

Galactic Archaeology: Unveiling the nature of dark matter

Kohei Hayashi (JSPS fellow)

Institute for Cosmic Ray Research, The University of Tokyo

The matter power spectrum inferred from different cosmological probes

ESA and the Planck Collaboration (2018)

The structures on small scales (<1Mpc): Milky Way and its neighbors

A24

The structures on small scales (<1Mpc): Milky Way and its neighbors

Galactic Archaeology / Near Field Cosmology: Unveiling the nature of dark matter and its role in galaxy formation

Tucana

Sextans B

The structures on small scales (<1Mpc): Milky Way and its neighbors

Galactic Archaeology / Near Field Cosmology: Unveiling the nature of dark matter and its role in galaxy formation

Sextans B

DSphs are ideal sites for studying the nature of DM!

The core-cusp problem in dwarf spheroidal galaxies

Moore 1994, de Blok 2000, Gilmore et al. 2007, Oh et al. 2015, Read et al. 2017

ICRR Institute for Cosmic Ray Research University of Tokyo

Possible solutions:

Baryonic feedbacks

Stellar feedback such as SNe can transform central cusp into cored dark matter profiles.

Alternative DM models

The other dark matter models motivated by particle physics (SIDM, ultralight DM...) can create a cored density profiles without relying on any baryon effects.

Core-cusp problem?

CORE OR CUSP?

CORE

A METHOD FOR MEASURING (SLOPES OF) THE MASS PROFILES OF DWARF SPHEROIDAL GALAXIES

Matthew G. Walker 1,2,3 & Jorge Peñarrubia^2

Dark matter cores and cusps: the case of multiple stellar populations in dwarf spheroidals

N. C. Amorisco* and N. W. Evans*

THE KINEMATIC STATUS AND MASS CONTENT OF THE SCULPTOR DWARF SPHEROIDAL GALAXY G. Battaglia,^{2,3} A. Helmi,³ E. Tolstoy,³ M. Irwin,⁴ V. Hill,⁵ and P. Jablonka⁶

THE DARK MATTER DENSITY PROFILE OF THE FORNAX DWARF John R. Jardel and Karl Gebhardt

The core size of the Fornax dwarf spheroidal

N. C. Amorisco,^{1,2} A. Agnello¹ and N. W. Evans^{1*}

CUSP

Kinematics of Milky Way satellites in a Lambda cold dark matter universe

Louis E. Strigari,^{1*} Carlos S. Frenk² and Simon D. M. White³

MEASURING DARK MATTER PROFILES NON-PARAMETRICALLY IN DWARF SPHEROIDALS: AN APPLICATION TO DRACO

JOHN R. JARDEL¹, KARL GEBHARDT¹, MAXIMILIAN FABRICIUS², NIV DRORY³, AND MICHAEL J. WILLIAMS²

On the Dark Matter profile in Sculptor: Breaking the β degeneracy with Virial Shape Parameters

Thomas Richardson^{*1}, Malcolm Fairbairn^{†1}

Dynamical models for the Sculptor dwarf spheroidal in a Λ CDM universe

Louis E. Strigari¹, Carlos S. Frenk² and Simon D. M. White³

The case for a cold dark matter cusp in Draco

J. I. Read^{1*}, M. G. Walker², P. Steger³

UNCLEAR

Model comparison of the dark matter profiles of Fornax, Sculptor, Carina and Sextans

Maarten A. Breddels and Amina Helmi

Orbit-based dynamical models of the Sculptor dSph galaxy

Maarten A. Breddels,^{1 \star} A. Helmi,¹ R. C. E. van den Bosch,² G. van de Ven² and G. Battaglia³

COMPLEXITY ON DWARF GALAXIES SCALE: A BIMODAL DISTRIBUTION FUNCTION IN SCULPTOR MAARTEN A. BREDDELS AND AMINA HELMI

> Cores in Classical Dwarf Spheroidal Galaxies? A Dispersion-Kurtosis Jeans Analysis Without Restricted Anisotropy

Thomas Richardson^{*1}, Malcolm Fairbairn^{†1}

A UNIVERSAL MASS PROFILE FOR DWARF SPHEROIDAL GALAXIES?*

MATTHEW G. WALKER¹, MARIO MATEO², EDWARD W. OLSZEWSKI³, JORGE PEÑARRUBIA¹, N. WYN EVANS¹, AND GERARD GILMORE¹

Non-spherical models

1. Observed dSphs are **NOT** spherical shape

2. DM models predict **NON-spherical** DM halo

3. 1D spatial information

credit: Aquarius project

1. Observed dSphs are **NOT** spherical shape

2. DM models predict **NON-spherical** DM halo

credit: Aquarius project

Non-spherical mass model

Hayashi & Chiba 2012, 2015b, Hayashi et al. 2016, 2018

Dark Matter profiles in the MW dSphs

Dark Matter Density Profiles of the biggest and smallest dSphs

Dark Matter Density Profiles of the biggest and smallest dSphs

Hayashi+ (2020, in prep.)

What's the origin of the diversity?

Hayashi+ (in prep.)

What's the Origin of the diversity?

Hayashi+ (2020, in prep.)

Ultralight dark matter

 The lightest particle among dark matter candidates (m_ψ~10⁻²² eV)

Ultralight dark matter

Constraints on ultralight dark matter halo

Case for Draco

on-spherical dark matter density profile

$$\rho_{\text{soliton}}(r) = \frac{\rho_{\text{c}}}{[1 + 0.091(r/r_{c})^{2}]^{8}}$$

$$\rho_{c} = 1.9 \times 10^{12} \left(\frac{m_{\psi}}{10^{-23} \text{ eV}}\right)^{-2} \left(\frac{r_{c}}{\text{pc}}\right)^{-4} [M_{\odot} \text{ pc}^{-3}]$$

$$r^{2} = R^{2} + \frac{z^{2}}{Q^{2}}$$

Hayashi & Obata (2019) 1902.03054

Constraints on ultralight dark matter halo

on-spherical dark matter density profile

$$\rho_{\text{soliton}}(r) = \frac{\rho_{\text{c}}}{[1 + 0.091(r/r_{c})^{2}]^{8}}$$

$$\rho_{c} = 1.9 \times 10^{12} \left(\frac{m_{\psi}}{10^{-23} \text{ eV}}\right)^{-2} \left(\frac{r_{c}}{\text{pc}}\right)^{-4} [M_{\odot} \text{ pc}^{-3}]$$

$$r^{2} = R^{2} + \frac{z^{2}}{Q^{2}}$$

Hayashi & Obata (2019) 1902.03054

- Draco has strongly elongated DM halo, Q~0.2, which means disky shape of DM halo(!!)
- Ultralight DM theory predicts much more rounder DM halo.
- To reproduce Draco's stellar velocity, an *unphysical* ultralight DM halo should be required.

Hayashi & Obata (2019) 1902.03054

Schive et al. (2014)

- Revisit core/cusp problem using non-spherical mass modeling.
- The classical dSphs have *cusped* (or less-cusped) dark matter density profiles.
- The *diversity* of dark matter density profiles of the MW dSphs.
- Considering non-sphericity of dark matter halo, ultralight dark matter model is *inconsistent* with the observational facts of dSphs.

Kohei Hayashi