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Vacuum Decay

Scalar potential with more than one local minima

Vi¢) A

vp
FV TV ¢

Tunneling effect allows false vacuum decaying into true vacuum

Example

SMO Due to the RGE effect, A < 0 for Q@ > 1010 GeV

MSSMO When scalar tri-linear coupling huge] A 2 \/EMSU/SYD
2HDM, etc...



Calculation of decay rate

fy — Ae_S[d_)]
S[¢] is actiond A is pre-factor

S. R. Coleman (1977), C. G. Callant (1977)

Bounce configuration ¢

— Solution of EoM
D — 1 ov

6.5(¢] 27
— 25— -
P 0 "0t bod

— Boundary conditions

0rp(r=0)=0, ¢(r— o0)=uvp

- Sphericaﬂy Symmetric S. R. Coleman™ (1978), K. Blum™ (2017)
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Calculation of decay rate

Bounce should be calculated precisely
— LO contribution to ~
— r — 0o behavior of bounce is used for evaluation of A

— Numerical calculation is required for more complex models

(cf) Calculation of A is a hard work ... Example: SM

G. Isidorit (2001), G.DegrassiT (2012), A. Andreassen™ (2017), S. Chigusa™ (2017, 18)

logygysm x Gyr Gpe® = —5827537
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Steepest decent for local minimum search

Example: Local minimum of multi-scalar potential

5 -+ “flow time”
Local minimum search by

rolling down the slope

ov

0:a(s) = = 5o

p—®(s)

Same idea can be applied to local minimum search of functional;

65(¢1(x), pa(), . .. ]

0sPa(s,x) = — )

o(x)—=P(s,x)

Similar to gradient flow!
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Numerical calculation of bounce in multi-scalar models
Local minimum is a stable fixed point of the flow equation

)

Bounce configuration is a saddle-point of action

unstable fixed point
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Numerical calculation of bounce in multi-scalar models

Local minimum is a stable fixed point of the flow equation

)

Bounce configuration is a saddle-point of action

Modification of “gradient”

may stabilize the bounce!

v

unstable fixed point
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Action around the bounce

Fluctuation operator around the bounce

D -1 o*v
=— (0} + 8r) 0aB + 5
( r AT 904008 |45

Eigenfunctions x, A(r) (n = —-1,1,2,---)

A <0 (n=-1)

MABXn,B = )\an,A W/
A >0 (n>1)

OrXnA(r =0)=0 ; xpa(r —00)=0
Ortho-normality of eigenfunctions
{(Xn | Xm) = Gn,m
(F11)

o0

dr P A(r) £ (r)
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Modified flow equation for bounce

05 a(r,s) = Fa(r,s) — B({F'|g) ga(r,s)
55[®]

Fip=—
A N

— 8 # 1 controls size of modification

B = 0 corresponds to the usual steepest descent

— ga(r, s) is a normalized function with suitable BCs

gar,s) = Y cal)xmalr) 5 (glg) Zc =1
n=—1,12,...
— Fixed points (0s®4 = 0) = solutions of EoM (F4 = 0)
proof (0:2]g) = (1~ B)(Ftgy =0
0s®a=Fa—p ga=0



Stability?

Expansion around bounce

(I)A(T7 S) = éA(T) =+ Z an(S)Xn,A

Linearlized flow equation

Ay —/\nan + B Z Cncm)\mam + O(a?’b)



Asymptotic behavior of linearlized equation

Linearlized flow equation

Gn X —Apap + B Z CnCmAmGm = — Z an(ﬁ)am

Condition for stability of bounce = a,, — 0 at s — o0

Let {74} be the set of eigenvalues of T
Iff Rey, > 0 for Va, a, — 0

(cf) Case with =10
- F(ﬁ = 0) = diag(/\_l, Al, .. )
= {1} ={A}

— Existence of A_; < 0 destabilizes the bounce
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Suitable choice of S and g4

One of necessary conditions

detT = HA >0

— > 1 is suitable for bounce search (with Ay < 0)
— For 8 > 1, all F'V configurations are destabilized

It also helps fast convergence (though not necessary)

(g| Mg) = Z)\c <0

1
2 <B<

c, max,>1 2

Guideline for modification

ga should contain large fraction of x_1 4

2 2
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Example of g4
A good choice of g4 we used
ga(r,s) < ro.®(r,s)

— Direction of scaling transf., along which §25/5¢% < 0

— Behavior of g4 around bounce

(9IMg)lp_5 <0 (D>2)

Flowing to the Bounce

For D > 2, 8 2 1, and g4(r,s) x r9,.®(r,s), stable fixed
points are always identified as non-trivial solutions of the

EoM such as the bounce
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Numerical results I: single scalar model
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— Results agrees well with CosmoTransitions c. L. Wainwright (2012)

— r — oo behavior can be better understood in our method



Numerical results II: multi-scalar model

Vo) = (62456 [3(0: — 0 + 6, ~ 1] +a (30 - 507
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Thin-wall: ¢y = 2 Thick-wall: ¢co = 80
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Numerical results III: comparison of bounce action

Table of S[¢] for each model

Model

Our method CosmoTransitions

Single scalar thin-wall
Single scalar thick-wall
Multi-scalar thin-wall

Multi-scalar thick-wall

1086.6 1092.8
6.6360 6.6490
1763.7 1767.7
4.4585 4.4661

— Consistent decay rate can be derived



Conclusion

We proposed a new way of calculating multi-field bounce

configuration using steepest descent method.

— Applicable to general multi-scalar potential
— Better way to understand r — oo behavior of bounce

compared with other existing methods

— Applicable to the search of saddle points in general
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Backup slides
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Single scalar modell] Examplel SM[J

B D—1 .
25 +2log- oV

acceleration .
friction term . -
potential —V[¢]

EoM for an object moving under the potential —V[¢]

r—00 A r=0

~V(9)

-

FV
overshoot

TV

undershoot

This method cannot be applied for multi-scalar case
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Fixed point of flow

O5@a(r,s) = Fa(r,s) — B(F[g) ga(r,s)

(0:2g) =1 =B)(Flg) - (%)

®(r, s — 00) is a solution of EoM (F4 = 0) for 5 # 1
Proof:
1. Fixed point satisfies 904 =0
2. F4 =0 or F4 should be parallel to ga ((F'|g) # 0)
3. (%) confirms F'y =0
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Asymptotic behavior of linearlized equation

Linearlized flow equation

an = —Apap + B Z CnCmAmGm = — Z an(ﬁ)am
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[Mlustration of our method

(bounce) pB=0 (FV)
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[Mlustration of our method

(bounce) 0<p <1 (FV)

21/16



[Mlustration of our method

(bounce) pgz1 (FV)
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[Mlustration of our method

(bounce) pgz1 (FV)
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[lustration of our method

(bounce) B>1 (FV)

ReqUireS ﬁstabilization < /B < Bdestabilization

V]
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memno

— Dilatation maximization : After minimize the kinetic energy 7" for some V < 0,
perform the dilatation transformation and maximize the action.

— Improved action : Use T + 2V to modify the action without changing the
position of bounce. However, the bounce position is just a local minimum and we
should carefully choose the BC.

— Squared EoM : Minimize the (EoM)? which should become zero if the
configuration is a solution of EoM.

— Back step : Combine small steepest descents and a large steepest ’assent’.
Tendency to converge both local minimum and maximum (including saddle
points).

— Improved potential :

— Path deformation : Devide the ”gradient force” into the path direction and
path deformation (perpendicular to path) direcction. On a path, the EoM is just
the same as the overshoot and undershoot problem.

— Perturbative method : Semi-analytic calculation using some ansatz plus

perturbation.

— Multiple shooting : Improved version of overshoot / undershoot for multifield
case.

— Tunneling potential : A short cut to evaluate bounce action using modified
potential.

— Polygon approximation : Approximate the potential with combination of
several patches of linear potential. Then we can derive some analyitical expression
to approximate the bounce configuration.

— Machine learning : Use image recognition.
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