On the infinite gradient-flow for the domain-wall formulation of chiral lattice gauge theories

The University of Tokyo
Taichi Ago

TA, Yoshio Kikukawa, 1911.10925 [hep-lat]

1. Introduction

Background

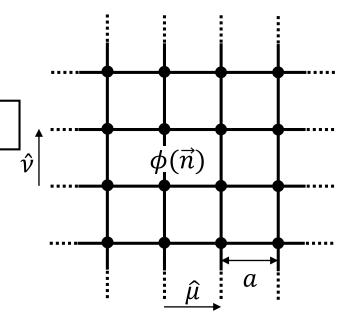
Lattice theory: discretization of a spacetime

expectation value = integration w.r.t. $\phi(\vec{n})$

$$\langle \mathcal{O} \rangle = \int (\prod d\phi(\vec{n})) \mathcal{O}(\phi) \exp(-S(\phi))$$

approximated by the finite DOF

→ numerical simulation

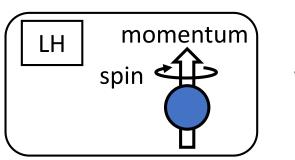


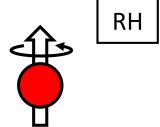
Big problem in lattice gauge theories

(Non-Abelian) chiral gauge theories are not formulated on the lattice

Standard model is a chiral gauge theory

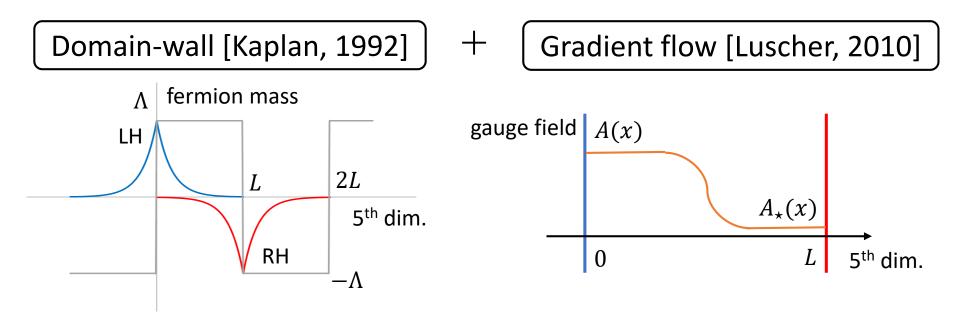
Chiral gauge theories —
 LH- and RH-fermions couple to gauge field differently.





Grabowska-Kaplan's formulation

Proposal to formulate chiral gauge theories on the lattice [Grabowska-Kaplan, 2015]



- LH and RH are localized around defects
- gauge fields are damped along 5th dim.
- ightarrow LH fermions couple to the original gauge field $A_{\mu}(x)$

Plan of this talk

Problems of GK's proposal

- Formulation and properties of gradient flow on the lattice?
- Infinite gradient-flow maps gauge fields non-locally

 $\bigcup_{i=1}^{n} U(1)$ gauge theory

We examine

- The formulation of gradient flow which satisfies "admissibility"
- Relation of GK's formulation and Luscher's one
- Locality of GK's formulation

Outline

- 1. Introduction
- 2. Luscher's formulation
- Gradient flow
- 4. Locality
- 5. Summary

2. Luscher's formulation

Luscher's formulation

U(1) chiral lattice gauge theories with exact gauge invariance [Luscher, 1999]

Ginsparg-Wilson relation ("chiral symmetry" on the lattice) $\gamma_5 D + D \hat{\gamma}_5 = 0$, $\hat{\gamma}_5 = \gamma_5 (1-2D)$

Projection operators:
$$P_{\pm} = \frac{1 \pm \gamma_5}{2}$$
, $\hat{P}_{\pm} = \frac{1 \pm \hat{\gamma}_5}{2}$

LH-fermions:
$$\psi_{-}(x) = \hat{P}_{-}\psi_{-}(x), \quad \bar{\psi}_{-}(x) = \bar{\psi}_{-}(x)P_{+}$$

Action of LH-fermions:
$$S_F = \sum_{x} \bar{\psi}_{-}(x) D\psi_{-}(x)$$

Measure:
$$D[\psi_{-}]D[\bar{\psi}_{-}] = \prod_{j} dc_{j} \prod_{k} d\bar{c}_{k}$$

$$\psi_{-}(x) = \sum_{i} v_{j}(x) c_{j}, \qquad \bar{\psi}_{-}(x) = \sum_{k} \bar{c}_{k} \bar{v}_{k}(x)$$

 $(v_i(x), \bar{v}_k(x))$: basis vectors)

Effective action:
$$\Gamma[U] = \log \det M$$
, $M_{jk} = \bar{v}_j D v_k$

Luscher's formulation

Variation of a link field:
$$\delta_{\eta} U(x,\mu) = i\eta_{\mu}(x) U(x,\mu)$$
, $U(x,\mu) = e^{iA_{\mu}(x)}$

$$\delta_{\eta} \Gamma[U] = \operatorname{Tr} P_{+} \delta_{\eta} D D^{-1} + \underbrace{\sum_{j} (v_{j}, \delta_{\eta} v_{j})}_{\equiv -i\mathcal{L}_{\eta} \text{ (measure term)}}$$

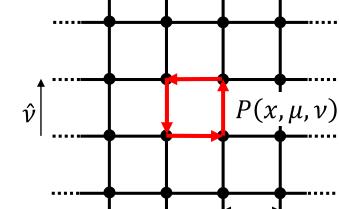
$\Gamma[U]$ depends on the choice of basis vectors v_j

Suppose $\mathcal{L}_{\eta} = \sum_{x} \eta_{\mu}(x) j_{\mu}(x)$ satisfies the following condition Then there exist a smooth fermion measure

- 1. $j_{\mu}(x)$ depends smoothly on the "admissible" link fields $U(x,\mu)$
- 2. $j_{\mu}(x)$ is gauge-invariant and transforms as an axial vector
- 3. Integrability condition: $\delta_{\eta} \mathcal{L}_{\zeta} \delta_{\zeta} \mathcal{L}_{\eta} = i \text{Tr} \hat{P}_{-} [\delta_{\eta} \hat{P}_{-}, \delta_{\zeta} \hat{P}_{-}]$
- 4. anomalous conservation law: $\partial_{\mu}^* j_{\mu}(x) = \operatorname{tr} \gamma_5 T (1 D)(x, x)$

Such a $j_{\mu}(x)$ can be explicitly constructed if the anomaly cancellation condition is satisfied

Admissibility



Admissibility condition

$$|F_{\mu\nu}(x)| < \epsilon$$
 for all x, μ, ν

$$F_{\mu\nu}(x) = i^{-1}\log P(x,\mu,\nu), \quad -\pi < F_{\mu\nu} < \pi,$$

$$P(x,\mu,\nu) = U(x,\mu)U(x+\mu,\nu)U(x+\nu,\mu)^{-1}U(x,\nu)^{-1}$$

Admissibility is the constraint on the gauge fields

- Existence of local Dirac operator $||D(x,y)|| \le \kappa e^{-||x-y||_1/\rho}$
- Topological structure $\sum_{x} -\text{tr } \gamma_5 D(x, x) = (\text{integer})$

Gradient flow should satisfy the admissibility condition

3. Gradient flow

Gradient flow

$$\partial_t \bar{A}_{\mu}(x,t) = -g_0^2 \frac{\delta S_{\mathcal{G}}}{\delta \bar{A}_{\mu}} = -D_{\nu} \bar{F}_{\mu\nu}(x,t)$$

Choice of
$$S(U)$$
: $S(U) = 1/(4g_0^2) \sum_{x} F_{\mu\nu}(x)^2$

Assume admissibility $\rightarrow \text{Bianchi identity: } \epsilon_{\mu\nu\rho\sigma}\partial_{\nu} F_{\rho\sigma} = 0$

"diffusion eq.":
$$\frac{d}{dt}F_{\mu\nu}(x,t) = \partial_{\rho}^*\partial_{\rho}F_{\mu\nu}(x,t)$$

$$\partial_{\mu} f(x) = f(x + \hat{\mu}) - f(x)$$
$$\partial_{\mu}^* f(x) = f(x) - f(x - \hat{\mu})$$

Gradient flow

diffusion equation

$$\frac{d}{dt}F_{\mu\nu}(x,t) = \partial_{\rho}^*\partial_{\rho}F_{\mu\nu}(x,t)$$

Maximum principle

Suppose f(x, t) is periodic w.r.t. x, and satisfies

$$\frac{d}{dt}f(x,t) = \partial_{\mu}^* \partial_{\mu} f(x,t)$$

Then f(x, t) has a maximum at t = 0,

$$\max_{x \in \Gamma, t \in [0,T]} f(x,t) = \max_{x \in \Gamma} f(x,0)$$

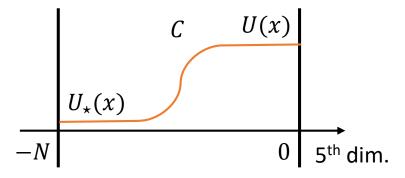
if $F_{\mu\nu}(x,0)$ satisfies admissibility, $F_{\mu\nu}(x,t)$ respects this condition

4. Locality

Relation of the two formulations

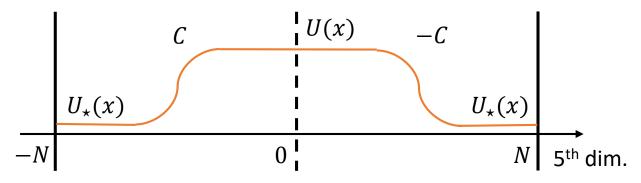
$$\exp(\Gamma_{\rm GK}) \equiv \frac{\det(D_{\rm 5w} - m_0)|_{\rm Dir.}^{C}}{\left|\det(D_{\rm 5w} - m_0)|_{\rm AP}^{C+(-C)}\right|^{1/2}} \quad \text{cf. [Kikukawa, 2002]}$$

Domain wall fermion



LH + RH + massive modes

Pauli-Villars fermion



massive modes

Relation of the two formulations

$$\exp(\Gamma_{\rm GK}) \equiv \frac{\det(D_{\rm 5w} - m_0)|_{\rm Dir.}^{c}}{\left|\det(D_{\rm 5w} - m_0)|_{\rm AP}^{c+(-c)}\right|^{1/2}} \quad \text{cf. [Kikukawa, 2002]}$$

$$\partial_{S}\Gamma_{GK}[U] \to \operatorname{Tr} P_{+}\partial_{S}DD^{-1}|_{t=0} + (\operatorname{Tr} P_{+}\partial_{S}DD^{-1})^{*}|_{t=-\infty} + \int_{-\infty}^{0} dt \operatorname{Tr} \widehat{P}_{-}[\partial_{t}\widehat{P}_{-},\partial_{S}\widehat{P}_{-}]$$

$$\mathsf{LH} \qquad \mathsf{RH} \qquad \mathsf{Bulk}$$

Luscher's formulation: $\partial_t \Gamma_L[U] = \operatorname{Tr} P_+ \delta_{\eta} D D^{-1} - i \mathcal{L}_{\eta}$

$$\Gamma_{\text{GK}}[U] = \Gamma_{\text{L}}[U] + \Gamma_{\text{L}}[U_{\star}]^* + i \int_{-\infty}^{0} dt \mathcal{L}_{\eta}$$
$$\eta_{\mu} = i^{-1} \partial_t U_t(x, \mu) U_t(x, \mu)^{-1}$$

Locality

$$\mathcal{L}_{\eta} = \sum_{x} \left(e^{-\Box t} \partial_{\nu}^* F_{\nu\mu}(x) \right) j_{\mu}(x) \bigg|_{U=U_t}$$

 $j_{\mu}(x)$: gauge-invariant local field

Perturbative analysis in the infinite volume limit

$$j_{\mu}(p) = \sum_{k \geq 4} \int V_{\mu\mu_{1}\nu_{1}\cdots\mu_{k}\nu_{k}}^{(k)}(p; p_{1}, \dots, p_{k-1})(2\pi)^{4} \delta^{(4)}(\sum p_{i}) \prod_{i=1}^{k} e^{\hat{p}_{i}^{2}t} \tilde{F}_{\mu_{i}\nu_{i}}(p_{i}) \frac{dp_{i}^{4}}{(2\pi)^{4}}$$

$$V_{\mu\mu_{1}\nu_{1}\cdots\mu_{k}\nu_{k}}^{(k)}(p; p_{1}, \dots, p_{k-1}): \text{ analytic function}$$

$$\Rightarrow \int_{-\infty}^{0} dt \mathcal{L}_{\eta} = \sum_{k \geq 5} \int \frac{\tilde{V}_{\mu_{1}\cdots\mu_{k}}^{(k)}(p_{1}, \dots, p_{k-1})}{\sum \hat{p}_{i}^{2}} (2\pi)^{4} \delta^{(4)}(\sum p_{i}) \prod_{i=1}^{k} \tilde{A}_{\mu_{i}}(p_{i}) \frac{dp_{i}^{4}}{(2\pi)^{4}}$$

$$\equiv \sum_{k \geq 5} \int \tilde{\Gamma}_{\mu_{1}\cdots\mu_{k}}^{(k)}(p_{1}, \dots, p_{k-1})(2\pi)^{4} \delta^{(4)}(\sum p_{i}) \prod_{i=1}^{k} \tilde{A}_{\mu_{i}}(p_{i}) \frac{dp_{i}^{4}}{(2\pi)^{4}}$$

$$\hat{p}^{2} = \sum_{\mu} \left[2\sin(p_{\mu}/2) \right]^{2}$$

Locality

- $\tilde{\Gamma}^{(k)}_{\mu_1\cdots\mu_k}(p_1,\ldots,p_{k-1})$ are not analytic function
- For every positive integer N, there exist n>N and x_1,\cdots,x_{k-1} such that

$$\left|\Gamma_{\mu_1\cdots\mu_k}^{(k)}(x_1,\ldots,x_{k-1},0)\right| > \frac{c}{n^{5k-4}}, \qquad n = \|x_1\|_1 + \cdots + \|x_{k-1}\|_1$$

- There may be some effect on the critical behavior and the continuum limit of the lattice model
- (Numerical) approach to the dynamics is necessary to solve this question

5. Summary

Summary

- We considered U(1) chiral gauge theories
- the gradient flow is formulated for the admissible U(1) link fields
- GK's effective action is the sum of Luscher's effective actions and the measure term
- The measure term is non-local (not suppressed exponentially)
- There may be some effect on the critical behavior and the continuum limit of the lattice model