Flowing to the Bounce

So Chigusa
Department of Physics, University of Tokyo
2020/1/14 @ Berkeley Week

SC, Takeo Moroi, and Yutaro Shoji PLB 800 (2020) 135115 [1906.10829]

Vacuum Decay

Scalar potential with more than one local minima

Tunneling effect allows false vacuum decaying into true vacuum
Example
SM : Due to the RGE effect, $\lambda<0$ for $Q>10^{10} \mathrm{GeV}$
MSSM : When scalar tri-linear coupling huge ($A \gtrsim \sqrt{6} M_{\text {SUSY }}$) 2HDM, etc...

Calculation of decay rate

Master Formula

$$
\gamma=A e^{-S[\bar{\phi}]}
$$

$S[\phi]$ is action, A is pre-factor
S. R. Coleman (1977), C. G. Callan ${ }^{+}$(1977)

Bounce configuration $\bar{\phi}$

- Solution of EoM

$$
\left.\frac{\delta S[\phi]}{\delta \phi}\right|_{\phi \rightarrow \bar{\phi}}=-\partial_{r}^{2} \bar{\phi}-\frac{D-1}{r} \partial_{r} \bar{\phi}+\left.\frac{\partial V}{\partial \phi}\right|_{\phi \rightarrow \bar{\phi}}=0
$$

- Boundary conditions

$$
\partial_{r} \bar{\phi}(r=0)=0, \quad \bar{\phi}(r \rightarrow \infty)=v_{F}
$$

- Spherically symmetric

Calculation of decay rate

Bounce should be calculated precisely

- LO contribution to γ
$-r \rightarrow \infty$ behavior of bounce is used for evaluation of A
- Numerical calculation is required for more complex models
(cf) Calculation of A is a hard work ... Example: SM

$$
\left.\begin{array}{l}
\text { G. Isidori }{ }^{+}(2001), \text { G.Degrassi }^{+}(2012), \text { A. Andreassen }
\end{array}{ }^{+}(2017), \text { S. Chigusa }{ }^{+}(2017,18)\right)
$$

Steepest decent for local minimum search

Example: Local minimum of multi-scalar potential

s... "flow time"

Local minimum search by rolling down the slope

$$
\partial_{s} \Phi_{A}(s)=-\left.\frac{\partial V}{\partial \phi_{A}}\right|_{\phi \rightarrow \Phi(s)}
$$

Same idea can be applied to local minimum search of functional;

$$
\partial_{s} \Phi_{A}(s, x)=-\left.\frac{\delta S\left[\phi_{1}(x), \phi_{2}(x), \ldots\right]}{\delta \phi_{A}(x)}\right|_{\phi(x) \rightarrow \Phi(s, x)}
$$

Similar to gradient flow!

Numerical calculation of bounce in multi-scalar models

Local minimum is a stable fixed point of the flow equation I
Bounce configuration is a saddle-point of action

unstable fixed point

Numerical calculation of bounce in multi-scalar models

Local minimum is a stable fixed point of the flow equation

$$
\mathbb{\imath}
$$

Bounce configuration is a saddle-point of action

Modification of "gradient" may stabilize the bounce! I
unstable fixed point

Action around the bounce

Fluctuation operator around the bounce

$$
\left.\mathcal{M}_{A B} \equiv \frac{\delta^{2} S}{\delta \phi_{A} \delta \phi_{B}}\right|_{\phi \rightarrow \bar{\phi}}=-\left(\partial_{r}^{2}+\frac{D-1}{r} \partial_{r}\right) \delta_{A B}+\left.\frac{\partial^{2} V}{\partial \phi_{A} \partial \phi_{B}}\right|_{\phi \rightarrow \bar{\phi}}
$$

Eigenfunctions $\chi_{n, A}(r)(n=-1,1,2, \cdots)$

$$
\begin{aligned}
& \quad \mathcal{M}_{A B} \chi_{n, B}=\lambda_{n} \chi_{n, A} \quad \mathrm{w} / \begin{cases}\lambda_{n}<0 & (n=-1) \\
\lambda_{n}>0 & (n \geq 1)\end{cases} \\
& \partial_{r} \chi_{n, A}(r=0)=0 ; \quad \chi_{n, A}(r \rightarrow \infty)=0
\end{aligned}
$$

Ortho-normality of eigenfunctions

$$
\begin{aligned}
\left\langle\chi_{n} \mid \chi_{m}\right\rangle & =\delta_{n, m} \\
\left\langle f \mid f^{\prime}\right\rangle & \equiv \int_{0}^{\infty} d r r^{D-1} f_{A}(r) f_{A}^{\prime}(r)
\end{aligned}
$$

Modified flow equation for bounce

Flow equation

$$
\begin{aligned}
\partial_{s} \Phi_{A}(r, s) & =F_{A}(r, s)-\beta\langle F \mid g\rangle g_{A}(r, s) \\
F_{A} & \equiv-\frac{\delta S[\Phi]}{\delta \Phi_{A}}
\end{aligned}
$$

$-\beta \neq 1$ controls size of modification
$\beta=0$ corresponds to the usual steepest descent
$-g_{A}(r, s)$ is a normalized function with suitable BCs

$$
g_{A}(r, s)=\sum_{n=-1,1,2, \ldots} c_{n}(s) \chi_{n, A}(r) \quad ; \quad\langle g \mid g\rangle=\sum_{n} c_{n}^{2}=1
$$

- Fixed points $\left(\partial_{s} \Phi_{A}=0\right)=$ solutions of $\operatorname{EoM}\left(F_{A}=0\right)$ proof

$$
\begin{gathered}
\left\langle\partial_{s} \Phi \mid g\right\rangle=(1-\beta)\langle F \mid g\rangle=0 \\
\partial_{s} \Phi_{A}=F_{A}-\underline{\beta}\langle E \mid g\rangle g_{A}=0
\end{gathered}
$$

Stability?

Expansion around bounce

$$
\Phi_{A}(r, s)=\bar{\phi}_{A}(r)+\sum_{n} a_{n}(s) \chi_{n, A}
$$

Linearlized flow equation

$$
\dot{a}_{n} \simeq-\lambda_{n} a_{n}+\beta \sum_{m} c_{n} c_{m} \lambda_{m} a_{m}+\mathcal{O}\left(a_{n}^{2}\right)
$$

Asymptotic behavior of linearlized equation

Linearlized flow equation

$$
\dot{a}_{n} \simeq-\lambda_{n} a_{n}+\beta \sum_{m} c_{n} c_{m} \lambda_{m} a_{m} \equiv-\sum_{m} \Gamma_{n m}(\beta) a_{m}
$$

Condition for stability of bounce $=a_{n} \rightarrow 0$ at $s \rightarrow \infty$
Let $\left\{\gamma_{\alpha}\right\}$ be the set of eigenvalues of Γ
Iff $\operatorname{Re} \gamma_{\alpha}>0$ for $\forall \alpha, a_{n} \rightarrow 0$
(cf) Case with $\beta=0$
$-\Gamma(\beta=0)=\operatorname{diag}\left(\lambda_{-1}, \lambda_{1}, \ldots\right)$
$-\left\{\gamma_{\alpha}\right\}=\left\{\lambda_{n}\right\}$

- Existence of $\lambda_{-1}<0$ destabilizes the bounce

Suitable choice of β and g_{A}

One of necessary conditions

$$
\operatorname{det} \Gamma=(1-\beta) \prod \lambda_{n}>0
$$

$-\beta>1$ is suitable for bounce search (with $\lambda_{-1}<0$)

- For $\beta>1$, all FV configurations are destabilized

It also helps fast convergence (though not necessary)

$$
\begin{aligned}
& \langle g \mid \mathcal{M} g\rangle=\sum_{n} \lambda_{n} c_{n}^{2}<0 \\
& \frac{1}{c_{-1}^{2}}<\beta<\frac{1}{\max _{n \geq 1} c_{n}^{2}}
\end{aligned}
$$

Guideline for modification
g_{A} should contain large fraction of $\chi-1, A$

$$
c_{-1}^{2} \gg c_{n \geq 1}^{2}
$$

Example of g_{A}

A good choice of g_{A} we used

$$
g_{A}(r, s) \propto r \partial_{r} \Phi(r, s)
$$

- Direction of scaling transf., along which $\delta^{2} S / \delta \phi^{2}<0$
- Behavior of g_{A} around bounce

$$
\left.\langle g \mid \mathcal{M} g\rangle\right|_{\Phi \rightarrow \bar{\phi}}<0 \quad(D>2)
$$

Flowing to the Bounce
For $D>2, \beta \gtrsim 1$, and $g_{A}(r, s) \propto r \partial_{r} \Phi(r, s)$, stable fixed points are always identified as non-trivial solutions of the EoM such as the bounce

Numerical results I: single scalar model

$$
V(\phi)=\frac{1}{4} \phi^{4}+\frac{c_{1}+1}{3} \phi^{3}+\frac{c_{1}}{2} \phi^{2}
$$

Thin-wall: $c_{1}=0.47$

Thick-wall: $c_{1}=0.2$

- Results agrees well with CosmoTransitions c. L. Wainwright (2012)
$-r \rightarrow \infty$ behavior can be better understood in our method

Numerical results II: multi-scalar model

$$
V(\phi)=\left(\phi_{x}^{2}+5 \phi_{y}^{2}\right)\left[5\left(\phi_{x}-1\right)^{2}+\left(\phi_{y}-1\right)^{2}\right]+c_{2}\left(\frac{1}{4} \phi_{y}^{4}-\frac{1}{3} \phi_{y}^{3}\right)
$$

Thin-wall: $c_{2}=2$

Thick-wall: $c_{2}=80$

Numerical results III: comparison of bounce action

Table of $S[\bar{\phi}]$ for each model

Model	Our method	CosmoTransitions
Single scalar thin-wall	1086.6	1092.8
Single scalar thick-wall	6.6360	6.6490
Multi-scalar thin-wall	1763.7	1767.7
Multi-scalar thick-wall	4.4585	4.4661

- Consistent decay rate can be derived

Conclusion

We proposed a new way of calculating multi-field bounce configuration using steepest descent method.

- Applicable to general multi-scalar potential
- Better way to understand $r \rightarrow \infty$ behavior of bounce compared with other existing methods
- Applicable to the search of saddle points in general

Backup slides

Single scalar model (Example : SM)

EoM for an object moving under the potential $-V[\bar{\phi}]$

This method cannot be applied for multi-scalar case

Fixed point of flow

Flow equation

$$
\partial_{s} \Phi_{A}(r, s)=F_{A}(r, s)-\beta\langle F \mid g\rangle g_{A}(r, s)
$$

$$
\left\langle\partial_{s} \Phi \mid g\right\rangle=(1-\beta)\langle F \mid g\rangle \quad \cdots(*)
$$

$\Phi(r, s \rightarrow \infty)$ is a solution of $\operatorname{EoM}\left(F_{A}=0\right)$ for $\beta \neq 1$
Proof:

1. Fixed point satisfies $\partial_{s} \Phi_{A}=0$
2. $F_{A}=0$ or F_{A} should be parallel to $g_{A}(\langle F \mid g\rangle \neq 0)$
3. ($*$) confirms $F_{A}=0$

Asymptotic behavior of linearlized equation

Linearlized flow equation

$$
\dot{a}_{n} \simeq-\lambda_{n} a_{n}+\beta \sum_{m} c_{n} c_{m} \lambda_{m} a_{m} \equiv-\sum_{m} \Gamma_{n m}(\beta) a_{m}
$$

Illustration of our method

(bounce) $\quad \beta=0 \quad(\mathrm{FV})$

Illustration of our method

(bounce) $0<\beta<1 \quad$ (FV)

Illustration of our method

(bounce) $\quad \beta \gtrsim 1 \quad(\mathrm{FV})$

Illustration of our method

$$
\text { (bounce) } \quad \beta \gtrsim 1 \quad \text { (FV) }
$$

Illustration of our method

Requires $\beta_{\text {stabilization }}<\beta<\beta_{\text {destabilization }}$

memo

- Dilatation maximization: After minimize the kinetic energy T for some $V<0$, perform the dilatation transformation and maximize the action.
- Improved action: Use $T+2 V$ to modify the action without changing the
position of bounce. However, the bounce position is just a local minimum and we should carefully choose the BC.
- Squared EoM : Minimize the (EoM) ${ }^{2}$ which should become zero if the configuration is a solution of EoM.
- Back step : Combine small steepest descents and a large steepest 'assent'. Tendency to converge both local minimum and maximum (including saddle points).
- Improved potential :
- Path deformation: Devide the "gradient force" into the path direction and path deformation (perpendicular to path) direcction. On a path, the EoM is just the same as the overshoot and undershoot problem.
- Perturbative method : Semi-analytic calculation using some ansatz plus perturbation.
- Multiple shooting : Improved version of overshoot / undershoot for multifield case.
- Tunneling potential : A short cut to evaluate bounce action using modified potential.
- Polygon approximation : Approximate the potential with combination of several patches of linear potential. Then we can derive some analyitical expression to approximate the bounce configuration.
- Machine learning : Use image recognition.

