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Cosmic String

+ Cosmic strings appear when U(1) symmetries are spontaneously broken

[1973 Nielsen Olsen]
VIp]=A(|p|? - v2)?
r ¢o(r—0)=0
¢(r—>oo) =y eif
>
complex ¢ plane e.g.) winding number =1

+ Anisolated cosmic string is stable due to the topological charge :

m(u))=2



Cosmic String
+ U(1) gauge symmetry — Local String

ﬂylindrically (r,6,z) symmetric static solution \
o(r,0) = ’erh(r) h(r) - 1-0 (%) exp(—mpT)
1
Ag(r) = E{(T) £(r) = 1 — O (y/r) exp(—mar)

mp =2V ma = V2ev

0o — ive'?

k Dyod = 09 — ieAgdp — 0 (exponentially dumped) J

+ Local string has a finite tension

£ = fdza: [f;FJFJ + [Digl* + V(¢)] = 2mv° x F(2)/€?)
(F(1)=1 F'(z)<0)

A few local strings are formed in each Hubble volume at the phase transition.



Cosmic String
' U(1) global symmetry — Global String

Glindrically (r,6,z) symmetric static solution \
; 1
o(r, ) = ve h(r) h(r) - 1-0 (\/—;) exp(—mpT)
myp = 2/ \v
0

O — ive
e 0 v

+/ String tension has a logarithmic divergence !

r

& = Jd% [l0:6]> + V()] — 27r'u2Jdr1 — 00

The global string is also formed at the phase transition where
the divergence is cutoff by a typical distance between the strings.



New T; f Cosmic Strings ?

« Cosmic string solutions in a model with U(1)iocar X U(1)giobat Symmetry

U(1)gi0bai emerges in the U(1)iocar symmetric two complex scalar models.

KI'wo complex scalars with U(1)car gauge charges grand gz:
$1(q1) $2(q2)

(g1, g2 : positive and relatively prime integers)

The model can have an accidental global U(1) symmetry when
the charge ratio is larger than 3.

1

q1+q2
M

V(g1 d2) = V(@1 b1, dhea) +

—d17 92 + h.c.
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An additional U(7) symmetry emerges for Ms—eo, J




U(1)pq Quality & Domain Wall Problem

+ QCD has its own CP-violating parameter : @
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+ Null observation of the neutron EDM :
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d./e~10150cm [1979 Crewther, Veccia, Veneziano, Witten ]

dn/e<2.9x 1026 cm @ 90%CL [hep-ex/0602020] — < 10-17



U(1)pq Quality & Domain Wall Problem

' 0 can be nullified by the global U(1)pq symmetry broken by QCD anomaly
[1977 Peccei & Quinn]

4 KSVZ axion model [’79 Kim, ‘80 Shifman, Vainshtein, Zakharov ] kL
L =ydqrqr + h.c. ¢:singlet (qr,qr) : Nrextra quarks
U(1)pq symmetry :
¢ — €% qLdr — € "“qLir
@is unphysical due to the anomalous U(1)pq rotation.
5 @ > 0'=0-Nra

' Axion appears when U(1)pq is broken by (¢) = v
a=faarggb fa=ﬁ<¢>

+«/ Axion obtains a scalar potential due to the QCD anomaly

\‘/ The effective term is given by the VEV of the axion :
. a Octt = <a/fa) =0

eeff=0




U(1)pq Quality & Domain Wall Problem

+ Why is the PQ symmetry broken only by the QCD anomaly?

(The PQ symmetry cannot be an exact symmetry by definition)

Glanck suppressed explicit breaking term distorts the axion potential \

K™ l S|k|fi a
AL = + h.c. L~ -m2a®+ =+ 6 =2sin(argk
M}’I;Tf—4 2 M}’;Tf—él fa ( g )
Berr is No more vanishing...
9 T ~ f;n m., ~ foﬂ-m
k Ny f2m2 Mg~ R M J

If we require B « 10-77, we need to forbid terms with m < 10 for fa > 10°GeV.

+ How about discrete Z,gauge symmetry instead of global U(1)pq?
discrete Z,gauge symmetry = exact symmetry

O.ir <10-'7is achieved forn > 10 See e.g. [2009 Carpenter, Dine, Festuccia]

v Z,symmetric model has the axion domain wall problem when approximate
U(1)pqbreaking takes place after inflation.



U(1)pq Quality & Domain Wall Problem

+ A model with U(1)iocar X U(1)gi0bai Symmetry provides an alternative
mechanism which provides an accidental U(1)pq from U(1)iocal.

[1992 Barr, Seckel | see also [2017, Fukda, Suzuki, Yanagida and MI]

rU( 1)g100a1 breaking is small enough when the charge ratio is larger than 10.
1
V(¢17 ¢2) — Vs(¢1¢1, ¢£¢2) + Mg1+q2_4 ¢Iq1¢32 + h.C-
- (g1, q2: positive and relatively prime integers = q1+q>>10)

+/ What happens when both <¢1> and <¢2> obtain non-vanishing expectation
value after inflation ?

What kind of string network is formed ?

Does the model have the axion domain wall problem?



Goldstone Decomposition

+ A model with U(1)iocar X U(1)giobar Symmetry :

( A1 2 252 A2 2 2\2 2 2 2 2
V= Z(|¢1| — )"+ Z(|¢2| —m3)" — K(|é1]" — n7)(|d2|" — m3) ,
A1’2 > () )\1A2 > 4K
U(1)icaicharges: ¢1(q1) ¢2(q2)
. (g1, g2 : positive and relatively prime integers)

At the vacuum, both ¢, and ¢, obtain the VEV
(Pn) =M, (n=1,2)
and hence, both U(1)iocat X U(1)giobar are broken.

In the following, we assume

gi=1,qg2=N and n:>n:
— no discrete gauge symmetry remains after ¢»1 obtains the VEV



Goldstone Decomposition

+ Two goldstone modes :

¢1:\/§

1 oz
—f1 Gwl/fl ) ¢2 =

V2

+ The domain of the goldstone modes:

al/fl [0 2’/T) y

as/ fa = |0,

« The U(1)iocaisymmetry is realized by:
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Goldstone Decomposition

+ The gauge invariant axion :
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Static Solution

ﬂylindrically (r,6,z) symmetric static solutions (nj, nz) : winding number
¢1(Ta 9) = 77162‘”10}”1(7') )

A0 =meh), A= 260) , A=A, =0,

_J

(a) (n1,n2) = (1’4) (b) (nl’nQ) = (1’3) (C) (n11n2) = (1’2)
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Static Solution

r hi(R— o) =1 ho(R — o) =1

e

2 2
; n1q1M; + N2gan;
Dop1 — 1 (m =
Gmi + 453

§(R — 0) =

n1q1ff + nagofs

G ft+af3

n1g1N? + Nagon?
) ¢1 Dopa — 1 (nz — g2 Ll 24342

b2
qint + g3 ) J

~

(a) (nl,n2) = (1’4)

(b) (nl’nz) = (1’3)

(C) (nl’nz) = (1’2)
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Static Solution

Both %y¢, and Zy¢2 vanish atr = e only for
nlzNwX(h, n2=NwXQ27 NwEZ

— Finite tension string = local string

R R

_ ——
[ @ =0\ ®) @) =0, (©) (m1,n2) = (1,2) ﬂ
1 ; - ' 1 ; 1 ' ' '
08 ) 11Pp8 1 7 08 -
- local string ||}, | o6l
04 | 11p4 + 4 04 - ]
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strlng 08 108
fi/f2=4
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Axion windings

\\&L/Fa it J

2rnfr L,y (L2 (L3)  (1,4)
1,0) T
a1 i (q1,492) = (1,4)
|
_______ |
0 2T f2 4 fg o fg ST fQ
a2
(" am 3 (12) (1,0 no
da/F, :0— 27 da/F, : 0 — 4r da/F, : 0 — 67

da/Fy, : 0—>87TJ

If only the compensated (local) string is formed, no axion domain wall appears !



Axion windings

(7 aa (1,3) (1,2) (1,1) (1,0) \
5) g+ > b)

\ da/F, =0 da/Fy : 0 — 27 da/F, : 0 — 4r da/Fy : 0 — 6m da/F, : 0 — SQ

+ Axion anomaly coupling

L=y01qirq1iR + y¢£Q2LQ2R + h.c.
n (=4) flavors 1 flavors

2 = = 2
_ 95 (2201 q1a2 5 _ 95 O
— £aop = 5o ( [ )GG 397 F,CC

(1,4) strings and (17,3) strings do not cause the axion domain wall problem !

One axion winding is attached to just one wall : @—@




Formation of Cosmic Strings  Classical lattice simulation
(translational invariance in z-direction)

(q1,92) = (1,4)  fi/f2=4
Initial : Tin=312n;

$1.2, d12: random fluctuation following the Planck distribution

Final : T4, = Tin/20

|¢1]




Formation of Cosmic Strings  Classical lattice simulation
(translational invariance in z-direction)

(q1,92) = (1,4)  fi/f2=4
Initial : Tin=312n;
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Formation of Cosmic Strings  Classical lattice simulation
(translational invariance in z-direction)

(q1,92) = (1,4)  fi/f2=4
Initial : Tin=312n;

$1.2, d12: random fluctuation following the Planck distribution

Final : T4, = Tin/20

|1 |#2
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Formation of Cosmic Strings  Classical lattice simulation
(translational invariance in z-direction)

(q1,92) = (1,4)  fi/f2=4
Initial : Tin=312n;
$1.2, d12: random fluctuation following the Planck distribution

Final : T4, = Tin/20

|41 |62 (Azs Ay)

—— Spot 4 (ny,n2) = (0,1) —
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Formation of Cosmic Strings

For (g1,92) =(1,4) and n1=4n:

« Compensated strings (i.e. (1,4) local strings) are formed.

(No strings with n; > 1 is formed)
+ Uncompensated strings (i.e. (7,n2# 4) strings) are also formed.

+ Global strings (i.e. (0,7) strings) are also formed.

( Spot 4 does not involve non-trivial Ae configuration = global string \

il

At around T ~ n;, ¢ obtains uniform (n; = 0) VEV <¢1> =ns.

— 100 I ———o 10ni

At around T ~ n2=ni/4, ¢ obtains VEV and forms in a global string.
KAt the later state, the gauge boson has been massive due to <¢1> = m.J




EVQI"!I.QH Qf ggsmic String§ http://numerus.sakura.ne.jp/research/open/NewString/
|1

8

3

8
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A global (0,1) string is absorbed by a (7,3) string and form a (1,4) string!



Evolution of Cosmic Strings

Long range force between an uncompensated string and a global string.
< logarithmic divergence of the string tension.

(n1,n24 % 0) s
) o
ra=0 (0,n25#0)

string A string B

For n1 >> n2, the string A configurations of ¢1 and Ae are barely affected by ¢».

' 1 2 2
41(1,0) = me™hu(r) , Aolr) = Z€()  €(R— o) = BRI

2’]’1,1

The configuration of ¢, can be approximated by,

hoaB(T) = Go(r;T 0, TB) = Goa(r — rA;ZﬁzB(r —rp)

P2AB(T)|[r~rs ~ P24(r)  D24B(T)|r~rsy ~ P2B(r —TpB)




Evolution of Cosmic Strings

Long range force between an uncompensated string and a global string.
< logarithmic divergence of the string tension.

(n1,n24 % 0) s
) o
ra=0 (0,n28 # 0)

string A string B

AE(lra —rp|) = E({¢248}) — E({¢24}) — E({¢25})

B({s:)) = [ & [|ar¢2| + L 10060 — ieqa ool + 22 (6ol — )"

1 06
— AFE ~2nyp (nzA—nlg_j) /d2 2 a; :

00p _ r(r—|ra—rp|cosh)
o0 Ir —rp|?




Evolution of Cosmic Strings

‘‘‘‘‘

0 20 40 60 80 100
Pl

Long range force between an uncompensated string and a global string :

( F(rg) = nyp (nzA - nqg_f) nsR(nars)er, \

N2B (nzA - n1Z—2> <0 attractive
1

K Tog (nQA — nlﬂ) >0 repulsive
¢ J

Compensated string ( gin2- g2n1 = 0) does not have 1/rgforce !




Evolution of Cosmic Strings  (91,92)=(1,4)  fi/f.=4

(a) Number of strings (b) fe, fu and fg (€] Be; Raw
90 T T T T T T T T 1 T T T T T T T T 1
80 | n,=1 k== —— compensated strings
70 + n,=2 b=t=f_ 08 | === uncompensated strings . 08 |
60 - n;=3 [y = global strings with n,;=0 Rc
50 + n2=4 fetm] | 06 |- 06 |-
40 | ny=5 04 04 .
30 ' { { { { { : —— compensated strings
20 1 oaf 02} to be domain-walls -
10 | OHH
0 =1 i o - e L 0 1 1 ! I ! ! 1 0 1 ! 1 i 1 1 ! !
0O 5 10 1520 253035 4045 0 5 10 1520 25 30 35 40 45 0 5 10 1520 25 30 35 40 45
nit nit nit
Most (but not all) strings are combined into the compensated strings.
N, N
fe= < — 0.6 R= — 0.8
Nc+Nu+Nglobal N.+ N,
ﬂor (91,92)=(1,4) and for fi/f, = 4 Remaining strings are \

compensated (1,4) string ~60% : 6a/F,=0

uncompensated (1,3) string ~23% : &a/F.=0-2m

global (0,7) string ~17% : 6a/Fqa=0-2m

k — these strings do not cause domain wall problem! j

Domain wall problems are solved? 3D simulation is important.
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volution of Cosmic Strings
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(91,q92)=(4,1)
(b) fe, fu and fg

T T
= compensated strings
—— uncompensated strings —
— global strings with n;=0

fc
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nit

1

08 -
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02

0

fi/ff2=4

(C) RC, Rdw

= compensated strings
to be domain-walls

Rlc | 1 1 L Il I} |
0 5 10 1520 25 30 35 40 45
nit

For (g1,92)=(4,1) and for f,/f, =4, it is difficult to form compensated string.

fe

Ne

—)O RC=

B Nc =+ Nu I Nglobal

N

N,
+ Ny,

— 0

rcl);—string ¢ 1-string

¢2-string

\cp;-string ¢1-string

The compensated string consists of 4 windings of\
¢1-string and 1 winding of ¢2-string.

For fi/f> =4, [# of ¢r-strings] > [ # of ¢po-strings ]
— it is difficult to form compensated strings J

This set up suffers from the axion domain wall problem.



Summary

+ U(1)car gauge theory with a large charge hierarchy leads to an approximate
global U(1) symmetry appropriate for the PQ symmetry.

+ Many types of cosmic strings are formed.

' For (g1,92)=(1,4) and for fi/f>=4, most of the strings are combined into
the compensated string.

' Around the remaining strings in 2D simulation, the axion winds at most just once.

The axion domain wall problem might not occur?
— 3D simulation is important ! (in preparation)

« For (g1,92)=(4,1) and for f1/f> = 4, the compensated strings are rarely formed.
The axion winds more than once around the remaining string

The axion domain wall problem is unavoidable.
~ similar to Z, model.



Backup Slides



Equations of Motion

r / 2 2

wi(R) + 1) gy ()7 + (51 12 (1~ ha(R)?) - 75 (1 . Z—llf(R)) ) h(R) =0

hl 2 2
() + " gy 4 (52 —n (1= h(RY) - 2 (1- Zem) ) ha(R) = 0
(R~ S — 20 (60R) = ) (R~ 20 (6(R) = 22) ha()? =0
q1 q2
S W,
o — 1 5 — Anlp e K1, o — %
evV@mi+agng " 22 (gini+ains) T " e(@gni+ggm3) aGn+an;

Boundary conditions
hi(R)=0, hao(R)=0, £&(R) =0, n,.2#0 For ni,2=0, h1,2(R=0) : Neumann
hi(R)=1, ho(R) =1,



U(1)pq Quality & Domain Wall Problem

+ Axion domain wall problem in a Z,gauge symmetric model

" Consider Zngauge symmetry obtained from U(1)iocas Sym metry,\

¢1(q1) $2(q2) qi=1, qz2=n
Lbytaking (o) — 0  with {¢2)/My kept tiny. y

(1) When ¢1 obtains VEV after inflation, the approximate U(1)rqis spontaneously
broken, and a few cosmic strings are formed in one Hubble volume.

Top view of the strings =
.| ® ®
¢1(r—0)=0 @ i
L ¢p1(r— o) = ve® ( U(1)pq breaking is negligible)

(2) The number of the strings in a Hubble volume is kept O(7) in time evolution
due to reconnection — the scaling solution : pstr o< H?

[1986 Davis, 1989 Davis&Shellard, see also 2018 Kawasaki et.al.]



U(1)pq Quality & Domain Wall Problem

+ Axion domain wall problem in Z, gauge symmetric model

(3) At around the QCD scale, the axion feels its axion potential.

92 Nya

r— e Anomaly free Z, requires Nr=kn
321? fq W seee.g. [1997, Csaki & Murayama]

The axion potential potential has N¢periodicity in a/fa=[-m, ).

rNon-trivial axion field values around the strings causes energy contrast 5
ex)n=N¢=3 n-walls are attached
domain wall
>

String-wall network immediately dominates the Universe
—Z, model suffers from domain wall problem



Axion Quality & Domain Wall Problem

+ Axion Domain wall problem in Z,gauge symmetric model

Is the wall-string network stable ?

n-domains are Z, equivalent

gauge equivalent

A

For <¢h2> = finite but » <¢1>, ¢2-string has a finite tension,

¢p2-string

i §Aedd _

€

127 /n

The phase of ¢ changes by ei2n/n
due to the Aharonov-Bohm effect

ex) n=3

VAVAV/RR
NN




Axion Quality & Domain Wall Problem

+ Axion Domain wall problem in Z, gauge symmetric model

Is the wall-string network stable ? gauge equivalent

ex) n=3
n-domains are Z, equivalent F\/\ A
A/\ > a/fa

-TT 0 n

/" ¢y-wall can be pierced by a ¢,-string loop )
¢d1-wall ¢r-wall

ex) n=3 ex) n=3

. Thetunneling rate is quite low... I« Exp[ - f24/ (Aqco? FaT) ] )
[e.g. 1982, Kibble, Lazarides, Shafi]




Lazarides-Shafi Model & Domain Wall Problem
Lazarides-Shafi Model ~ U(1)pq x G [1982 Lazarides & Shafi]

Assume U(1)pq symmetry which is broken down to Zy symmetry by QCD anomaly

2 Na ~
gs —GIJ’VG“V

L= 3o £,

+/ Choose G symmetry whose center is also Zn
ex) For N =2, we may take G=SU(2) (the original model is based on SO(10))

@ :SU(2) triplet complex scalar U(1)pq: @ = eia®

v U(1)pgx SU(2) is simultaneously broken by aVEV of @, <®> x T,

3 Global string Alice string )

: ~ pib/2
D ~ eifT; D~ €92 (cgs2 T1+ So/2T2)

k 6a/fa=0'2" 6a/fa=0'" J

( Both string tensions have logarithmically divergence.)



Lazarides-Shafi Model & Domain Wall Problem
Lazarides-Shafi Model ~ U(1)pq x G [1982 Lazarides & Shafi]

Assume U(1)pq symmetry which is broken down to Zy symmetry by QCD anomaly

2 Na ~
gs —GIJ’VG”V

L= 3o £,

+/ Choose G symmetry whose center is also Zn
ex) For N =2, we may take G=SU(2) (the original model is based on SO(10))

@ :SU(2) triplet complex scalar U(1)pq: @ = eia®

v U(1)pgx SU(2) is simultaneously broken by aVEV of @, <®> x T,

If both strings remain in the Universe until QCD scale, the global string
causes the axion domain wall problem, while the Alice string does not.

o«

;)tf T

Global string-wall network Alice string-wall network



Lazarides-Shafi Model & Domain Wall Problem
Lazarides-Shafi Model ~ U(1)pq x G [1982 Lazarides & Shafi]

Assume U(1)pq symmetry which is broken down to Zy symmetry by QCD anomaly

2
_ 9s @ BV ()
L= 3212 . GGy

+/ Choose G symmetry whose center is also Zn
ex) For N =2, we may take G=SU(2) (the original model is based on SO(10))

@ :SU(2) triplet complex scalar U(1)pq: @ = eia®

' U(1)pgx SU(2) is simultaneously broken by a VEV of @, <®@> < 1,

Fortunately, the global string in this model breaks up into Alice strings
well above the QCD scale = No domain wall problem.

Y +

see also [2019 Chatterjee, Higaki, Nitta]

High quality accidental U(1)pq seems difficult in the Lazarides-Shafi model.



Evolution of Cosmic Strings q1,92)=(1,4)  Ffi/f=4

(a) Number of strings (b) fe, fu and fg (€] Be; Raw
90 T T T T T T T T 1 T T T T T T T T 1
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60 - n;=3 [y = global strings with n,;=0 Rc
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nit nit nit
Most (but not all) strings are combined into the compensated strings.
N N,
fe= — 0.6 R, = — 0.8
Nc+Nu+Nglobal N, + N,
62'5“'“9 pzstring The compensated string consists of 1 winding om
, ¢1-string and 4 windings of ¢,-string.
¢1-string
For fi/f2=4, [# of ¢1-strings] > [ # of ¢ho-strings ]
\dbz-strmg $zstring — it is easy to form compensated strings J

Domain wall problems might be solved? 3D simulation is important.



