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State of the art

There are currently three incarnations of Reid’s Recipe, a generalisation of the McKay

correspondence in the threefold case.

Classical Reid’s recipe (Reid 1997, Craw 2005)

Given an affine Gorenstein toric simplicial singularity C3/G , with G ⊂ SL(3,C), there

is a combinatorial algorithm that decorates the fan Σ of a distinguished crepant

resolution with irreducible representations of the group G.

The resolution is in fact G-Hilb, and the construction also encodes a minimal set of

relations in its Picard group. Understanding these relations leads to constructing a

Z-basis of its cohomology ring. Our aim is to generalise this construction.
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Derived Ried’s recipe

This studies the equivalence of categories appearing in works of Nakamura and proven

by Bridgeland–King–Reid, in the case where G is abelian:

Ψ: Db
(
G - coh(C3)

)
−→ Db

(
coh(G -Hilb)

)
Key question (Cautis–Logvinenko 2009):

What can be said of the images of simple G -sheaves O0 ⊗ ρ on C3, for ρ a nontrivial

irreducible rep?

Answer (Logvinenko 2010, Cautis–Craw–Logvinenko 2012):

They are pure sheaves which can be computed explicitly from Reid’s recipe, i.e the

image sheaf depends on what ρ marks in Σ.
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Reid’s recipe for dimer models

Any generalisation of the recipe from the simplicial case to an arbitrary Gorenstein

affine variety would have to:

• Find an appropriate equivalent to the derived correspondence.

→ Blocklandt–Craw–Quintero-Vélez (2014) used consistent dimer models as key

instruments in writing this dictionary

• Find a combinatorial way to deduce the markings.

→ Craw–H.–Tapia Amador (2020) deduce the markings on points and line segments

of the fan Σ.

0-dimensional 1-dimensional 2-dimensional

Dimer model Γ Nodes (n) Edges (e) Tiles (t)

Quiver Q Vertices (i) Arrows (a)

Triangulation Σ Lattice points (ρ) Line segments (τ) Triangles (σ)
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The running example: Longhex

(a) Consider this consistent dimer model on the

2-torus T (i.e. there is no homologically trivial

zig-zag path).

Finally, consider the Jacobian algebra of the quiver:

A := CQ/〈p+
a − p−a | a ∈ Q1〉

is the quotient of the path algebra CQ of the quiver Q by the ideal of relations

〈p+
a − p−a | a ∈ Q1〉.
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The running example: Longhex

(a) Consider this consistent dimer model on the

2-torus T (i.e. there is no homologically trivial

zig-zag path).

(b) This is its characteristic polygon.

Consider the Gorenstein toric threefold

X whose ray generators are the six ver-

tices of this hexagon.

Finally, consider the Jacobian algebra of the quiver:

A := CQ/〈p+
a − p−a | a ∈ Q1〉

is the quotient of the path algebra CQ of the quiver Q by the ideal of relations

〈p+
a − p−a | a ∈ Q1〉.
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The running example: Longhex

(a) Consider this consistent dimer model on the

2-torus T (i.e. there is no homologically trivial

zig-zag path).

(b) We consider the distinguished

crepant resolution Y → X associated

to this triangulation.

Finally, consider the Jacobian algebra of the quiver:

A := CQ/〈p+
a − p−a | a ∈ Q1〉

i.e the quotient of the path algebra CQ of the quiver Q by the ideal of relations

〈p+
a − p−a | a ∈ Q1〉.
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The running example: Longhex
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(a) Construct the dual quiver: each tile is dual

to a vertex i ∈ Q0

(b) We consider distinguished crepant

resolution Y → X associated to this

triangulation.

Finally, consider the Jacobian algebra of the quiver:

A := CQ/〈p+
a − p−a | a ∈ Q1〉

is the quotient of the path algebra CQ of the quiver Q by the ideal of relations

〈p+
a − p−a | a ∈ Q1〉.
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The running example: Longhex
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(a) Construct the dual quiver: each tile is dual

to a vertex i ∈ Q0 and each arrow a ∈ Q1 is

perpendicular to an edge.

(b) We consider distinguished crepant

resolution Y → X associated to this

triangulation.

Finally, consider the Jacobian algebra of the quiver:

A := CQ/〈p+
a − p−a | a ∈ Q1〉

where p±a are paths in Q with tail at h(a) and head at t(a), that are clockwise (p+
a )

when the dual dimer node and anticlockwise (p−a ) when it is black.

8/22



Derived equivalence for dimers

The distinguished resolution Y is a moduli space of representations of the quiver Q,

so it comes with a tautological vector bundle

T =
⊕
i∈Q0

Li ,

where L0 ' OY . Ishii–Ueda showed that

1. the natural map A→ End(T ) =
⊕
i,j

Hom(Li , Lj ) is an isomorphism; and

2. there is an equivalence of categories

Ψ(−) := T∨ ⊗A (−) : Db(mod-A) −→ Db(coh-Y ).
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Bocklandt–Craw–Quintero-Vélez (2014) show:

Theorem (Geometric Reid’s recipe)

For i ∈ Q0, let Si := Cei be the vertex simple A-module. If i is not the zero vertex

then exactly one of the following happens:

Ψ(Si ) =


L−1
i |Di

for some divisor Di ;

L−1
i |Cτ for some (−1,−1) curve Cτ ;

F |Zi
[1] for some sheaf F and divisor Zi

In the case of our running example, this suggests the following markings for the dimer

version of the recipe:
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Combinatorial Reid’s recipe

Theorem (Combinatorial Reid’s recipe, Craw – H. – Tapia Amador (2020))

We introduce a marking for every interior lattice point and segment of Σ, such that:

1. The recipe for points and vertices marking unique line segments coincides with the

geometric recipe.

2. The recipe agrees with Reid’s original recipe for marking cones in the toric fan of

G -Hilb in the special case when Q is the McKay quiver of a finite abelian subgroup

G ⊂ SL(3,C).

Here is what we obtain for Longhex:
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The markings

ρ1

ρ2ρ0

ρ3

σ+

σ−

Suppose we want to mark the green line segment between ρ1 and ρ2. This belongs to

two triangles, σ+ = 〈ρ0, ρ1, ρ2〉 and σ− = 〈ρ1, ρ2, ρ3〉. Each ρi corresponds to a

perfect matching Πi .

Key tool: the fundamental hexagon Hσ+ , formed by dimer tiles in R2 bounded by the

connected component in Π0 ∪ Π1 ∪ Π2 which is non-isolated.
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The markings

ρ1

ρ2ρ0

ρ3

σ+

σ−

Suppose we want to mark the green line segment between ρ1 and ρ2. This belongs to

two triangles, σ+ = 〈ρ0, ρ1, ρ2〉 and σ− = 〈ρ1, ρ2, ρ3〉. Each ρi corresponds to a

perfect matching Πi .

Key tool: the fundamental hexagon Hσ+ , formed by dimer tiles in R2 (or T) bounded

by the connected component in Π0 ∪ Π1 ∪ Π2 which is non-isolated.
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The markings

The edges of
⋃

0≤i≤2 Πi shown in the universal cover of T.
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The markings

The interior of Hex(σ+).
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The markings

Hex(σ+) and the edges in Π3
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The markings

Hex(σ+) and Hex(σ−)
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The markings
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The quivers that don’t contain arrows dual to the boundaries of Hex(σ+) ∪ Hex(σ+).

18/22



The markings

Remark

1. The closures of connected components of T \
⋃

0≤i≤3
Πi are called jigsaw pieces

(Nakamura).

2. There is a unique jigsaw piece J0 containing the 0-tile, which is common to all

Hex(σ).

3. In full generality, comparing Hex(σ+) and Hex(σ−) can lead to many jigsaw pieces

(arranged differently in R2), however the quivers obtained by restricting to the

outside of J0 all have the same source vertices.

4. One can associate an A-module Mσ to every Hex(σ), σ ∈ Σ(3). This is the key

object to proving all our results and choosing the marking on lattice points.
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The markings

Markings

1. A vertex i ∈ Q0 marks a single line segment τ ∈ Σ if i is one of the common

source vertices of the quivers outside J0.

2. A vertex i ∈ Q0 marks an interior lattice point ρ if Si lies in the socle of the

A−module Mσ for every cone σ ∈ Σ(3) satisfying ρ ⊂ σ.
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What’s new?
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Remark (New to the dimer case)

1. Interior lattice points can be marked with the same vertex i ∈ Q0 (e.g. 2).

2. Interior line segments can be marked with more than one vertex (e.g. 3 and 9).

3. The marking of an interior line segment is not determined by the hyperplane con-

taining it (e.g. 3 and 9).

4. The marking of an interior lattice point is not determined by the geometry of the

toric surface Dρ.

5. The Euler number of an irreducible component of the exceptional divisor is not

bounded by 6 from above.
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Thank you!
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