧ |m

2
3 � m

2
1| and m1 < m2 < m3 for the normal ordering

(NO) or m3 < m1 < m2 for the inverted ordering (IO).
As shown in Ref. [57], mi (i = 1, 2, 3) should be non-zero in order for M⌫ not to be

block-diagonal. Then, we can invert Eq. (26) to obtain

M
�1
⌫ = U⌫diag(m

�1
1 ,m

�1
2 ,m

�1
3 )UT

⌫ = �(M�1
D )TMRM

�1
D . (29)

Now in the singlet case, M�1
D is diagonal, and the (µ, µ) and (⌧, ⌧) components of MR

are zero (see Eq. (4)). It then follows from the above equation that the (µ, µ) and (⌧, ⌧)
components in M

�1
⌫ are also zero—this type of structure of the neutrino mass matrix is

dubbed as the two-zero minor [68, 69]. In particular, this specific structure is called CR

in Ref. [51], where the (µ, µ) and (⌧, ⌧) components of the inverse of the neutrino mass
matrix vanish. By using Eq. (27), we can express this condition in terms of the following
two equations:

⇥
D3(g)UPMNSdiag(m

�1
1 ,m

�1
2 ,m

�1
3 )UT

PMNSD
T
3 (g)

⇤
µµ

= 0 ,

⇥
D3(g)UPMNSdiag(m

�1
1 ,m

�1
2 ,m

�1
3 )UT

PMNSD
T
3 (g)

⇤
⌧⌧

= 0 . (30)

The left-hand side of these equations are complex, so four real degrees of freedom are
constrained by these conditions. The parameters included in these equations are mi

(i = 1, 2, 3), ✓12, ✓23, ✓13, �, ↵2, ↵3; among these nine parameters, four independent linear
combinations of them are regarded as dependent on the other five degrees of freedom.
In the following analysis, we take the two squared mass di↵erences and the three mixing
angles as input parameters, and derive the values of �, ↵2, ↵3, and

P
i mi from the five

input parameters. Some analytical expressions that are useful to determine these values
are given in Ref. [57].

Notice that the conditional equations in Eq. (30) do not contain the scale of the
U(1)Lµ�L⌧ symmetry breaking explicitly. In addition, it is shown in Ref. [57] that the
two-zero minor structure remains unchanged under the renormalization group flow when
the charged-lepton Dirac Yukawa matrix is diagonal. Therefore, the conclusion we draw
in this subsection holds even if the U(1)Lµ�L⌧ symmetry breaking scale is much higher
than the electroweak scale, which is possible in the singlet case.

There are six cases in the singlet model and each of them corresponds to a di↵erent
element g`1`2`3 of the symmetry group S3, and thus a di↵erent M` = diag(m`1 ,m`2 ,m`3).
Now we note that the conditional equations in Eq. (30) are invariant under the exchange
of µ and ⌧ . This corresponds to a transformation D3(g`1`2`3) ! D3(ge⌧µ)D3(g`1`2`3) =
D3(g`1`3`2), and thus the predictions in the case g`1`2`3 are the same as those in the case
g`1`3`2 . In other words, in terms of the diagonal components of M`,

• The cases with M` = diag(me,mµ,m⌧ ) and diag(me,m⌧ ,mµ);

• The cases with M` = diag(mµ,me,m⌧ ) and diag(mµ,m⌧ ,me);

• The cases with M` = diag(m⌧ ,me,mµ) and diag(m⌧ ,mµ,me);

are equivalent, respectively. As noted above, the second (third) case corresponds to the
U(1)Le�L⌧ (U(1)Le�Lµ) theory in the mass eigenbasis.
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(e, τ ), (µ, e), and (τ, e) components in Eq. (2) can be induced
after the scalar field acquires a VEV, while the (µ,µ) and
(τ, τ ) can be generated if the scalar has the U(1)Lµ−Lτ charge
± 2. In the latter case, however, the Majorana mass matrix
becomes block-diagonal, which makes it unable to explain
the observed neutrino mixing angles. We are thus left with
the case where the scalar field has the U(1)Lµ−Lτ charge
± 1, and we take it to be + 1 in the following discussion.
We refer to this model as the minimal gauged U(1)Lµ−Lτ

model.
The interaction terms relevant to neutrino masses are then

given by

"L = −λeNc
e (Le · H) − λµNc

µ(Lµ · H) − λτ Nc
τ (Lτ · H)

− 1
2
MeeNc

e N
c
e − Mµτ Nc

µN
c
τ − λeµσNc

e N
c
µ

− λeτ σ
∗Nc

e N
c
τ + h.c. , (3)

where the dots indicate the contraction of the SU(2)L indices.
After the Higgs field H and the singlet scalar σ acquire VEVs
〈H〉 = v/

√
2 and 〈σ 〉,2 respectively, these interaction terms

lead to the neutrino-mass terms,

Lmass = −(νe, νµ, ντ )MD




Nc
e

Nc
µ

Nc
τ





− 1
2

(
Nc
e , N

c
µ, N

c
τ

)
MR




Nc
e

Nc
µ

Nc
τ



 + h.c. , (4)

where

MD = v√
2




λe 0 0
0 λµ 0
0 0 λτ



 ,

MR =




Mee λeµ〈σ 〉 λeτ 〈σ 〉

λeµ〈σ 〉 0 Mµτ

λeτ 〈σ 〉 Mµτ 0



 . (5)

The mass matrix for the light neutrinos is then given by [36–
39]

MνL & −MDM−1
R MT

D . (6)

An explicit expression forMνL can be found in Appendix A.1.
We can diagonalize this mass matrix by using a unitary matrix
U (PMNS matrix [48]):

UTMνLU = diag(m1,m2,m3) , (7)

2 We can always take the VEV of σ to be real by using U(1)Lµ−Lτ

transformations.

which can be parametrized as

U =




c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13





×




1

ei
α2
2

ei
α3
2



 , (8)

where ci j ≡ cos θi j and si j ≡ sin θi j for θi j = [0,π/2],
δ = [0, 2π ], and we have ordered m1 < m2 without loss
of generality. We follow the convention of the Particle Data
Group [48], where m2

2 − m2
1 ) |m2

3 − m2
1| and m1 < m2 <

m3 (Normal Ordering, NO) or m3 < m1 < m2 (Inverted
Ordering, IO).

If mi = 0 (i = 1 or 3), then det(MνL ) = 0. As shown in
Appendix A.1, in this case we cannot have desired mixing
angles since MνL becomes block-diagonal. Thus, we focus
on the mi *= 0 case, where we obtain from Eqs. (6) and (7)

M−1
νL

= Udiag
(
m−1

1 ,m−1
2 ,m−1

3

)
UT

& −
(
M−1

D

)T
MRM−1

D . (9)

We then notice that the (µ,µ) and (τ, τ ) components of these
terms vanish since MD is diagonal and MR has zeros in
these components. This structure is sometimes called two-
zero minor [46,47]. For other previous studies of the two-
zero minor structure, see Refs. [49,50]. These two vanishing
conditions then lead to

1
m1

V 2
µ1 +

1
m2

V 2
µ2 eiα2 + 1

m3
V 2
µ3 eiα3 = 0 , (10)

1
m1

V 2
τ1 +

1
m2

V 2
τ2 eiα2 + 1

m3
V 2

τ3 eiα3 = 0 , (11)

where the matrix V is defined by U = V · diag(1, eiα2/2,

eiα3/2). Notice that neither the U(1)Lµ−Lτ -breaking singlet
VEV 〈σ 〉 nor Majorana masses Mee and Mµτ appear in these
conditions explicitly. For this reason, the following discus-
sions based on these equations have little dependence on the
U(1)Lµ−Lτ -symmetry breaking scale; it may be around the
electroweak scale, or as large as 10(13−15) GeV, which is a
prime scale for the masses of right-handed neutrinos since
small neutrino masses are explained with O(1) Yukawa cou-
plings via the seesaw mechanism [36–39]. It follows from
Eqs. (10) and (11) that

eiα2 = m2

m1
R2(δ) , eiα3 = m3

m1
R3(δ) , (12)
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3

this two-zero structure as a condition for extracting the relations between the parameters

of neutrino oscillation.

Table 1.4: Mass matrices of ⌫L generated by the seesaw mechanism
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In summary, according to the terms we have considered as far, we can write down the

lagrangian as the following :

The lagrangian for QLµ�L⌧ (�1) = +1,

L = �
X

i
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(1.2)

and the lagrangian for QLµ�L⌧ (�1) = �1,
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(1.3)

The scalar potential can be constructed as
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4.2 Doublet with the U(1)Lµ�L⌧ charge +1

Next, we discuss the neutrino mass structure resulting from MD and MR in Eq. (9). By
using the seesaw formula, we obtain
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ev

2
2
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⌧ev

2
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2Mee
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CCA . (31)

This has a structure called the two-zero texture [63–67], and denoted by B⌫
3 in Ref. [51].

This mass matrix is diagonalized in a similar way to Eq. (26):

M⌫ = U
⇤
⌫diag(m1,m2,m3)U

†
⌫ = D3(g)U

⇤
PMNSdiag(m1,m2,m3)U

†
PMNSD

T
3 (g) , (32)

where we have used Eq. (27), and g = geµ⌧ or ge⌧µ. The conditional equations in this case
are obtained from the (e, µ) and (µ, µ) components in the above equation:

h
D3(g)U

⇤
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†
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T
3 (g)
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eµ
= 0 ,

h
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⇤
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T
3 (g)

i

µµ
= 0 . (33)

Again, we can determine the four parameters �, ↵2, ↵3, and
P

i mi as functions of the
neutrino oscillation parameters from these equations.

4.3 Doublet with the U(1)Lµ�L⌧ charge �1

As for MD and MR in Eq. (12), we have
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Again, this has a form of the two-zero texture, denoted by B⌫
4 in Ref. [51]. By using

Eq. (32) and taking the (e, ⌧) and (⌧, ⌧) components, we obtain
h
D3(g)U

⇤
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T
3 (g)

i

⌧⌧
= 0 , (35)

with g = geµ⌧ or ge⌧µ. These are the conditional equations for the model (iii).
Notice that the conditions in Eq. (35) are converted into those in Eq. (33) via the

interchange of µ and ⌧ . As a result, the cases specified by M` = diag(me,mµ,m⌧ ) and
diag(me,m⌧ ,mµ) in the model (ii) make the same predictions as those in the cases with
M` = diag(me,m⌧ ,mµ) and diag(me,mµ,m⌧ ) in the model (iii), respectively.
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are obtained from the (e, µ) and (µ, µ) components in the above equation:

h
D3(g)U

⇤
PMNSdiag(m1,m2,m3)U

†
PMNSD

T
3 (g)

i

eµ
= 0 ,

h
D3(g)U

⇤
PMNSdiag(m1,m2,m3)U

†
PMNSD

T
3 (g)

i

µµ
= 0 . (33)

Again, we can determine the four parameters �, ↵2, ↵3, and
P

i mi as functions of the
neutrino oscillation parameters from these equations.

4.3 Doublet with the U(1)Lµ�L⌧ charge �1

As for MD and MR in Eq. (12), we have
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Again, this has a form of the two-zero texture, denoted by B⌫
4 in Ref. [51]. By using

Eq. (32) and taking the (e, ⌧) and (⌧, ⌧) components, we obtain
h
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with g = geµ⌧ or ge⌧µ. These are the conditional equations for the model (iii).
Notice that the conditions in Eq. (35) are converted into those in Eq. (33) via the

interchange of µ and ⌧ . As a result, the cases specified by M` = diag(me,mµ,m⌧ ) and
diag(me,m⌧ ,mµ) in the model (ii) make the same predictions as those in the cases with
M` = diag(me,m⌧ ,mµ) and diag(me,mµ,m⌧ ) in the model (iii), respectively.
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This has a structure called the two-zero texture [63–67], and denoted by B⌫
3 in Ref. [51].
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with g = geµ⌧ or ge⌧µ. These are the conditional equations for the model (iii).
Notice that the conditions in Eq. (35) are converted into those in Eq. (33) via the

interchange of µ and ⌧ . As a result, the cases specified by M` = diag(me,mµ,m⌧ ) and
diag(me,m⌧ ,mµ) in the model (ii) make the same predictions as those in the cases with
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charge +1 (0). We denote the VEVs of these fields by4
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while for the charged lepton mass matrix we have
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Notice that in this case M` has o↵-diagonal components. Their e↵ect on the charged
lepton-flavor-violating processes is discussed in Sec. 3.

Contrary to the previous case, the U(1)Lµ�L⌧ -symmetry breaking scale, which is de-
termined by the VEV v1, is bounded from above in the present case since v1 should satisfy
v =

p
v
2
1 + v

2
2 ' 246 GeV. Therefore, this setup predicts the U(1)Lµ�L⌧ gauge boson to

have a mass below the electroweak scale.

2.3 Doublet with the U(1)Lµ�L⌧ charge �1

The relevant Lagrangian terms for the case (iii) are
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where �1 (�2) is an SU(2)L doublet scalar field with hypercharge 1/2 and the U(1)Lµ�L⌧

charge �1 (0). We define the VEVs of these fields in the same way as above. The Dirac
and Majorana neutrino mass matrices are then given by
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4We can take both v1 and v2 to be real and positive through gauge transformations without loss of
generality.
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Figure 1: The sum of the neutrino masses as a function of ✓23 predicted in the singlet
model with M` = diag(me,mµ,m⌧ ) or diag(me,m⌧ ,mµ) for NO. The vertical gray dashed
line represents the best fit value of ✓23, while the vertical gray dotted lines (the plot range)
indicate the 1� (3�) range. The dark (light) red band represents the uncertainty coming
from the 1� (3�) range of ✓13. We also show in the horizontal gray dashed line the limit im-
posed by the Planck experiment:

P
i mi < 0.12 eV (Planck TT+lowP+lensing+ext) [77].

input parameters. These values are taken from the recent global fit, NuFIT v4.0 [71, 72],
which we list in Table 2. Here, we take ` = 1 for NO and ` = 2 for IO in �m

2
3` [98]. We

also show the favored value of the Dirac CP phase �, which is to be compared with the
values predicted in each model.

Let us first analyze the singlet cases. There are three independent cases: (a) M` =
diag(me,mµ,m⌧ ) or diag(me,m⌧ ,mµ); (b) M` = diag(mµ,me,m⌧ ) or diag(mµ,m⌧ ,me);
(c) M` = diag(m⌧ ,me,mµ) or diag(m⌧ ,mµ,me). We study each case assuming either NO
or IO, and solve the conditional equations in Eq. (30) to obtain

P
i mi and the CP phases,

using the corresponding parameter set in Table 2. We then find that only the case (a)
with NO has a reasonable solution—the others have no solution for � or the resultant
mass ordering is inconsistent with the assumption. This is consistent with the conclusion
drawn in Ref. [57].

In Fig. 1, we plot the sum of the neutrino masses as a function of ✓23 predicted in the
case (a) with NO. The vertical gray dashed line represents the best fit value of ✓23, while
the vertical gray dotted lines (the plot range) indicate the 1� (3�) range. The dark (light)
red band represents the uncertainty coming from the 1� (3�) range of ✓13. The e↵ects
of the other parameters’ uncertainties are subdominant. We also show in the horizontal
gray dashed line the limit imposed by the Planck experiment:

P
i mi < 0.12 eV (Planck

TT+lowP+lensing+ext) [77]. As we see, there is a strong tension between the prediction

14

(a) Dirac CP phase (b) E↵ective Majorana neutrino mass

Figure 3: The predictions for (a) the Dirac CP phase � and (b) the e↵ective Majorana
neutrino mass hm��i in the singlet case. The red lines show the predictions as functions of
✓23, and the dark (light) red bands show the uncertainty coming from the 1� (3�) errors
in the other parameters. The vertical gray dashed lines represent the best fit value of ✓23,
while the vertical gray dotted lines (the plot range) indicate the 1� (3�) range. In (a),
we also show the 1� (3�) favored region of � in the dark (light) horizontal green bands.
In (b), the light blue band represents the limit from KamLAND-Zen, hm��i < 0.061–
0.165 eV [99], where the band indicates uncertainty from the nuclear matrix element.

• Quasi-degenerate NO mass spectrum.

•
P

i mi & 0.12 eV.

• ✓23 ' 52�.

• hm��i & 0.016 eV.

The measurements of these observables in future neutrino experiments can verify or com-
pletely exclude the singlet scenario.

6 Conclusion and discussion

In this work, we have studied the neutrino mass structures of the minimal gauged U(1)L↵�L�

models in a systematic and comprehensive manner. The neutrino mass matrices of these
models have a form of either two-zero minor or two-zero texture. Such a characteristic

17

The tight bound set by 
Planck exp.

∑!"! < 0.12 eV
Planck, arXiv:1807.06209

around experimental 
3( bound

U(1),-.,/ normal ordering :

safe

excluded

incorrect mass orderings, no real 012 solutions 
U(1),-.,/ inverted ordering
U(1),3.,-, U(1),3.,/
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Figure 3: The predictions for (a) the Dirac CP phase � and (b) the e↵ective Majorana
neutrino mass hm��i in the singlet case. The red lines show the predictions as functions of
✓23, and the dark (light) red bands show the uncertainty coming from the 1� (3�) errors
in the other parameters. The vertical gray dashed lines represent the best fit value of ✓23,
while the vertical gray dotted lines (the plot range) indicate the 1� (3�) range. In (a),
we also show the 1� (3�) favored region of � in the dark (light) horizontal green bands.
In (b), the light blue band represents the limit from KamLAND-Zen, hm��i < 0.061–
0.165 eV [99], where the band indicates uncertainty from the nuclear matrix element.

• Quasi-degenerate NO mass spectrum.

•
P

i mi & 0.12 eV.

• ✓23 ' 52�.

• hm��i & 0.016 eV.

The measurements of these observables in future neutrino experiments can verify or com-
pletely exclude the singlet scenario.

6 Conclusion and discussion

In this work, we have studied the neutrino mass structures of the minimal gauged U(1)L↵�L�

models in a systematic and comprehensive manner. The neutrino mass matrices of these
models have a form of either two-zero minor or two-zero texture. Such a characteristic

17

and the Planck bound; the predicted value barely avoids the limit only when we allow the
parameters to be varied in 3�. Hence, if the limit gets a little bit more stringent in the
future, then the singlet case will be completely ruled out. We also note that such a largeP

i mi implies a quasi-degenerate mass spectrum.
For the doublet cases, we focus on the ones with the U(1)Lµ�L⌧ charge +1 as discussed

above. We find that in the doublet model a solution for the conditional expressions
in Eq. (33) is obtained for all of the possible combinations between g = geµ⌧ , ge⌧µ and
NO/IO. In Fig. 2, we show the predicted values of

P
i mi as functions of ✓23 for these

four cases. The dark (light) red bands represent the uncertainty coming from the 1�
(3�) range of �m

2
32. The e↵ects of other parameters’ uncertainties are subdominant. It

turns out that all of these cases predict a too large
P

i mi and are excluded by the Planck
limit. We can thus conclude that the minimal gauged U(1)L↵�L�

models with a doublet
U(1)L↵�L�

-breaking scalar have already been excluded.
By and large, there is basically only one possibility for the minimal gauged U(1)L↵�L�

models which are consistent with the existing limits: the U(1)Lµ�L⌧ model with a singlet
U(1)L↵�L�

-breaking scalar field, though this model is also driven into a corner. We now
study other predictions of this model and discuss the prospects of testing it in future
experiments.

First, in Fig. 3a, we plot the Dirac CP phase � versus ✓23 in the red lines, with the
dark (light) red bands showing the uncertainty coming from the 1� (3�) errors in ✓12.
The uncertainties from the other parameters are negligible. We also show the 1� (3�)
favored region of � in the dark (light) horizontal green bands. This figure shows that
the predicted value of � falls right in the middle of the experimentally favored range for
✓23 ' 52�, around which

P
i mi ' 0.12 eV as seen in Fig. 1.

As suggested in the previous studies [54, 57], neutrinoless double-beta decay o↵ers a
promising way of probing the singlet case. The rate of neutrinoless double-beta decay
is proportional to the square of the e↵ective Majorana neutrino mass hm��i, which is
defined by

hm��i ⌘

����
X

i

(UPMNS)
2
ei mi

���� =
��c212c213m1 + s

2
12c

2
13e

i↵2m2 + s
2
13e

i(↵3�2�)
m3

�� . (36)

As all of the mass eigenvalues and both the Dirac and Majorana CP phases are determined
in the minimal gauged U(1)Lµ�L⌧ models, the value of the e↵ective mass hm��i is also
determined unambiguously in terms of the oscillation parameters. We show the predicted
value of hm��i in Fig. 3b as a function of ✓23, where the dark (light) red band shows
the uncertainty coming from the 1� (3�) errors in the parameters other than ✓23. We
also show in the light blue band the current bound on hm��i given by the KamLAND-
Zen experiment, hm��i < 0.061–0.165 eV [99], where the uncertainty stems from the
estimation of the nuclear matrix element for 136Xe. We see that hm��i is predicted to be
' 0.016 eV for ✓23 ' 52�, which is well below the present KamLAND-Zen limit. Future
experiments are expected to have sensitivities as low as O(0.01) eV [100], and thus are
quite promising for testing this scenario.

In summary, the singlet case predicts
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7

We obtain

�m
2 = m

2
1

�
|R2|2 � 1

�

�m
2 +

�m
2

2
= m

2
1

�
|R3|2 � 1

� (1.19)

and the numerical predictions of all three light neutrino masses can then be determined

as

m1 =

s
�m2

|R2|2 � 1
, m2 =

s
|R2|2�m2

|R2|2 � 1
, m3 =

s
|R3|2�m2

|R2|2 � 1
(1.20)

The dependence of �CP on other oscillation parameters can be solved by the two expres-

sions of m1 in eq.(1.19),

s
�m2

|R2|2 � 1
=

s
�m2 + �m2

2

|R3|2 � 1
(1.21)

In addition, we can also check the size of the e↵ective neutrino mass defined in the

neutrinoless double beta decay. The 0⌫�� decay width is written as

� / G4
F ⇥

⌦
m��

↵2 ⇥ |Mnucl|2 (1.22)

where Mnucl is the nuclear matrix element and
⌦
m��

↵
is the e↵ective Majorana mass. It

is defined as

⌦
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3X
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1imi
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���c212c213m1 + s

2
12c

2
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13e

i(↵3�2�)
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��� (1.23)

Currently, the most stringent constraint comes from the results of the Planck experi-

ment [2]. It gives an upper bound
P

i
mi < 0.12 eV. To determined the allowable region

of the unconstrained ✓L and �, we first look into the total mass sum of three light neu-

trinos as a function of these two parameters as presented in figure 1.1. The result for

the normal mass hierarchy is in figure 1.1a and for the inverted case in 1.1b. For the

normal mass hierarchy, there is no available phase space with all oscillation parameters at

their best-fit value and we set one parameter ✓23 to its 3� lower bound. However, it still

fails the experimental constraint and therefore is ruled out. On the contrary, the inverted

case with all best-fitted parameters has some limited available regions. Nevertheless, the

The strongest bound set 
by KamLAND-Zen exp.
!!! < 61~165 meV

PRL 117, 082503 (2016)

U(1)*+,*- normal ordering :
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U(1)%&'%( models with an extra 
scalar doublet are excluded

The tight bound set by 
Planck exp.

∑*+* < 0.12 eV
Planck, arXiv:1807.06209

(a) M` = diag(me,mµ,m⌧ ) (NO) (b) M` = diag(me,mµ,m⌧ ) (IO)

(c) M` = diag(me,m⌧ ,mµ) (NO) (d) M` = diag(me,m⌧ ,mµ) (IO)

Figure 2: The sum of the neutrino masses as a function of ✓23 predicted in the doublet
models. The dark (light) red bands represent the 1� (3�) uncertainty coming from the
1� (3�) range of �m

2
32. The vertical and horizontal lines are the same as in Fig. 1.

16

U(1)01'02 normal ordering with U 1 01'02 Φ4 = +1 :



Update of the results for case (i)

76

• The latest result of NuFIT

NuFIT 4.1 released in 2019

• Adopting different constraint on ∑"#"
degenerate #"s are assumed in the Planck results

• From a new analysis,

∑"#" < 0.121 eV (degenerate)

∑"#" < 0.146 eV (normal)

∑"#" < 0.172 eV (inverted) arXiv:1907.12598 [astro-ph.CO]

We need this one.
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Kento Asai, Univ. of Tokyo The minimal gauged U(1),- model and leptogenesis PPAP, 8/3/2018

2, Analysis of mass matrix
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Fig. 7 Majorana phases αi as functions of δ. We fix the other neutrino
oscillation parameters to be their best-fit values. The green band depicts
the 2σ favored region of δ predicted in the minimal gauged U(1)Lµ−Lτ

model

α2,3(−δ) = −α2,3(δ) (or α2,3(π − δ) = −α2,3(π + δ)),
as discussed in Sect. 2.

A.3 Cubic equation for cos δ

Here, we show a cubic equation whose real solution in terms
of x gives cos δ:
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13) x

+ sin2 2θ12 sin2 2θ23

(
c4

13 + 4s2
13 x

2
)]

×
[
2

(
2 cos 2θ12 cos2 2θ23 − s13 sin 2θ12 sin 4θ23 x

)]

− ε
[
4s4

12 cos2 2θ23 + s2
13 sin2 2θ12 sin2 2θ23

+4s3
12c12s13 sin 4θ23 x

]

×
[
4 cos2 2θ23(c4

12c
4
13 − s4

13 cos2 2θ12) − s13 sin 4θ23

× {4c4
13c

3
12s12 − s2

13 sin 4θ12(1 + s2
13)} x

− 4s4
13 sin2 2θ12 sin2 2θ23 x2] = 0 , (A.6)

where

ε ≡ δm2

(m2 + δm2/2
. (A.7)

In the limit of ε → 0, the above equation leads to

4s2
13 cos2 2θ12 cos2 2θ23 − s13 sin 4θ12 sin 4θ23

(
1 + s2

13

)
x

+ sin2 2θ12 sin2 2θ23

(
c4

13 + 4s2
13 x

2
)
= 0 , (A.8)

or

2 cos 2θ12 cos2 2θ23 − s13 sin 2θ12 sin 4θ23 x = 0 . (A.9)

The discriminant of the quadratic Eq. (A.8) is given by

8c4
13s

2
13 sin2 2θ12 sin2 2θ23(cos 4θ12 + cos 4θ23) , (A.10)

which is negative as cos 4θ12+cos 4θ23 % −1.63 < 0. Thus,
Eq. (A.8) does not give a real solution. On the other hand,
Eq. (A.9) gives

x = cot 2θ12 cot 2θ23

sin θ13
, (A.11)

which agrees with Eq. (21). From the above derivation, we
see that the solution (A.11) approximates the real solution
of the cubic equation (A.6) with an accuracy of O(ε) =
O(δm2/(m2).

B U(1)Le−Lµ and U(1)Le−Lτ

In this section, we examine the neutrino-mass structure in the
minimal gauged U(1)Le−Lµ and U(1)Le−Lτ models and show
that it is unable to obtain a solution that is consistent with the
observed values of the neutrino oscillation parameters.12

B.1 U(1)Le−Lµ

Following an analysis similar to that in Sect. 2, we find
that the (e, e) and (µ,µ) components in the inverse of
the neutrino-mass matrix vanish in the minimal gauged
U(1)Le−Lµ model. The corresponding two vanishing con-
ditions are

1
m1

V 2
e1 +

1
m2

V 2
e2 eiα2 + 1

m3
V 2
e3 eiα3 = 0 , (B.1)

1
m1

V 2
µ1 +

1
m2

V 2
µ2 eiα2 + 1

m3
V 2
µ3 eiα3 = 0 . (B.2)

Solving these equations, we have

eiα2 = m2

m1
Reµ

2 (δ) , eiα3 = m3

m1
Reµ

3 (δ) , (B.3)

with

Reµ
2 ≡ (Ve1Vµ3 + Ve3Vµ1)V ∗

τ2

(Ve2Vµ3 + Ve3Vµ2)V ∗
τ1

, (B.4)

Reµ
3 ≡ (Ve1Vµ2 + Ve2Vµ1)V ∗

τ3

(Ve2Vµ3 + Ve3Vµ2)V ∗
τ1

. (B.5)

12 A similar conclusion was also reached in Ref. [50].
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Fig. 8 The mass ratios m2/m1
and m3/m1 as functions of the
Dirac CP phase δ for the gauged
a U(1)Le−Lµ and b U(1)Le−Lτ

models. The bands show
uncertainty coming from the 1σ
error in the neutrino mixing
parameters. The thin dotted line
corresponds to m2,3/m1 = 1
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In Fig. 8a, we plot the mass ratios m2/m1 and m3/m1 as
functions of δ. As we see from this figure, m2 < m1 is pre-
dicted for any value of δ, and thus there is no solution which
gives an allowed pattern of neutrino-mass spectrum.

B.2 U(1)Le−Lτ

In this case, the (e, e) and (τ, τ ) components in M−1
νL

are
zero, which leads to

1
m1

V 2
e1 +

1
m2

V 2
e2 eiα2 + 1

m3
V 2
e3 eiα3 = 0 , (B.6)

1
m1

V 2
τ1 +

1
m2

V 2
τ2 eiα2 + 1

m3
V 2

τ3 eiα3 = 0 . (B.7)

These equations read

eiα2 = m2

m1
Reτ

2 (δ) , eiα3 = m3

m1
Reτ

3 (δ) , (B.8)

with

Reτ
2 ≡

(Ve1Vτ3 + Ve3Vτ1)V ∗
µ2

(Ve2Vτ3 + Ve3Vτ2)V ∗
µ1

, (B.9)

Reτ
3 ≡

(Ve1Vτ2 + Ve2Vτ1)V ∗
µ3

(Ve2Vτ3 + Ve3Vτ2)V ∗
µ1

. (B.10)

Using these equations, we plot the mass ratios m2/m1 and
m3/m1 as functions of δ in Fig. 8b. Again, m2 < m1 over
the whole range of δ, and thus this model cannot provide a
desirable neutrino-mass ordering.
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