New Type of Cosmic String Solutions with Long Range Forces

Masahiro Ibe (ICRR)

Takashi Hiramatsu, Motoo Suzuki and MI arXiv:1910.14321

Cosmic String

✓ Cosmic strings appear when U(1) symmetries are spontaneously broken
[1973 Nielsen Olsen]

✓ An isolated cosmic string is stable due to the topological charge :

$$\Pi_1(U(1)) = Z$$

Cosmic String

 \checkmark *U(1)* gauge symmetry → *Local String*

cylindrically (r,θ,z) symmetric static solution

$$\begin{cases} \phi(r,\theta) = ve^{i\theta}h(r) & h(r) \to 1 - \mathcal{O}\left(\frac{1}{\sqrt{r}}\right)\exp(-m_h r) \\ A_{\theta}(r) = \frac{1}{e}\xi(r) & \xi(r) \to 1 - \mathcal{O}\left(\sqrt{r}\right)\exp(-m_A r) \\ m_h = 2\sqrt{\lambda}v & m_A = \sqrt{2}ev \end{cases}$$

$$\partial_{\theta}\phi \to ive^{i\theta}$$

$$D_{\theta}\phi = \partial_{\theta}\phi - ieA_{\theta}\phi \to 0 \quad \text{(exponentially dumped)}$$

✓ Local string has a finite tension

$$\mathcal{E} = \int d^2x \left[\frac{1}{4} F_{ij} F^{ij} + |D_i \phi|^2 + V(\phi) \right] = 2\pi v^2 \times \mathcal{F}(2\lambda/e^2)$$

$$(\mathcal{F}(1) = 1 \quad \mathcal{F}'(x) < 0)$$

A few local strings are formed in each Hubble volume at the phase transition.

Cosmic String

 \checkmark *U(1)* global symmetry → *Global String*

cylindrically (r,θ,z) symmetric static solution

$$\phi(r,\theta) = ve^{i\theta}h(r)$$
 $h(r) \to 1 - \mathcal{O}\left(\frac{1}{\sqrt{r}}\right)\exp(-m_h r)$ $m_h = 2\sqrt{\lambda}v$

$$\partial_{\theta}\phi \to ive^{i\theta}$$

String tension has a logarithmic divergence!

$$\mathcal{E} = \int d^2x \left[|\partial_i \phi|^2 + V(\phi) \right] \to 2\pi v^2 \int dr \frac{1}{r} \to \infty$$

The global string is also formed at the phase transition where the divergence is cutoff by a typical distance between the strings.

New Types of Cosmic Strings?

 \checkmark Cosmic string solutions in a model with $U(1)_{local} \times U(1)_{global}$ symmetry

 $U(1)_{global}$ emerges in the $U(1)_{local}$ symmetric two complex scalar models.

Two complex scalars with $U(1)_{local}$ gauge charges q_1 and q_2 :

$$\phi_1(q_1) \qquad \qquad \phi_2(q_2)$$

 (q_1, q_2) : positive and relatively prime integers)

The model can have an *accidental global U(1) symmetry* when the charge ratio is larger than 3.

$$V(\phi_1, \phi_2) = V_s(\phi_1^{\dagger} \phi_1, \phi_2^{\dagger} \phi_2) + \frac{1}{M_*^{q_1 + q_2 - 4}} \phi_1^{\dagger q_1} \phi_2^{q_2} + h.c.$$

An additional U(1) symmetry emerges for $M_* \rightarrow \infty$.

 \checkmark QCD has its own CP-violating parameter : θ

$$\mathcal{L}_{\mathrm{SM}}
i \frac{g_s^2}{32\pi^2} \theta G^{\mu\nu} \tilde{G}_{\mu\nu}$$

✓ Null observation of the *neutron EDM*:

 $d_n/e \sim 10^{-15} \,\theta$ cm [1979 Crewther, Veccia, Veneziano, Witten] $d_n/e < 2.9 \times 10^{-26}$ cm @ 90%CL [hep-ex/0602020] $\rightarrow \theta < 10^{-11}$

 \checkmark θ can be nullified by the global $U(1)_{PQ}$ symmetry broken by QCD anomaly [1977 Peccei & Quinn]

KSVZ axion model ['79 Kim, '80 Shifman, Vainshtein, Zakharov]

$$\mathcal{L} = y\phi q_L \bar{q}_R + h.c.$$
 ϕ : singlet (q_L, \bar{q}_R) : N_f extra quarks

 $U(1)_{PQ}$ symmetry:

$$\phi \to e^{i\alpha} \phi$$
 $q_L \bar{q}_R \to e^{-i\alpha} q_L \bar{q}_R$

 θ is unphysical due to the anomalous $U(1)_{PQ}$ rotation.

$$\theta \rightarrow \theta' = \theta - N_f \alpha$$

 \checkmark Axion appears when $U(1)_{PQ}$ is broken by $\langle \phi \rangle = v$

$$a = f_a \arg \phi$$
 $f_a = \sqrt{2} \langle \phi \rangle$

Axion obtains a scalar potential due to the QCD anomaly

The effective term is given by the VEV of the axion:

$$\theta_{\mathrm{eff}} = \langle a/f_a \rangle = 0$$

✓ Why is the PQ symmetry broken only by the QCD anomaly?
(The PQ symmetry cannot be an exact symmetry by definition)

Planck suppressed explicit breaking term distorts the axion potential

$$\Delta \mathcal{L} = \frac{\kappa \phi^m}{M_{\rm Pl}^{m-4}} + h.c.$$
 $\mathcal{L} \simeq \frac{1}{2} m_a^2 a^2 + \frac{\delta |\kappa| f_a^m}{M_{\rm Pl}^{m-4}} \frac{a}{f_a} + \cdots$ $\delta = 2\sin(\arg \kappa)$

 θ_{eff} is no more vanishing...

$$\theta_{\mathrm{eff}} \sim \frac{f_a^m}{N_f f_\pi^2 m_\pi^2 M_{\mathrm{Pl}}^{m-4}} \qquad m_a \sim \frac{N_f f_\pi}{f_a} m_\pi$$

If we require $\theta_{eff} \ll 10^{-11}$, we need to forbid terms with m < 10 for $f_a > 10^9 GeV$.

- How about discrete Z_n gauge symmetry instead of global $U(1)_{PQ}$?

 discrete Z_n gauge symmetry = exact symmetry $\theta_{eff} \ll 10^{-11}$ is achieved for n > 10 See e.g. [2009 Carpenter, Dine, Festuccia]
- \checkmark Z_n symmetric model has the axion domain wall problem when approximate $U(1)_{PQ}$ breaking takes place after inflation.

 \checkmark A model with $U(1)_{local} \times U(1)_{global}$ symmetry provides an alternative mechanism which provides an accidental $U(1)_{PQ}$ from $U(1)_{local}$.

[1992 Barr, Seckel] see also [2017, Fukda, Suzuki, Yanagida and MI]

 $U(1)_{global}$ breaking is small enough when the charge ratio is larger than 10.

$$V(\phi_1,\phi_2) = V_s(\phi_1^{\dagger}\phi_1,\phi_2^{\dagger}\phi_2) + \frac{1}{M_*^{q_1+q_2-4}}\phi_1^{\dagger q_1}\phi_2^{q_2} + h.c.$$

$$(\textbf{\textit{q}_1,q_2}: positive and relatively prime integers} \rightarrow \textbf{\textit{q}_1+q_2} > \textbf{10})$$

✓ What happens when both $\langle \phi_1 \rangle$ and $\langle \phi_2 \rangle$ obtain non-vanishing expectation value after inflation?

What kind of string network is formed?

Does the model have the axion domain wall problem?

Goldstone Decomposition

✓ A model with $U(1)_{local} \times U(1)_{global}$ symmetry :

$$V = \frac{\lambda_1}{4} (|\phi_1|^2 - \eta_1^2)^2 + \frac{\lambda_2}{4} (|\phi_2|^2 - \eta_2^2)^2 - \kappa (|\phi_1|^2 - \eta_1^2) (|\phi_2|^2 - \eta_2^2) ,$$

$$\lambda_{1,2} > 0 \qquad \lambda_1 \lambda_2 > 4\kappa$$

 $\textit{U(1)}_{\textit{local}}$ charges : $\phi_1(q_1)$ $\phi_2(q_2)$

 (q_1, q_2) : positive and relatively prime integers)

At the vacuum, both ϕ_1 and ϕ_2 obtain the VEV

$$\langle \phi_n \rangle = \eta_n \; , \quad (n = 1, 2)$$

and hence, both $U(1)_{local} \times U(1)_{global}$ are broken.

In the following, we assume

$$q_1 = 1$$
, $q_2 = N$ and $\eta_1 > \eta_2$

 \rightarrow no discrete gauge symmetry remains after ϕ_1 obtains the VEV

Goldstone Decomposition

✓ Two goldstone modes:

$$\phi_1 = \frac{1}{\sqrt{2}} f_1 e^{i\tilde{a}_1/f_1} , \quad \phi_2 = \frac{1}{\sqrt{2}} f_2 e^{i\tilde{a}_2/f_2} , \qquad f_n = \sqrt{2} \eta_n$$

✓ The domain of the goldstone modes:

$$\tilde{a}_1/f_1 = [0, 2\pi) , \quad \tilde{a}_2/f_2 = [0, 2\pi) ,$$

✓ The $U(1)_{local}$ symmetry is realized by:

Goldstone Decomposition

✓ The gauge invariant axion:

$$\mathcal{L} = |\mathcal{D}_{\mu}\phi_{1}|^{2} + |\mathcal{D}_{\mu}\phi_{2}|^{2}$$

$$\to \frac{1}{2}(\partial\tilde{a}_{1})^{2} + \frac{1}{2}(\partial\tilde{a}_{2})^{2} - eA_{\mu}(q_{1}f_{1}\partial^{\mu}\tilde{a}_{1} + q_{2}f_{2}\partial^{\mu}\tilde{a}_{2}) - \frac{1}{2}e^{2}(q_{1}^{2}f_{1}^{2} + q_{2}^{2}f_{2}^{2})A_{\mu}^{2}$$

$$= \frac{1}{2}(\underline{\partial a})^{2} + \frac{1}{2}m_{A}^{2}\left(A_{\mu} - \frac{1}{m_{A}}\partial_{\mu}b\right)^{2} \qquad m_{A}^{2} = e^{2}\left(q_{1}^{2}f_{1}^{2} + q_{2}^{2}f_{2}^{2}\right)$$

$$\begin{pmatrix} a \\ b \end{pmatrix} = \frac{1}{\sqrt{q_1^2 f_1^2 + q_2^2 f_2^2}} \begin{pmatrix} q_2 f_2 & -q_1 f_1 \\ q_1 f_1 & q_2 f_2 \end{pmatrix} \begin{pmatrix} \tilde{a}_1 \\ \tilde{a}_2 \end{pmatrix}$$

$$2\pi f_1 \qquad \text{ex)} \ (q_1, q_2) = (1, 4)$$

$$\tilde{a}_1 \qquad a = [0, 2\pi F_a)$$

$$0 \qquad 2\pi f_2 \qquad 4\pi f_2 \qquad 6\pi f_2 \qquad 8\pi f_2$$

$$\tilde{a}_2 \qquad F_a = \frac{f_1 f_2}{\sqrt{q_1^2 f_1^2 + q_2^2 f_2^2}}$$

Static Solution

cylindrically (r, θ, z) symmetric static solutions (n_1, n_2) : winding number

$$\phi_1(r,\theta) = \eta_1 e^{in_1\theta} h_1(r) ,$$

$$\phi_2(r,\theta) = \eta_2 e^{in_2\theta} h_2(r) ,$$

$$\phi_2(r,\theta) = \eta_2 e^{in_2\theta} h_2(r) , \qquad A_{\theta}(r) = \frac{1}{e} \xi(r) , A_r = A_z = 0 ,$$

Static Solution

$$h_1(R \to \infty) = 1 \qquad h_2(R \to \infty) = 1 \qquad \xi(R \to \infty) = \frac{n_1 q_1 f_1^2 + n_2 q_2 f_2^2}{q_1^2 f_1^2 + q_2^2 f_2^2}$$

$$\mathcal{D}_{\theta} \phi_1 \to i \left(n_1 - q_1 \frac{n_1 q_1 \eta_1^2 + n_2 q_2 \eta_2^2}{q_1^2 \eta_1^2 + q_2^2 \eta_2^2} \right) \phi_1 \qquad \mathcal{D}_{\theta} \phi_2 \to i \left(n_2 - q_2 \frac{n_1 q_1 \eta_1^2 + n_2 q_2 \eta_2^2}{q_1^2 \eta_1^2 + q_2^2 \eta_2^2} \right) \phi_2$$

Static Solution

Both $\mathcal{D}_{\theta}\phi_1$ and $\mathcal{D}_{\theta}\phi_2$ vanish at $r \to \infty$ only for

$$n_1 = N_w \times q_1 , \quad n_2 = N_w \times q_2 , \quad N_w \in \mathbb{Z}$$

→ Finite tension string = local string

Axion windings

If only the compensated (local) string is formed, no axion domain wall appears!

Axion windings

Axion anomaly coupling

$$\mathcal{L}=y\phi_1q_{1L}ar{q}_{1R}+y\phi_2^\dagger q_{2L}ar{q}_{2R}+h.c.$$
 $m{n}$ (=4) flavors $m{1}$ flavors

$$\longrightarrow \mathcal{L}_{QCD} = \frac{g_s^2}{32\pi} \left(\frac{q_2 \tilde{a}_1}{f_1} - \frac{q_1 \tilde{a}_2}{f_2} \right) G\tilde{G} = \frac{g_s^2}{32\pi} \frac{a}{F_a} G\tilde{G}$$

(1,4) strings and (1,3) strings do not cause the axion domain wall problem!

One axion winding is attached to just one wall:

Classical lattice simulation (translational invariance in z-direction)

$$(q_1, q_2) = (1, 4)$$
 $f_1/f_2 = 4$

Initial: $T_{in} = 3^{1/2} \eta_1$

 $\phi_{1,2}$, $\dot{\phi}_{1,2}$: random fluctuation following the Planck distribution

Classical lattice simulation (translational invariance in z-direction)

$$(q_1, q_2) = (1, 4)$$
 $f_1/f_2 = 4$

Initial: $T_{in} = 3^{1/2} \eta_1$

 $\phi_{1,2}$, $\dot{\phi}_{1,2}$: random fluctuation following the Planck distribution

Classical lattice simulation (translational invariance in z-direction)

$$(q_1, q_2) = (1, 4)$$
 $f_1/f_2 = 4$

Initial: $T_{in} = 3^{1/2} \eta_1$

 $\phi_{1,2}$, $\dot{\phi}_{1,2}$: random fluctuation following the Planck distribution

Classical lattice simulation (translational invariance in z-direction)

$$(q_1, q_2) = (1, 4)$$
 $f_1/f_2 = 4$

Initial: $T_{in} = 3^{1/2} \eta_1$

 $\phi_{1,2}$, $\dot{\phi}_{1,2}$: random fluctuation following the Planck distribution

For
$$(q_1,q_2) = (1,4)$$
 and $\eta_1 = 4 \eta_2$

- ✓ Compensated strings (i.e. (1,4) local strings) are formed. (No strings with $n_1 > 1$ is formed)
- ✓ Uncompensated strings (i.e. $(1,n_2 \neq 4)$ strings) are also formed.
- ✓ Global strings (i.e. (0,1) strings) are also formed.

Spot 4 does not involve non-trivial A_{θ} configuration = global string

At around $T \sim \eta_1$, ϕ_1 obtains uniform $(n_1 = 0)$ VEV $\langle \phi_1 \rangle = \eta_1$.

At around $T \sim \eta_2 = \eta_1/4$, ϕ_2 obtains VEV and forms in a global string.

At the later state, the gauge boson has been massive due to $\langle \phi_1 \rangle = \eta_1$.

Evolution of Cosmic Strings http://numerus.sakura.ne.jp/research/open/NewString/

A global (0,1) string is absorbed by a (1,3) string and form a (1,4) string!

Long range force between an uncompensated string and a global string.

↔ logarithmic divergence of the string tension.

For $\eta_1 >> \eta_2$, the string A configurations of ϕ_1 and A_θ are barely affected by ϕ_2 .

$$\phi_1(r,\theta) = \eta_1 e^{in_1\theta} h_1(r) , \quad A_{\theta}(r) = \frac{1}{e} \xi(r) , \quad \xi(R \to \infty) = \frac{n_1 q_1 f_1^2 + n_2 q_2 f_2^2}{q_1^2 f_1^2 + q_2^2 f_2^2} \simeq n_1$$

The configuration of ϕ_2 can be approximated by,

$$\phi_{2AB}(\mathbf{r}) \equiv \phi_2(\mathbf{r}; \mathbf{r}_A, \mathbf{r}_B) = \frac{\phi_{2A}(\mathbf{r} - \mathbf{r}_A)\phi_{2B}(\mathbf{r} - \mathbf{r}_B)}{\eta_2}$$
$$\phi_{2AB}(\mathbf{r})|_{\mathbf{r} \sim \mathbf{r}_A} \sim \phi_{2A}(\mathbf{r}) \quad \phi_{2AB}(\mathbf{r})|_{\mathbf{r} \sim \mathbf{r}_B} \sim \phi_{2B}(\mathbf{r} - \mathbf{r}_B)$$

Long range force between an uncompensated string and a global string.

↔ logarithmic divergence of the string tension.

$$\Delta E(|\mathbf{r}_A - \mathbf{r}_B|) = E(\{\phi_{2AB}\}) - E(\{\phi_{2A}\}) - E(\{\phi_{2B}\})$$

$$E(\{\phi_2\}) = \int d^2 \mathbf{r} \left[|\partial_r \phi_2|^2 + \frac{1}{r^2} |\partial_\theta \phi_2 - ieq_2 A_\theta \phi_2|^2 + \frac{\lambda_2}{4} \left(|\phi_2|^2 - \eta_2^2 \right)^2 \right]$$

$$\rightarrow \Delta E \simeq 2 n_{2B} \left(n_{2A} - n_1 \frac{q_2}{q_1} \right) \eta_2^2 \int d^2 \mathbf{r} \frac{1}{r^2} \frac{\partial \theta_B}{\partial \theta} .$$

$$\frac{\partial \theta_B}{\partial \theta} = \frac{r(r - |\mathbf{r}_A - \mathbf{r}_B| \cos \theta)}{|\mathbf{r} - \mathbf{r}_B|^2}$$

Long range force between an uncompensated string and a global string:

$$\mathbf{F}(\mathbf{r}_B)=n_{2B}\left(n_{2A}-n_q\frac{q_2}{q_1}\right)\eta_2^2R(\eta_2r_B)\mathbf{e}_{r_B}$$

$$n_{2B}\left(n_{2A}-n_1\frac{q_2}{q_1}\right)<0\quad\text{attractive}$$

$$n_{2B}\left(n_{2A}-n_1\frac{q_2}{q_1}\right)>0\quad\text{repulsive}$$

Compensated string $(q_1n_2 - q_2n_1 = 0)$ does not have $1/r_B$ force!

$$(q_1,q_2)=(1,4)$$
 $f_1/f_2=4$

$$f_1/f_2=4$$

(a) Number of strings

(b) $f_{\rm c}, f_{\rm u}$ and $f_{\rm g}$

(c) $R_{\rm c}$, $R_{\rm dw}$

Most (but not all) strings are combined into the compensated strings.

$$f_c = \frac{N_c}{N_c + N_u + N_{\text{global}}} \rightarrow 0.6$$
 $R_c = \frac{N_c}{N_c + N_u} \rightarrow 0.8$

$$R_c = \frac{N_c}{N_c + N_u} \to 0.8$$

For $(q_1,q_2)=(1,4)$ and for $f_1/f_2=4$ Remaining strings are

compensated (1,4) string $\sim 60\%$: $\delta a/F_a = 0$

uncompensated (1,3) string ~23%: $\delta a/F_a = 0-2\pi$

global (0,1) string ~17% : $\delta a/F_a = 0-2\pi$

→ these strings do not cause domain wall problem!

Domain wall problems are solved? 3D simulation is important.

$$(q_1,q_2)=(4,1)$$
 $f_1/f_2=4$

$$f_1/f_2=4$$

(a) Number of strings

(b) $f_{\rm c}, f_{\rm u}$ and $f_{\rm g}$

(c) $R_{\rm c}$, $R_{\rm dw}$

For $(q_1,q_2)=(4,1)$ and for $f_1/f_2=4$, it is difficult to form compensated string.

$$f_c = \frac{N_c}{N_c + N_u + N_{\text{global}}} \to 0$$
 $R_c = \frac{N_c}{N_c + N_u} \to 0$

$$R_c = \frac{N_c}{N_c + N_u} \to 0$$

The compensated string consists of 4 windings of ϕ_1 -string and 1 winding of ϕ_2 -string.

For $f_1/f_2 = 4$, [# of ϕ_1 -strings] > [# of ϕ_2 -strings]

→ it is difficult to form compensated strings

This set up suffers from the axion domain wall problem.

Summary

- ✓ $U(1)_{local}$ gauge theory with a large charge hierarchy leads to an approximate global U(1) symmetry appropriate for the PQ symmetry.
- ✓ Many types of cosmic strings are formed.
- For $(q_1,q_2)=(1,4)$ and for $f_1/f_2=4$, most of the strings are combined into the compensated string.
- ✓ Around the remaining strings in 2D simulation, the axion winds at most just once.

The axion domain wall problem might not occur?

→ 3D simulation is important! (in preparation)

✓ For $(q_1,q_2)=(4,1)$ and for $f_1/f_2=4$, the compensated strings are rarely formed.

The axion winds more than once around the remaining string

The axion domain wall problem is unavoidable.

 \sim similar to Z_n model.

Backup Slides

Equations of Motion

$$h_1''(R) + \frac{h_1'(R)}{R} - \beta_1 h_1(R)^3 + \left(\beta_1 - \gamma_2 \left(1 - h_2(R)^2\right) - \frac{n_1^2}{R^2} \left(1 - \frac{q_1}{n_1} \xi(R)\right)^2\right) h_1(R) = 0$$

$$h_2''(R) + \frac{h_2'(R)}{R} - \beta_2 h_2(R)^3 + \left(\beta_2 - \gamma_1 \left(1 - h_1(R)^2\right) - \frac{n_2^2}{R^2} \left(1 - \frac{q_2}{n_2} \xi(R)\right)^2\right) h_2(R) = 0$$

$$\xi''(R) - \frac{\xi'(R)}{R} - 2c_1 \left(\xi(R) - \frac{n_1}{q_1}\right) h_1(R)^2 - 2c_2 \left(\xi(R) - \frac{n_2}{q_2}\right) h_2(R)^2 = 0$$

$$\xi''(R) - \frac{\xi'(R)}{R} - 2c_1 \left(\xi(R) - \frac{n_1}{q_1}\right) h_1(R)^2 - 2c_2 \left(\xi(R) - \frac{n_2}{q_2}\right) h_2(R)^2 = 0$$

$$r_0 = \frac{1}{e\sqrt{q_1^2\eta_1^2 + q_1^2\eta_2^2}} \qquad \beta_n = \frac{\lambda_n\eta_n^2}{2e^2\left(q_1^2\eta_1^2 + q_2^2\eta_2^2\right)} \ , \quad \gamma_n = \frac{\kappa\,\eta_n^2}{e^2\left(q_1^2\eta_1^2 + q_2^2\eta_2^2\right)} \ , \quad c_n = \frac{q_n^2\eta_n^2}{q_1^2\eta_1^2 + q_2^2\eta_2^2} \ ,$$

Boundary conditions

$$h_1(R)=0\;,\;h_2(R)=0\;,\;\xi(R)=0\;,\;\;\textbf{n}_{1,2}\neq\textbf{0}$$
 For $\textbf{n}_{1,2}=\textbf{0},\;\textbf{h}_{1,2}(\textbf{R}=\textbf{0})$: Neumann $h_1(R)=1\;,\;h_2(R)=1\;,\;$

 \checkmark Axion domain wall problem in a Z_n gauge symmetric model

Consider Z_n gauge symmetry obtained from $U(1)_{local}$ symmetry,

$$\phi_1(q_1)$$
 $\phi_2(q_2)$ $q_1 = 1$, $q_2 = 1$

 $\phi_1(q_1) \qquad \phi_2(q_2) \qquad \textbf{\textit{q}}_1 = \textbf{\textit{1}}, \quad \textbf{\textit{q}}_2 = \textbf{\textit{n}}$ by taking $\langle \phi_2 \rangle \to \infty$ with $\langle \phi_2 \rangle / M_*$ kept tiny.

(1) When ϕ_1 obtains VEV after inflation, the approximate $U(1)_{PQ}$ is spontaneously broken, and a few cosmic strings are formed in one Hubble volume.

(2) The number of the strings in a Hubble volume is kept *O(1)* in time evolution due to reconnection \rightarrow the scaling solution : $\rho_{str} \propto H^2$

[1986 Davis, 1989 Davis&Shellard, see also 2018 Kawasaki et.al.]

- \checkmark Axion domain wall problem in Z_n gauge symmetric model
 - (3) At around the QCD scale, the axion feels its axion potential.

$$\mathcal{L} = \frac{g_s^2}{32\pi^2} \frac{N_f a}{f_a} G^{\mu\nu} \tilde{G}_{\mu\nu}$$
 Anomaly free Z_n requires $N_f = kn$ see e.g. [1997, Csaki & Murayama]

The axion potential potential has N_f periodicity in $a/f_a = [-\pi, \pi)$.

String-wall network immediately dominates the Universe $\rightarrow Z_n$ model suffers from domain wall problem

Axion Quality & Domain Wall Problem

 \checkmark Axion Domain wall problem in Z_n gauge symmetric model

Is the wall-string network stable?

n-domains are Z_n equivalent

gauge equivalent

For $\langle \phi_2 \rangle$ = finite but $\gg \langle \phi_1 \rangle$, ϕ_2 -string has a finite tension,

The phase of ϕ_1 changes by $e^{i2\pi/n}$ due to the Aharonov-Bohm effect

Axion Quality & Domain Wall Problem

 \checkmark Axion Domain wall problem in Z_n gauge symmetric model

Is the wall-string network stable?

n-domains are Z_n equivalent

gauge equivalent

[e.g. 1982, Kibble, Lazarides, Shafi]

Lazarides-Shafi Model & Domain Wall Problem

Lazarides-Shafi Model ~ $U(1)_{PQ} \times G$ [1982 Lazarides & Shafi]

Assume $U(1)_{PQ}$ symmetry which is broken down to Z_N symmetry by QCD anomaly

$$\mathcal{L} = rac{g_s^2}{32\pi^2} rac{Na}{f_a} G^{\mu
u} ilde{G}_{\mu
u}$$

 \checkmark Choose **G** symmetry whose center is also Z_n

ex) For N = 2, we may take G = SU(2) (the original model is based on SO(10))

 Φ : SU(2) triplet complex scalar $U(1)_{PQ}$: $\Phi \rightarrow e^{i\alpha}\Phi$

 \checkmark U(1)_{PQ} x SU(2) is simultaneously broken by a VEV of Φ, <Φ> \propto τ_1

(Both string tensions have logarithmically divergence.)

Lazarides-Shafi Model & Domain Wall Problem

Lazarides-Shafi Model ~ $U(1)_{PQ} \times G$ [1982 Lazarides & Shafi]

Assume $U(1)_{PQ}$ symmetry which is broken down to Z_N symmetry by QCD anomaly

$$\mathcal{L} = rac{g_s^2}{32\pi^2}rac{Na}{f_a}G^{\mu
u} ilde{G}_{\mu
u}$$

 \checkmark Choose **G** symmetry whose center is also Z_n

ex) For N = 2, we may take G = SU(2) (the original model is based on SO(10))

 Φ : SU(2) triplet complex scalar $U(1)_{PQ}$: $\Phi \rightarrow e^{i\alpha}\Phi$

 \checkmark U(1)_{PQ} x SU(2) is simultaneously broken by a VEV of Φ, <Φ> \propto τ_1

If both strings remain in the Universe until QCD scale, the global string causes the axion domain wall problem, while the Alice string does not.

Global string-wall network

Alice string-wall network

Lazarides-Shafi Model & Domain Wall Problem

Lazarides-Shafi Model ~ $U(1)_{PQ} \times G$ [1982 Lazarides & Shafi]

Assume $U(1)_{PQ}$ symmetry which is broken down to Z_N symmetry by QCD anomaly

$${\cal L}=rac{g_s^2}{32\pi^2}rac{Na}{f_a}G^{\mu
u} ilde{G}_{\mu
u}$$

 \checkmark Choose **G** symmetry whose center is also Z_n

ex) For N = 2, we may take G = SU(2) (the original model is based on SO(10))

 Φ : SU(2) triplet complex scalar $U(1)_{PQ}$: $\Phi \rightarrow e^{i\alpha}\Phi$

 \checkmark U(1)_{PQ} x SU(2) is simultaneously broken by a VEV of Φ, <Φ> α τ_1

Fortunately, the global string in this model breaks up into Alice strings well above the QCD scale \rightarrow No domain wall problem.

see also [2019 Chatterjee, Higaki, Nitta]

High quality accidental $U(1)_{PQ}$ seems difficult in the Lazarides-Shafi model.

$$(q_1,q_2)=(1,4)$$
 $f_1/f_2=4$

$$f_1/f_2=4$$

(a) Number of strings

(b) $f_{\rm c}, f_{\rm u}$ and $f_{\rm g}$

(c) $R_{\rm c}$, $R_{\rm dw}$

Most (but not all) strings are combined into the compensated strings.

$$f_c = \frac{N_c}{N_c + N_u + N_{\text{global}}} \to 0.6$$
 $R_c = \frac{N_c}{N_c + N_u} \to 0.8$

$$R_c = \frac{N_c}{N_c + N_u} \to 0.8$$

The compensated string consists of 1 winding of ϕ_1 -string and 4 windings of ϕ_2 -string.

For $f_1/f_2 = 4$, [# of ϕ_1 -strings] > [# of ϕ_2 -strings]

→ it is easy to form compensated strings

Domain wall problems might be solved? 3D simulation is important.