Stability and McKay

Jenny August

MPIM

Talk for 'McKay Correspondence, Mutation and Related Topics' conference, July 2020.

Geometric Setting

Classical Setting: $f: X \rightarrow \operatorname{Spec} R$ is the minimal resolution of a Kleinian (Du Val) singularity.

3-fold setting: $f: X \rightarrow$ Spec R is a minimal model of an isolated compound Du Val (cDV) singularity:

- each $\operatorname{Spec} R$ has more than one, but finitely many, minimal models;
- taking a generic slice, f yields a partial resolution of a Kleinian singularity.
In both cases, work of Bridgeland-King-Reid and Van den Bergh shows how to construct a tilting bundle $\mathcal{V}=\mathcal{O}_{X} \oplus \mathcal{V}^{\prime}$ on X so that, if $\Lambda:=\operatorname{End}_{X}(\mathcal{V})$, then

$$
\mathrm{D}^{\mathrm{b}}(\operatorname{coh} X) \xrightarrow{\sim} \mathrm{D}^{\mathrm{b}}(\bmod \Lambda) .
$$

Finite-Dimensional Algebras

Set $\Lambda_{\text {con }}$ to be the stable endomorphism algebra

$$
\operatorname{End}_{X}(\mathcal{V}):=\operatorname{End}_{X}(\mathcal{V}) /\left[\mathcal{O}_{X}\right]
$$

where $\left[\mathcal{O}_{X}\right]$ consists of morphisms factoring through some $\mathcal{O}_{X}^{\oplus n}$.

- This is a finite dimensional algebra.
- In the surfaces case, $\Lambda_{\text {con }}$ is the preprojective algebra of the corresponding ADE Dynkin diagram.

Finite-Dimensional Algebras

Set $\Lambda_{\text {con }}$ to be the stable endomorphism algebra

$$
\operatorname{End}_{X}(\mathcal{V}):=\operatorname{End}_{X}(\mathcal{V}) /\left[\mathcal{O}_{X}\right]
$$

where $\left[\mathcal{O}_{X}\right]$ consists of morphisms factoring through some $\mathcal{O}_{X}^{\oplus n}$.

- This is a finite dimensional algebra.
- In the surfaces case, $\Lambda_{\text {con }}$ is the preprojective algebra of the corresponding ADE Dynkin diagram.
If Spec R is the A_{3} surface singularity, $\Lambda_{\text {con }}$ is given by the quiver and relations:

Finite-Dimensional Algebras ctd.

In the 3 -fold setting, $\Lambda_{\text {con }}$ is called the contraction algebra of f.

There is a $c A_{2}$ singularity $R:=\frac{\mathbb{C}[u, v, x, y \rrbracket}{\left(u v-x y\left(x+y^{2}\right)\right)}$ with 6 minimal models and where each of the contraction algebras is isomorphic to one of:

Finite-Dimensional Algebras ctd.

In the 3 -fold setting, $\Lambda_{\text {con }}$ is called the contraction algebra of f.

There is a $c A_{2}$ singularity $R:=\frac{\mathbb{C} \llbracket u, v, x, y \rrbracket}{\left(u v-x y\left(x+y^{2}\right)\right)}$ with 6 minimal models and where each of the contraction algebras is isomorphic to one of:

In both the surface and the 3-fold setting, we have functors

$$
\mathrm{D}^{\mathrm{b}}\left(\bmod \Lambda_{\text {con }}\right) \xrightarrow{\text { res }} \mathrm{D}^{\mathrm{b}}(\bmod \Lambda) \xrightarrow{\sim} \mathrm{D}^{\mathrm{b}}(\operatorname{coh} X) .
$$

What is Bridgeland Stability?

Definition

Let \mathcal{T} be a triangulated category with $K_{0}(\mathcal{T}) \cong \mathbb{Z}^{n}$. A stability condition on \mathcal{T} is a pair (Z, \mathcal{A}) where:

- \mathcal{A} is the heart of a bounded t-structure on \mathcal{T};
- $Z: K_{0}(\mathcal{T}) \rightarrow \mathbb{C}$ is a group homomorphism which we call the central charge;
with the compatibility conditions:

What is Bridgeland Stability?

Definition

Let \mathcal{T} be a triangulated category with $K_{0}(\mathcal{T}) \cong \mathbb{Z}^{n}$. A stability condition on \mathcal{T} is a pair (Z, \mathcal{A}) where:

- \mathcal{A} is the heart of a bounded t-structure on \mathcal{T};
- $Z: K_{0}(\mathcal{T}) \rightarrow \mathbb{C}$ is a group homomorphism which we call the central charge;
with the compatibility conditions:
(1) If $E \in \mathcal{A}$ then $Z(E) \in \mathbb{H}$, where $\mathbb{H}=\mathbb{R}_{>0} e^{i \pi \phi}, \phi \in(0,1]$;
(2) Z satisfies the Harder-Narasimhan (HN) property.

What is Bridgeland Stability?

Definition

Let \mathcal{T} be a triangulated category with $K_{0}(\mathcal{T}) \cong \mathbb{Z}^{n}$. A stability condition on \mathcal{T} is a pair (Z, \mathcal{A}) where:

- \mathcal{A} is the heart of a bounded t-structure on \mathcal{T};
- $Z: K_{0}(\mathcal{T}) \rightarrow \mathbb{C}$ is a group homomorphism which we call the central charge;
with the compatibility conditions:
(1) If $E \in \mathcal{A}$ then $Z(E) \in \mathbb{H}$, where $\mathbb{H}=\mathbb{R}_{>0} e^{i \pi \phi}, \phi \in(0,1]$;
(2) Z satisfies the Harder-Narasimhan (HN) property.

We write $\operatorname{Stab}(\mathcal{T})$ for the set of all (locally-finite) stability conditions on \mathcal{T}.

What is Bridgeland Stability?

If $\mathcal{A} \subset \mathcal{T}$ has finite length, the locally-finite and HN properties are automatically satisfied, and so

$$
\operatorname{Stab}(\mathcal{A})=\{(Z, \mathcal{B}) \in \operatorname{Stab}(\mathcal{T}) \mid \mathcal{B}=\mathcal{A}\} \cong \mathbb{H}^{n}
$$

What is Bridgeland Stability?

If $\mathcal{A} \subset \mathcal{T}$ has finite length, the locally-finite and HN properties are automatically satisfied, and so

$$
\operatorname{Stab}(\mathcal{A})=\{(Z, \mathcal{B}) \in \operatorname{Stab}(\mathcal{T}) \mid \mathcal{B}=\mathcal{A}\} \cong \mathbb{H}^{n}
$$

Theorem (Bridgeland)
There is a topology on $\operatorname{Stab}(\mathcal{T})$ such that the forgetful map

$$
\begin{aligned}
p: \operatorname{Stab}(\mathcal{T}) & \rightarrow \operatorname{Hom}_{\mathbb{Z}}\left(K_{0}(\mathcal{T}), \mathbb{C}\right) \cong \mathbb{C}^{n} \\
(Z, \mathcal{A}) & \mapsto Z
\end{aligned}
$$

is a local homeomorphism. In particular, $\operatorname{Stab}(\mathcal{T})$ is a complex manifold.
One of the key difficulties in describing this space is understanding all the hearts of \mathcal{T}.

Stability for Minimal Resolutions

For both the surface and 3-fold settings we do not study stability of $\mathrm{D}^{\mathrm{b}}(\operatorname{coh} X)$, but instead on the full subcategory

$$
\mathcal{C}:=\left\{\mathcal{F} \in \mathrm{D}^{\mathrm{b}}(\operatorname{coh} X) \mid \mathrm{Rf}_{*} \mathcal{F}=0\right\}
$$

Stability for Minimal Resolutions

For both the surface and 3-fold settings we do not study stability of $\mathrm{D}^{\mathrm{b}}(\operatorname{coh} X)$, but instead on the full subcategory

$$
\mathcal{C}:=\left\{\mathcal{F} \in \mathrm{D}^{\mathrm{b}}(\operatorname{coh} X) \mid \mathrm{R} f_{*} \mathcal{F}=0\right\}
$$

Suppose that $f: X \rightarrow \operatorname{Spec} R$ is the minimal resolution of a Kleinian singularity and \mathfrak{h} is the corresponding ADE root system. The complexified complement of \mathfrak{h} is $\mathfrak{h}_{\text {reg }}$.

Theorem (Bridgeland, Brav-Thomas)
In this surfaces case, there is a connected component of $\operatorname{Stab}(\mathcal{C})$ which is the universal cover of $\mathfrak{h}_{\text {reg }}$.

Stability for Minimal Models

In the 3-fold setting, since a minimal model $f: X \rightarrow \operatorname{Spec} R$ cuts to a partial resolution of a Kleinian singularity, it has an associated real hyperplane arrangement \mathcal{H}, given by (an intersection arrangement of) the corresponding ADE root system.
e.g. for the $c A_{2}$ example given before the associated hyperplane arrangement is the A_{2} root system.

Stability for Minimal Models

In the 3-fold setting, since a minimal model $f: X \rightarrow \operatorname{Spec} R$ cuts to a partial resolution of a Kleinian singularity, it has an associated real hyperplane arrangement \mathcal{H}, given by (an intersection arrangement of) the corresponding ADE root system.
e.g. for the $c A_{2}$ example given before the associated hyperplane arrangement is the A_{2} root system.

Theorem (Hirano-Wemyss)
In the 3-fold setting, there is a connected component of $\operatorname{Stab}(\mathcal{C})$ given by the universal cover of $\mathbb{C}^{n} \backslash \mathcal{H}_{\mathbb{C}}$.

To show the stability manifold is contractible, they have to use a result known as Deligne's $K(\pi, 1)$ theorem for ADE root systems.

Silting/Tilting Theory

Suppose A is a finite dimensional algebra over \mathbb{C}.

Definition

A complex $T \in \mathrm{~K}^{\mathrm{b}}(\operatorname{proj} A)$ is called tilting (silting) if:
(1) $\operatorname{Hom}_{A}(T, T[n])=0$ for all $n \neq 0(n>0)$;
(2) T generates $\mathrm{K}^{\mathrm{b}}(\operatorname{proj} A)$ as a triangulated category.
e.g. $A, A[n]$ are tilting complexes over A.

Theorem (Rickard)
Two finite dimensional algebras A and B are derived equivalent if and only if there exists a tilting complex $T \in \mathrm{~K}^{\mathrm{b}}(\operatorname{proj} A)$ such that $\operatorname{End}_{A}(T) \cong B$.

Connection with Stability

Theorem (Koenig-Yang Correspondence)
There is a bijection between:

- silting complexes in $\mathrm{K}^{\mathrm{b}}(\operatorname{proj} A)$;
- hearts of bounded t-structures on $\mathrm{D}^{\mathrm{b}}(A)$ with finite length.

So each silting complex in $\mathrm{K}^{\mathrm{b}}(\operatorname{proj} A)$ gives a piece of $\operatorname{Stab}\left(\mathrm{D}^{\mathrm{b}}(A)\right)$ isomorphic to \mathbb{H}^{n}, and mutation controls how these pieces fit together.

Connection with Stability

Theorem (Koenig-Yang Correspondence)
There is a bijection between:

- silting complexes in $\mathrm{K}^{\mathrm{b}}(\operatorname{proj} A)$;
- hearts of bounded t-structures on $\mathrm{D}^{\mathrm{b}}(A)$ with finite length.

So each silting complex in $\mathrm{K}^{\mathrm{b}}(\operatorname{proj} A)$ gives a piece of $\operatorname{Stab}\left(\mathrm{D}^{\mathrm{b}}(A)\right)$ isomorphic to \mathbb{H}^{n}, and mutation controls how these pieces fit together.

If A is silting-discrete (a finiteness condition on the number of silting complexes), then Pauksztello-Saorin-Zvonareva show:
(1) the heart of any bounded t-structure on $\mathrm{D}^{\mathrm{b}}(A)$ has finite length;
(2) $\operatorname{Stab}\left(\mathrm{D}^{\mathrm{b}}(A)\right)$ is contractible.

Back to Contraction Algebras

For now, assume we are in the 3 -fold setting:
Theorem (A.)
Contraction algebras are silting-discrete.
With a bit of work, this essentially comes down to the fact each cDV singularity has finitely many minimal models.

- So we know $\operatorname{Stab}\left(\mathrm{D}^{\mathrm{b}}\left(\Lambda_{\text {con }}\right)\right)$ is contractible, and that all hearts can be described using silting complexes.
- But moreover, contraction algebras are symmetric!
- One consequence is that every silting complex is in fact a tilting complex.
- So all hearts of $\mathrm{D}^{\mathrm{b}}\left(\Lambda_{\text {con }}\right)$ can be described using tilting complexes, or equivalently, standard derived equivalences.

Flops

For a given isolated cDV singularity, all its minimal models are connected by flops.

- Loosely, we can think of these as choosing a curve in the exceptional locus, cutting it out, and gluing it back in differently.
- If we label the curves C_{1}, \ldots, C_{n}, and denote the minimal model obtained by flopping curve C_{i} by $f_{i}: X_{i} \rightarrow$ Spec R, there are associated derived equivalences

$$
G_{i}: \mathrm{D}^{\mathrm{b}}(\operatorname{coh} X) \rightarrow \mathrm{D}^{\mathrm{b}}\left(\operatorname{coh} X_{i}\right)
$$

called flop functors.

- Understanding compositions of these flop functors, and in particular the autoequivalences obtained by composing flop functors is key to obtaining the Hirano-Wemyss result.

Flops and Contraction Algebras

Suppose $f: X \rightarrow$ Spec R has contraction algebra $\Lambda_{\text {con }}$ and the $f_{i}: X_{i} \rightarrow \operatorname{Spec} R$ has contraction algebra $v_{i} \Lambda_{\text {con }}$.

Theorem (A.)
There is a standard derived equivalence $F_{i}: \mathrm{D}^{\mathrm{b}}\left(\Lambda_{\text {con }}\right) \rightarrow \mathrm{D}^{\mathrm{b}}\left(v_{i} \Lambda_{\text {con }}\right)$ making the following diagram commute:

$$
\begin{gathered}
\mathrm{D}^{\mathrm{b}}\left(\Lambda_{\text {con }}\right) \xrightarrow{\text { res }} \mathrm{D}^{\mathrm{b}}(\operatorname{coh} X) \\
F_{i} \downarrow \\
\mathrm{D}^{\mathrm{b}}\left(v_{i} \Lambda_{\text {con }}\right) \xrightarrow{\text { res }} \mathrm{D}^{\mathrm{b}}\left(\operatorname{loh} X_{i}\right)
\end{gathered}
$$

Derived Equivalences

If $f: X \rightarrow \operatorname{Spec} R$ is a minimal model with associated hyperplane arrangement \mathcal{H}, Wemyss shows the chambers are in bijection with the minimal models of $\operatorname{Spec} R$, and wall crossing corresponds to flopping.

Derived Equivalences

If $f: X \rightarrow \operatorname{Spec} R$ is a minimal model with associated hyperplane arrangement \mathcal{H}, Wemyss shows the chambers are in bijection with the minimal models of $\operatorname{Spec} R$, and wall crossing corresponds to flopping.

- Replace each minimal model with its contraction algebra.

Derived Equivalences

If $f: X \rightarrow \operatorname{Spec} R$ is a minimal model with associated hyperplane arrangement \mathcal{H}, Wemyss shows the chambers are in bijection with the minimal models of $\operatorname{Spec} R$, and wall crossing corresponds to flopping.

- Replace each minimal model with its contraction algebra.
- Label the wall crossings with the equivalences induced by flopping.

Derived Equivalences

If $f: X \rightarrow \operatorname{Spec} R$ is a minimal model with associated hyperplane arrangement \mathcal{H}, Wemyss shows the chambers are in bijection with the minimal models of $\operatorname{Spec} R$, and wall crossing corresponds to flopping.

- Replace each minimal model with its contraction algebra.
- Label the wall crossings with the equivalences induced by flopping.

Derived Equivalences

If $f: X \rightarrow \operatorname{Spec} R$ is a minimal model with associated hyperplane arrangement \mathcal{H}, Wemyss shows the chambers are in bijection with the minimal models of $\operatorname{Spec} R$, and wall crossing corresponds to flopping.

- Replace each minimal model with its contraction algebra.
- Label the wall crossings with the equivalences induced by flopping.
- Repeat for each algebra.

Derived Equivalences

If $f: X \rightarrow \operatorname{Spec} R$ is a minimal model with associated hyperplane arrangement \mathcal{H}, Wemyss shows the chambers are in bijection with the minimal models of $\operatorname{Spec} R$, and wall crossing corresponds to flopping.

- Replace each minimal model with its contraction algebra.
- Label the wall crossings with the equivalences induced by flopping.
- Repeat for each algebra.

Derived Equivalences

If $f: X \rightarrow \operatorname{Spec} R$ is a minimal model with associated hyperplane arrangement \mathcal{H}, Wemyss shows the chambers are in bijection with the minimal models of $\operatorname{Spec} R$, and wall crossing corresponds to flopping.

- Replace each minimal model with its contraction algebra.
- Label the wall crossings with the equivalences induced by flopping.
- Repeat for each algebra.

Derived Equivalences

If $f: X \rightarrow \operatorname{Spec} R$ is a minimal model with associated hyperplane arrangement \mathcal{H}, Wemyss shows the chambers are in bijection with the minimal models of $\operatorname{Spec} R$, and wall crossing corresponds to flopping.

- Replace each minimal model with its contraction algebra.
- Label the wall crossings with the equivalences induced by flopping.
- Repeat for each algebra.

Derived Equivalences

If $f: X \rightarrow \operatorname{Spec} R$ is a minimal model with associated hyperplane arrangement \mathcal{H}, Wemyss shows the chambers are in bijection with the minimal models of $\operatorname{Spec} R$, and wall crossing corresponds to flopping.

- Replace each minimal model with its contraction algebra.
- Label the wall crossings with the equivalences induced by flopping.
- Repeat for each algebra.

Derived Equivalences

If $f: X \rightarrow \operatorname{Spec} R$ is a minimal model with associated hyperplane arrangement \mathcal{H}, Wemyss shows the chambers are in bijection with the minimal models of $\operatorname{Spec} R$, and wall crossing corresponds to flopping.

- Replace each minimal model with its contraction algebra.
- Label the wall crossings with the equivalences induced by flopping.
- Repeat for each algebra.

- Paths correspond to composition of functors.

Derived Equivalences

If $f: X \rightarrow \operatorname{Spec} R$ is a minimal model with associated hyperplane arrangement \mathcal{H}, Wemyss shows the chambers are in bijection with the minimal models of $\operatorname{Spec} R$, and wall crossing corresponds to flopping.

- Replace each minimal model with its contraction algebra.
- Label the wall crossings with the equivalences induced by flopping.
- Repeat for each algebra.

- Paths correspond to composition of functors.

$$
F_{2} \circ F_{1}^{-1} \circ F_{2}: D^{\mathrm{b}}\left(\Lambda_{\text {con }}\right) \rightarrow \mathrm{D}^{\mathrm{b}}\left(v_{1} v_{2} v_{1} \Lambda_{\text {con }}\right)
$$

Results

Theorem (A.)

(1) Since $\Lambda_{\text {con }}$ is silting-discrete, any standard equivalance from $\mathrm{D}^{\mathrm{b}}\left(\Lambda_{\text {con }}\right)$, up to algebra isomorphism, is obtained as a path in this picture starting at $C_{\Lambda_{\text {con }}}$.
(2) Or equivalently, any heart of $\mathrm{D}^{\mathrm{b}}\left(\Lambda_{\text {con }}\right)$ is obtained as a path ending at $C_{\Lambda_{\text {con }}}$.
(3) The F_{i} satisfy the Deligne relations coming from \mathcal{H} e.g. the braid relation $F_{1} \circ F_{2} \circ F_{1} \cong F_{2} \circ F_{1} \circ F_{2}$.
(1) As a consequence, there is a group homomorphism

$$
\begin{aligned}
& \phi: \pi_{1}\left(\mathbb{C}^{n} \backslash \mathcal{H}_{\mathbb{C}}\right) \rightarrow \text { Auteq }\left(\mathrm{D}^{\mathrm{b}}\left(\Lambda_{\text {con }}\right)\right) \\
& \alpha: C_{\Lambda_{\text {con }}} \rightarrow C_{\Lambda_{\text {con }}} \mapsto F_{\alpha} .
\end{aligned}
$$

Corollary (A.-Wemyss)
If $\alpha: C_{\Lambda_{\text {con }}} \rightarrow C_{\Lambda_{\text {con }}}$, then the isomorphism that F_{α} induces on the Grothendieck group is the identity.

What does this mean for stability?

Consequence: Every point of $\operatorname{Stab}\left(\mathrm{D}^{\mathrm{b}}\left(\Lambda_{\text {con }}\right)\right)$ can be described as $\left(Z, \alpha: C_{A} \rightarrow C_{\Lambda_{\text {con }}}\right)$ where α is a path in our picture, and Z is a compatible group homomorphism.

The heart of $\mathrm{D}^{\mathrm{b}}\left(\Lambda_{\text {con }}\right)$ corresponding to α is $F_{\alpha}(\bmod A)$ where recall,

$$
F_{\alpha}: \mathrm{D}^{\mathrm{b}}(A) \rightarrow \mathrm{D}^{\mathrm{b}}\left(\Lambda_{\text {con }}\right) .
$$

When is Z compatible?

- By definition, we need $Z(E) \in \mathbb{H}$ for all $E \in F_{\alpha}(\bmod A)$;
- Or equivalently, $Z \circ F_{\alpha}(E) \in \mathbb{H}$ for all $E \in \bmod A$;

Group Actions

In any setting, the group $\operatorname{Auteq}(\mathcal{T})$ acts on $\operatorname{Stab}(\mathcal{T})$ via

$$
\Phi \cdot(Z, \mathcal{A})=\left(Z \circ \Phi^{-1}, \Phi(\mathcal{A})\right)
$$

Restricting to $\operatorname{im}(\phi) \leq \operatorname{Auteq}\left(\mathrm{D}^{\mathrm{b}}\left(\Lambda_{\text {con }}\right)\right)$, if $\beta: C_{\Lambda_{\text {con }}} \rightarrow C_{\Lambda_{\text {con }}}$ then

$$
F_{\beta} \cdot(Z, \alpha)=(Z, \beta \circ \alpha)
$$

Since the action does not effect the central charge it is clear the forgetful map factors as

Stability Conditions on Contraction Algebras

It remains to show that:

- p_{2} gives an isomorphism onto $\mathbb{C}^{n} \backslash \mathcal{H}_{\mathbb{C}}$:
- show that $\mathbb{C}^{n} \backslash \mathcal{H}_{\mathbb{C}}$ can be written as a disjoint union of $\mathbb{H}^{n \prime}$;
- observe that the action identifies (Z, α) and (Z, β), where α and β start in the same chamber.
- p_{1} is a regular covering map:
- show the action is of $\operatorname{im}(\phi)$ on $\operatorname{Stab}\left(\mathrm{D}^{\mathrm{b}}\left(\Lambda_{\text {con }}\right)\right)$ is free and properly discontinuous;
- the commutative diagram linking F_{i} with the flop functors is crucial.

Theorem (A.-Wemyss)
$\operatorname{Stab}\left(\mathrm{D}^{\mathrm{b}}\left(\Lambda_{\text {con }}\right)\right)$ is the universal cover of $\mathbb{C}^{n} \backslash \mathcal{H}_{\mathbb{C}}$.

What about the surface story?

We can summarise the 3-fold story as saying that studying stability for a minimal model, and for its contraction algebra, both give the same answer. Since things are so similar in the surfaces story, should we expect the same answer there?

What about the surface story?

We can summarise the 3-fold story as saying that studying stability for a minimal model, and for its contraction algebra, both give the same answer. Since things are so similar in the surfaces story, should we expect the same answer there?

Two obstacles:

- Preprojective algebras of ADE Dynkin type are not symmetric, only self-injective. As a consequence, there might be some silting complexes which are not tilting.
- Aihara-Mizuno show preprojective algebras of ADE Dynkin type are tilting-discrete, but not silting-discrete so we can't use the results of Paukzstello-Saorin-Zvonareva.

Silting Quiver of Contraction Algebra with A_{2} root system

Silting Quiver for A_{2} Preprojective Algebra

Picture from Aihara-lyama's Silting Mutation in Triangulated Categories

Weakly symmetric algebras

The preprojective algebras of type $D_{2 n}, E_{7}$ and E_{8} have trivial Nakayama permutation i.e. they are weakly symmetric algebras.

Theorem

A tilting-discrete weakly symmetric algebra is in fact silting-discrete, and every silting complex is a tilting complex.

Now Mizuno's work completely describes the tilting theory of these algebras, including providing a commutative diagram linking their derived autoequivalences to the twist functors (surface analogue of flop functors) on the geometric side.

Theorem

If Λ is a weakly symmetric preprojective algebra of ADE Dynkin type, then $\operatorname{Stab}\left(\mathrm{D}^{\mathrm{b}}(\Lambda)\right)$ is the universal cover of the corresponding Dynkin root system.

Thank you!

