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Vacuum Decay

Scalar potential with more than one local minima

φ

V(φ)

vF
FV TV

Tunneling effect allows false vacuum decaying into true vacuum

Example

SM：Due to the RGE effect, λ < 0 for Q > 1010GeV

MSSM：When scalar tri-linear coupling huge（A >∼
√
6M /SUSY）

2HDM, etc...
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Calculation of decay rate

Master Formula

γ = Ae−S[ϕ̄]

S[ϕ] is action、A is pre-factor

S. R. Coleman (1977), C. G. Callan+ (1977)

Bounce configuration ϕ̄

− Solution of EoM

δS[ϕ]

δϕ

∣∣∣∣
ϕ→ϕ̄

= −∂2
r ϕ̄− D − 1

r
∂rϕ̄+

∂V

∂ϕ

∣∣∣∣
ϕ→ϕ̄

= 0

− Boundary conditions

∂rϕ̄(r = 0) = 0, ϕ̄(r → ∞) = vF

− Spherically symmetric S. R. Coleman+ (1978), K. Blum+(2017)
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Calculation of decay rate

Bounce should be calculated precisely

− LO contribution to γ

− r → ∞ behavior of bounce is used for evaluation of A

− Numerical calculation is required for more complex models

(cf) Calculation of A is a hard work ... Example: SM

G. Isidori+(2001), G.Degrassi+(2012), A. Andreassen+(2017), S. Chigusa+(2017, 18)

log10 γSM ×GyrGpc3 = −582+237
−397
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Steepest decent for local minimum search

Example: Local minimum of multi-scalar potential
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Local minimum search by

rolling down the slope

∂sΦA(s) = − ∂V

∂ϕA

∣∣∣∣
ϕ→Φ(s)

Same idea can be applied to local minimum search of functional;

∂sΦA(s, x) = − δS[ϕ1(x), ϕ2(x), . . . ]

δϕA(x)

∣∣∣∣
ϕ(x)→Φ(s,x)

Similar to gradient flow!
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Numerical calculation of bounce in multi-scalar models

Local minimum is a stable fixed point of the flow equation

⇕
Bounce configuration is a saddle-point of action
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Numerical calculation of bounce in multi-scalar models

Local minimum is a stable fixed point of the flow equation

⇕
Bounce configuration is a saddle-point of action
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Modification of “gradient”

may stabilize the bounce!

⇕
unstable fixed point
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Action around the bounce

Fluctuation operator around the bounce

MAB ≡ δ2S

δϕAδϕB

∣∣∣∣
ϕ→ϕ̄

= −
(
∂2
r +

D − 1

r
∂r

)
δAB +

∂2V

∂ϕA∂ϕB

∣∣∣∣
ϕ→ϕ̄

Eigenfunctions χn,A(r) (n = −1, 1, 2, · · · )

MABχn,B = λnχn,A w/

λn < 0 (n = −1)

λn > 0 (n ≥ 1)

∂rχn,A(r = 0) = 0 ; χn,A(r → ∞) = 0

Ortho-normality of eigenfunctions

⟨χn |χm⟩ = δn,m⟨
f
∣∣ f ′⟩ ≡

∫ ∞

0
dr rD−1fA(r)f

′
A(r)
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Modified flow equation for bounce
Flow equation

∂sΦA(r, s) = FA(r, s)− β ⟨F | g⟩ gA(r, s)

FA ≡ −δS[Φ]

δΦA

− β ̸= 1 controls size of modification

β = 0 corresponds to the usual steepest descent

− gA(r, s) is a normalized function with suitable BCs

gA(r, s) =
∑

n=−1,1,2,...

cn(s)χn,A(r) ; ⟨g | g⟩ =
∑
n

c2n = 1

− Fixed points (∂sΦA = 0) = solutions of EoM (FA = 0)

proof ⟨∂sΦ | g⟩ = (1− β)����⟨F | g⟩ = 0

∂sΦA = FA −������
β ⟨F | g⟩ gA = 0
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Stability?
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Expansion around bounce

ΦA(r, s) = ϕ̄A(r) +
∑
n

an(s)χn,A

Linearlized flow equation

ȧn ≃ −λnan + β
∑
m

cncmλmam +O(a2n)
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Asymptotic behavior of linearlized equation

Linearlized flow equation

ȧn ≃ −λnan + β
∑
m

cncmλmam ≡ −
∑
m

Γnm(β)am

Condition for stability of bounce = an → 0 at s → ∞

Let {γα} be the set of eigenvalues of Γ

Iff Re γα > 0 for ∀α, an → 0

(cf) Case with β = 0

− Γ(β = 0) = diag(λ−1, λ1, . . . )

− {γα} = {λn}
− Existence of λ−1 < 0 destabilizes the bounce
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Suitable choice of β and gA
One of necessary conditions

det Γ = (1− β)
∏
n

λn > 0

− β > 1 is suitable for bounce search (with λ−1 < 0)

− For β > 1, all FV configurations are destabilized

It also helps fast convergence (though not necessary)

⟨g |Mg⟩ =
∑
n

λnc
2
n < 0

1

c2−1

< β <
1

maxn≥1 c2n

Guideline for modification

gA should contain large fraction of χ−1,A

c2−1 ≫ c2n≥1
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Example of gA

A good choice of gA we used

gA(r, s) ∝ r∂rΦ(r, s)

− Direction of scaling transf., along which δ2S/δϕ2 < 0

− Behavior of gA around bounce

⟨g |Mg⟩|Φ→ϕ̄ < 0 (D > 2)

Flowing to the Bounce

For D > 2, β >∼ 1, and gA(r, s) ∝ r∂rΦ(r, s), stable fixed

points are always identified as non-trivial solutions of the

EoM such as the bounce
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Numerical results I: single scalar model

V (ϕ) =
1

4
ϕ4 +

c1 + 1

3
ϕ3 +

c1
2
ϕ2
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− Results agrees well with CosmoTransitions C. L. Wainwright (2012)

− r → ∞ behavior can be better understood in our method
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Numerical results II: multi-scalar model

V (ϕ) =
(
ϕ2
x + 5ϕ2

y

) [
5 (ϕx − 1)2 + (ϕy − 1)2

]
+ c2

(
1

4
ϕ4
y −

1

3
ϕ3
y

)
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Numerical results III: comparison of bounce action

Table of S[ϕ̄] for each model

Model Our method CosmoTransitions

Single scalar thin-wall 1086.6 1092.8

Single scalar thick-wall 6.6360 6.6490

Multi-scalar thin-wall 1763.7 1767.7

Multi-scalar thick-wall 4.4585 4.4661

− Consistent decay rate can be derived
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Conclusion

We proposed a new way of calculating multi-field bounce

configuration using steepest descent method.

− Applicable to general multi-scalar potential

− Better way to understand r → ∞ behavior of bounce

compared with other existing methods

− Applicable to the search of saddle points in general
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Backup slides
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Single scalar model（Example：SM）

∂2
r ϕ̄︸︷︷︸

acceleration

+
D − 1

r
∂rϕ̄︸ ︷︷ ︸

friction term

=
∂V

∂ϕ

∣∣∣∣
ϕ→ϕ̄︸ ︷︷ ︸

potential −V [ϕ̄]

EoM for an object moving under the potential −V [ϕ̄]

φ̄

−V(φ̄)

FV TV

r= 0r→∞

overshoot

undershoot

This method cannot be applied for multi-scalar case
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Fixed point of flow

Flow equation

∂sΦA(r, s) = FA(r, s)− β ⟨F | g⟩ gA(r, s)

⟨∂sΦ | g⟩ = (1− β) ⟨F | g⟩ · · · (∗)

Φ(r, s → ∞) is a solution of EoM (FA = 0) for β ̸= 1

Proof:

1. Fixed point satisfies ∂sΦA = 0

2. FA = 0 or FA should be parallel to gA (⟨F | g⟩ ̸= 0)

3. (∗) confirms FA = 0
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Asymptotic behavior of linearlized equation

Linearlized flow equation

ȧn ≃ −λnan + β
∑
m

cncmλmam ≡ −
∑
m

Γnm(β)am
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Illustration of our method

(bounce) β = 0 (FV)
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Illustration of our method

(bounce) 0 < β < 1 (FV)
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Illustration of our method

(bounce) β >∼ 1 (FV)
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Illustration of our method

(bounce) β >∼ 1 (FV)
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Illustration of our method

(bounce) β ≫ 1 (FV)
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Requires βstabilization < β < βdestabilization
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memo

− Dilatation maximization : After minimize the kinetic energy T for some V < 0,
perform the dilatation transformation and maximize the action.
− Improved action : Use T + 2V to modify the action without changing the
position of bounce. However, the bounce position is just a local minimum and we
should carefully choose the BC.
− Squared EoM : Minimize the (EoM)2 which should become zero if the
configuration is a solution of EoM.
− Back step : Combine small steepest descents and a large steepest ’assent’.
Tendency to converge both local minimum and maximum (including saddle
points).
− Improved potential :
− Path deformation : Devide the ”gradient force” into the path direction and
path deformation (perpendicular to path) direcction. On a path, the EoM is just
the same as the overshoot and undershoot problem.
− Perturbative method : Semi-analytic calculation using some ansatz plus
perturbation.
− Multiple shooting : Improved version of overshoot / undershoot for multifield
case.
− Tunneling potential : A short cut to evaluate bounce action using modified
potential.
− Polygon approximation : Approximate the potential with combination of
several patches of linear potential. Then we can derive some analyitical expression
to approximate the bounce configuration.
− Machine learning : Use image recognition.
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	Appendix

