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-
Geometric Setting

Classical Setting: f: X — Spec R is the minimal resolution of a Kleinian
(Du Val) singularity.

3-fold setting: f: X — Spec R is a minimal model of an isolated
compound Du Val (cDV) singularity:

X

@ each Spec R has more than one, but finitely many,
minimal models;

@ taking a generic slice, f yields a partial resolution
of a Kleinian singularity.

In both cases, work of Bridgeland—King—Reid and Van
den Bergh shows how to construct a tilting bundle
V =0x ®V on X so that, if A := Endx()), then

SpecR
DP(coh X) =5 DP(mod A). @
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Finite-Dimensional Algebras

Set Acon to be the stable endomorphism algebra
Endy (V) := Endx(V)/[Ox]

where [Ox] consists of morphisms factoring through some O%".
@ This is a finite dimensional algebra.

@ In the surfaces case, Acon is the preprojective algebra of the
corresponding ADE Dynkin diagram.
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Finite-Dimensional Algebras

Set Acon to be the stable endomorphism algebra
Endy (V) := Endx(V)/[Ox]

where [Ox] consists of morphisms factoring through some O%".
@ This is a finite dimensional algebra.

@ In the surfaces case, Acon is the preprojective algebra of the
corresponding ADE Dynkin diagram.

If Spec R is the A3 surface singularity, Acon is given by the quiver and
relations:

ai an arb1=0
/_\ /\
1 2 3 bra>=0
~_ -~
by bz biai+azb=0
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Finite-Dimensional Algebras ctd.

In the 3-fold setting, Acon is called the contraction algebra of f.

There is a cA; singularity R := % with 6 minimal models and

where each of the contraction algebras is isomorphic to one of:

a a
P=ab
babab=0 | £~ P
1 2 1 2) ¢ ra=0
ababa=0 ~_ 7 ~_ 7 bi—0
b b
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Finite-Dimensional Algebras ctd.

In the 3-fold setting, Acon is called the contraction algebra of f.

There is a cA; singularity R := % with 6 minimal models and

where each of the contraction algebras is isomorphic to one of:

a a
P=ab
babab=0 | £~ P
1 2 1 2) ¢ ra=0
ababa=0 ~_ 7 ~_ 7 bi—0
b b

In both the surface and the 3-fold setting, we have functors

DP(mod Acon) —» DP(mod A) = DP(coh X).
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-
What is Bridgeland Stability?

Definition
Let T be a triangulated category with Ko(T) = Z". A stability condition
on T is a pair (Z, A) where:
o A is the heart of a bounded t-structure on T ;
e Z: Ko(T) — C is a group homomorphism which we call the central
charge;

with the compatibility conditions:
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Let T be a triangulated category with Ko(T) = Z". A stability condition
on T is a pair (Z,A) where:
o A is the heart of a bounded t-structure on T ;
e Z: Ko(T) — C is a group homomorphism which we call the central
charge;
with the compatibility conditions:
@ IfE € A then Z(E) € H, where H = R+e'™, ¢ € (0,1];
@ Z satisfies the Harder-Narasimhan (HN) property.
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-
What is Bridgeland Stability?

Definition
Let T be a triangulated category with Ko(T) = Z". A stability condition
on T is a pair (Z,A) where:
o A is the heart of a bounded t-structure on T ;
e Z: Ko(T) — C is a group homomorphism which we call the central
charge;
with the compatibility conditions:
@ IfE € A then Z(E) € H, where H = R+e'™, ¢ € (0,1];
@ Z satisfies the Harder-Narasimhan (HN) property.

We write Stab(T) for the set of all (locally-finite) stability conditions on T .
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-
What is Bridgeland Stability?

If A C T has finite length, the locally-finite and HN properties are
automatically satisfied, and so

Stab(A) = {(Z,B) € Stab(T) | B = A} =~ H".
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-
What is Bridgeland Stability?

If A C T has finite length, the locally-finite and HN properties are
automatically satisfied, and so

Stab(A) = {(Z,B) € Stab(T) | B = A} =~ H".

Theorem (Bridgeland)
There is a topology on Stab(7T") such that the forgetful map

p: Stab(7) — Homyz(Ko(T),C) = C"
(Z,A)— Z

is a local homeomorphism. In particular, Stab(T) is a complex manifold.

v

One of the key difficulties in describing this space is understanding all the
hearts of 7.
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-
Stability for Minimal Resolutions

For both the surface and 3-fold settings we do not study stability of
DP(coh X), but instead on the full subcategory

C := {F € D(coh X) | Rf.F = 0}.
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-
Stability for Minimal Resolutions

For both the surface and 3-fold settings we do not study stability of
DP(coh X), but instead on the full subcategory

C := {F € D(coh X) | Rf.F = 0}.

Suppose that f: X — Spec R is the minimal resolution of a Kleinian
singularity and b is the corresponding ADE root system. The complexified
complement of b is byeg.

Theorem (Bridgela nd, Brav—Thomas)

In this surfaces case, there is a connected component of Stab(C) which is
the universal cover of byeg.
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-
Stability for Minimal Models

In the 3-fold setting, since a minimal model f: X — Spec R cuts to a
partial resolution of a Kleinian singularity, it has an associated real
hyperplane arrangement H, given by (an intersection arrangement of) the
corresponding ADE root system.

e.g. for the cA, example given before the associated
hyperplane arrangement is the A root system.
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-
Stability for Minimal Models

In the 3-fold setting, since a minimal model f: X — Spec R cuts to a
partial resolution of a Kleinian singularity, it has an associated real
hyperplane arrangement H, given by (an intersection arrangement of) the
corresponding ADE root system.

e.g. for the cA, example given before the associated
hyperplane arrangement is the A root system.

Theorem (Hirano-Wemyss)

In the 3-fold setting, there is a connected component of Stab(C) given by
the universal cover of C"\Hc.

To show the stability manifold is contractible, they have to use a result
known as Deligne's K(m,1) theorem for ADE root systems.
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Silting /Tilting Theory

Suppose A is a finite dimensional algebra over C.

Definition

A complex T € KP(proj A) is called tilting (silting) if:
© Homa(T,T[n]) =0 foralln#0 (n>0),
@ T generates KP(proj A) as a triangulated category.

e.g. A, A[n] are tilting complexes over A.

Theorem (Rickard)

Two finite dimensional algebras A and B are derived equivalent if and only
if there exists a tilting complex T € K"(proj A) such that Enda(T) = B.
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Connection with Stability

Theorem (Koenig—Yang Correspondence)
There is a bijection between:
e silting complexes in KP(proj A);
o hearts of bounded t-structures on D(A) with finite length.

So each silting complex in KP(proj A) gives a piece of Stab(D"(A))
isomorphic to H", and mutation controls how these pieces fit together.
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Connection with Stability

Theorem (Koenig—Yang Correspondence)
There is a bijection between:
e silting complexes in KP(proj A);

o hearts of bounded t-structures on D(A) with finite length.

So each silting complex in KP(proj A) gives a piece of Stab(D"(A))
isomorphic to H", and mutation controls how these pieces fit together.

If A is silting-discrete (a finiteness condition on the number of silting
complexes), then Pauksztello-Saorin—Zvonareva show:

O the heart of any bounded t-structure on DP(A) has finite length;
@ Stab(DP(A)) is contractible.
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Back to Contraction Algebras

For now, assume we are in the 3-fold setting:

Theorem (A.)

Contraction algebras are silting-discrete. J

With a bit of work, this essentially comes down to the fact each cDV singularity
has finitely many minimal models.

@ So we know Stab(DP(Acen)) is contractible, and that all hearts can be
described using silting complexes.

@ But moreover, contraction algebras are symmetric!

@ One consequence is that every silting complex is in fact a tilting
complex.

@ So all hearts of DP(Acon) can be described using tilting complexes, or
equivalently, standard derived equivalences.
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|
Flops

For a given isolated cDV singularity, all its minimal models are connected
by flops.
@ Loosely, we can think of these as choosing a curve in the exceptional
locus, cutting it out, and gluing it back in differently.
o If we label the curves Cy,..., C,, and denote the minimal model
obtained by flopping curve C; by fi: X; — Spec R, there are
associated derived equivalences

G;i: D"(coh X) — DP(coh X;)

called flop functors.

@ Understanding compositions of these flop functors, and in particular
the autoequivalences obtained by composing flop functors is key to
obtaining the Hirano-Wemyss result.
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Flops and Contraction Algebras

Suppose f: X — Spec R has contraction algebra A, and the
fi: X; — Spec R has contraction algebra v;Acon-

Theorem (A.)

There is a standard derived equivalence Fj: DP(Acon) — DP(VilAcon)
making the following diagram commute:

D"(Acon) ————— DP(coh X)

F; G.

I

DP(viAcon) ———— DP(coh X;)
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-
Derived Equivalences
If f: X — Spec R is a minimal model with associated hyperplane

arrangement H, Wemyss shows the chambers are in bijection with the
minimal models of Spec R, and wall crossing corresponds to flopping.

fi

()2

f

((A)2)1=((2)1)2
(R)1
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Derived Equivalences

If f: X — Spec R is a minimal model with associated hyperplane
arrangement H, Wemyss shows the chambers are in bijection with the
minimal models of Spec R, and wall crossing corresponds to flopping.

VlAcon A
@ Replace each minimal model con

with its contraction algebra. v2V1/Acon

V2Acon

v1V2V1Acon
v1V2Acon
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Derived Equivalences
If f: X — Spec R is a minimal model with associated hyperplane

arrangement H, Wemyss shows the chambers are in bijection with the
minimal models of Spec R, and wall crossing corresponds to flopping.

VlAcon A
@ Replace each minimal model con
with its contraction algebra. v2V1/Acon
o Label the wall crossings with
;Ihe e_quwalences induced by Voleon
opping.
PpIng v1V2V1Acon
v1V2Acon

Jenny August (MPIM) Stability and McKay 14 /23



-
Derived Equivalences
If f: X — Spec R is a minimal model with associated hyperplane

arrangement H, Wemyss shows the chambers are in bijection with the
minimal models of Spec R, and wall crossing corresponds to flopping.

F1
VlAcon &_\ A
@ Replace each minimal model eor
with its contraction algebra. Va¥1/con \5
o Label the wall crossings with ]
;Ihe e_quwalences induced by Voleon
opping.
PP g v1V2V1/Acon
\’1\’2/\con
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-
Derived Equivalences
If f: X — Spec R is a minimal model with associated hyperplane

arrangement H, Wemyss shows the chambers are in bijection with the
minimal models of Spec R, and wall crossing corresponds to flopping.

1h
VlAcon ™~ A
@ Replace each minimal model o con
. . . 2
with its contraction algebra. v2V1/con \ 3
@ Label the wall crossings with !

: . v
the equivalences induced by vaheon
flopping.

PP g v1V2V1/Acon
@ Repeat for each algebra. V1V2/con
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If f: X — Spec R is a minimal model with associated hyperplane

arrangement H, Wemyss shows the chambers are in bijection with the
minimal models of Spec R, and wall crossing corresponds to flopping.

1h
VlAcon ™~ A
@ Replace each minimal model F: 5 con
with its contraction algebra. V2Vilicon X \ 3
@ Label the wall crossings with { !

: . F1 v
the equivalences induced by \ vaheon
flopping.

Pping v1V2V1Acon
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Derived Equivalences
If f: X — Spec R is a minimal model with associated hyperplane

arrangement H, Wemyss shows the chambers are in bijection with the
minimal models of Spec R, and wall crossing corresponds to flopping.

F1
yl/\con 4H7\
. . - /\
@ Replace each minimal model F. i can
with its contraction algebra. V2Vilcon X \ 2
. . |
@ Label the wall crossings with { \ 7 }
; ; F1 v
the equivalences induced by \) i vaheon
flopping. 2
PPINg V1V2V1Acon R
@ Repeat for each algebra. v1V2Acon
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-
Derived Equivalences
If f: X — Spec R is a minimal model with associated hyperplane

arrangement H, Wemyss shows the chambers are in bijection with the
minimal models of Spec R, and wall crossing corresponds to flopping.

A
yl/\con 4&—\
@ Replace each minimal model F: A Peon
. . . 2
with its contraction algebra. Vavi/con \FQ
o Label the wall crossings with [ A ;
: . F v
the equivalences induced by \j . Vaheon
flopping. ’ |
pp g V1V2V1/\con R /Fl
@ Repeat for each algebra. ‘I__¥ V1V2/con
2
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-
Derived Equivalences
If f: X — Spec R is a minimal model with associated hyperplane

arrangement H, Wemyss shows the chambers are in bijection with the
minimal models of Spec R, and wall crossing corresponds to flopping.

A
yl/\con 4&—\
. A
@ Replace each minimal model F: e
. . . , 2
with its contraction algebra. V2V1Acon - Q \Fq
AP
o Label the wall crossings with [ A ;
. . F v
;Ihe e_quwalences induced by \j . . Valcon
opping. ! E
pping vivavileon [0 /AFl
@ Repeat for each algebra. ‘Fx V1V2/con
2
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Derived Equivalences

If f: X — Spec R is a minimal model with associated hyperplane

arrangement H, Wemyss shows the chambers are in bijection with the
minimal models of Spec R, and wall crossing corresponds to flopping.

F1
VlAcon ‘k\
@ Replace each minimal model F g Acon
with its contraction algebra. v2ViAcon - 1 \Fz
2
o Label the wall crossings with [\ 3 ]
: . F
;Ihe e_quwalences induced by \) . = Vaheon
opping. —3
pping v1vaVilcon ] /AF1
@ Repeat for each algebra. ‘F¥ v1v2Acon
2

@ Paths correspond to
composition of functors.
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-
Derived Equivalences
If f: X — Spec R is a minimal model with associated hyperplane

arrangement H, Wemyss shows the chambers are in bijection with the
minimal models of Spec R, and wall crossing corresponds to flopping.

F1
yl/\con <H
@ Replace each minimal model F e A°°”
with its contraction algebra. VM/‘wn 3 £l \{
2
o Label the wall crossings with \ £ \
;Ihe e_quwalences induced by \ ) V2Acon
opping.
pping V1V2V1Acon A /AF1
@ Repeat for each algebra. ‘F¥ v1v2Acon
2

@ Paths correspond to

. —1 . Db b
composition of functors. FaoFy oF2: D(Acon) >DP(v1v2¥1/con)
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Results

Theorem (A.)

Q Since Neon is silting-discrete, any standard equivalance from DP(Acon), up to
algebra isomorphism, is obtained as a path in this picture starting at Cp

con *

@ Or equivalently, any heart of DP(Acon) is obtained as a path ending at Cp

con *

© The F; satisfy the Deligne relations coming from H e.g. the braid relation
F10F2OF12F2OF10F2.

@ As a consequence, there is a group homomorphism

¢: 1 (C™\Hc) — Auteq(DP(Acon))
[0 & C/\con — C/\CO" — Fo.

Corollary (A.—Wemyss)

If oc: Cp,,, — Ch,, then the isomorphism that F, induces on the Grothendieck
group is the identity.

v
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What does this mean for stability?

Consequence: Every point of Stab(D"(Acon)) can be described as
(Z,x: Cqp — Cp,,) where « is a path in our picture, and Z is a
compatible group homomorphism.

The heart of DP(Acon) corresponding to o is Fy(mod A) where recall,

Fy: DP(A) = DP(Acon).

When is Z compatible?
e By definition, we need Z(E) € H for all E € Fy(mod A);
@ Or equivalently, Z o Fy(E) € H for all E € mod A;
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|
Group Actions

In any setting, the group Auteq(7") acts on Stab(7") via
- (Z,A4)=(Zod 1 d(A)).
Restricting to im(¢) < Auteq(D"(Acon)), if B: Ca.,, — Ca.,, then
Fe-(Z,x)=(Z,p0o«x).

Since the action does not effect the central charge it is clear the forgetful
map factors as

Stab(Db(/\con)) cr
pr > /sz
Sta b(Db(Acon ))/lm(¢)
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-
Stability Conditions on Contraction Algebras

p

Stab(DP(Acon cn
(X p))\A .
Stab(Db(Acon))/im(¢)

It remains to show that:
@ py gives an isomorphism onto C"\Hc:
o show that C"\'H¢ can be written as a disjoint union of H"'s;
o observe that the action identifies (Z, «) and (Z, 3), where « and f3
start in the same chamber.
@ p1 is a regular covering map:
o show the action is of im(¢) on Stab(D"(Acon)) is free and properly
discontinuous;
e the commutative diagram linking F; with the flop functors is crucial.

Theorem (A.—Wemyss)
Stab(DP(Acon)) is the universal cover of C"\Hc. J

Jenny August (MPIM) Stability and McKay 18/23



-
What about the surface story?

We can summarise the 3-fold story as saying that studying stability for a
minimal model, and for its contraction algebra, both give the same answer.
Since things are so similar in the surfaces story, should we expect the same
answer there?

Jenny August (MPIM) Stability and McKay 19/23



-
What about the surface story?

We can summarise the 3-fold story as saying that studying stability for a
minimal model, and for its contraction algebra, both give the same answer.
Since things are so similar in the surfaces story, should we expect the same
answer there?

Two obstacles:

@ Preprojective algebras of ADE Dynkin type are not symmetric, only
self-injective. As a consequence, there might be some silting
complexes which are not tilting.

@ Aihara—Mizuno show preprojective algebras of ADE Dynkin type are
tilting-discrete, but not silting-discrete so we can’t use the results of
Paukzstello—Saorin—Zvonareva.
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Silting Quiver of Contraction Algebra with A, root system

a =
P — P — Py — P,

— VS : 5 : d
babab=0 ) e —
ababa=0 =~ ~_ Pi=P =P e

b 0—=0—=P, ]
R SR ——R =P
P—=P——>=P—0
Vg
g
Pi=Pi&P:— Pi—Pi|
0—-P——Ph—P
PP P P
P=P—=0| o~
=P &P — P — P
Py —> Py ———> () —> 0 [«1—

Ph—P—PPh>P
AV—0——P — P
IYI - Ill g l,g & 1L
0—=P =P o
i N —P—Fhoh=r"
P — P —— P —0f
Pi— P, —— P —>P;|
AV—=P——=P—P|_
PP, > B~ o
P—==0—0] >
"ll’.—-P.—l'.—-u. =
Picture from Aihara—lyama’s Silting Mutation in Triangulated Categories P —+0——+0—=0 "
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Silting Quiver for A, Preprojective Algebra

a
ab=0 4 AT 5
ba=0 ~_ 71
b

Xobh o= X[lle Rz X2Je iz XBle B oy -

\YwPl —=YllePhA I Y2le P = YB© P =

Y & Pl o=

~[1]—

Picture from Aihara—lyama'’s Silting Mutation in Triangulated Categories
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Weakly symmetric algebras

The preprojective algebras of type D»,, E7 and Eg have trivial Nakayama
permutation i.e. they are weakly symmetric algebras.
Theorem

A tilting-discrete weakly symmetric algebra is in fact silting-discrete, and
every silting complex is a tilting complex.

Now Mizuno's work completely describes the tilting theory of these
algebras, including providing a commutative diagram linking their derived
autoequivalences to the twist functors (surface analogue of flop functors)
on the geometric side.

Theorem

If \ is a weakly symmetric preprojective algebra of ADE Dynkin type, then
Stab(DP(A)) is the universal cover of the corresponding Dynkin root
system.
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Thank you!
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