Stability and McKay

Jenny August

MPIM

Talk for 'McKay Correspondence, Mutation and Related Topics' conference, July 2020.

A B < A B </p>

Geometric Setting

Classical Setting: $f: X \rightarrow \text{Spec } R$ is the minimal resolution of a Kleinian (Du Val) singularity.

3-fold setting: $f: X \to \text{Spec } R$ is a minimal model of an isolated compound Du Val (cDV) singularity:

- each Spec *R* has more than one, but finitely many, minimal models;
- taking a generic slice, *f* yields a partial resolution of a Kleinian singularity.

In both cases, work of Bridgeland–King–Reid and Van den Bergh shows how to construct a tilting bundle $\mathcal{V} = \mathcal{O}_X \oplus \mathcal{V}'$ on X so that, if $\Lambda := \operatorname{End}_X(\mathcal{V})$, then

 $\mathrm{D}^{\mathrm{b}}(\mathrm{coh}\, X) \xrightarrow{\sim} \mathrm{D}^{\mathrm{b}}(\mathrm{mod}\, \Lambda).$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Finite-Dimensional Algebras

Set Λ_{con} to be the stable endomorphism algebra

```
\underline{\operatorname{End}}_X(\mathcal{V}) := \operatorname{End}_X(\mathcal{V})/[\mathcal{O}_X]
```

where $[\mathcal{O}_X]$ consists of morphisms factoring through some $\mathcal{O}_X^{\oplus n}$.

- This is a finite dimensional algebra.
- In the surfaces case, Λ_{con} is the preprojective algebra of the corresponding ADE Dynkin diagram.

<ロト <問ト < 注ト < 注ト = 注

Finite-Dimensional Algebras

Set Λ_{con} to be the stable endomorphism algebra

```
\underline{\operatorname{End}}_X(\mathcal{V}) := \operatorname{End}_X(\mathcal{V})/[\mathcal{O}_X]
```

where $[\mathcal{O}_X]$ consists of morphisms factoring through some $\mathcal{O}_X^{\oplus n}$.

- This is a finite dimensional algebra.
- In the surfaces case, Λ_{con} is the preprojective algebra of the corresponding ADE Dynkin diagram.

If Spec *R* is the A_3 surface singularity, Λ_{con} is given by the quiver and relations:

イロト イヨト イヨト ・

Finite-Dimensional Algebras ctd.

In the 3-fold setting, Λ_{con} is called the *contraction algebra of f*.

There is a cA_2 singularity $R := \frac{\mathbb{C}\llbracket u, v, x, y \rrbracket}{(uv - xy(x+y^2))}$ with 6 minimal models and where each of the contraction algebras is isomorphic to one of:

A B K A B K

Finite-Dimensional Algebras ctd.

In the 3-fold setting, Λ_{con} is called the *contraction algebra of f*.

There is a cA_2 singularity $R := \frac{\mathbb{C}[\![u,v,x,y]\!]}{(uv-xy(x+y^2))}$ with 6 minimal models and where each of the contraction algebras is isomorphic to one of:

In both the surface and the 3-fold setting, we have functors

 $\mathrm{D}^{\mathrm{b}}(\mathrm{mod}\,\Lambda_{\mathsf{con}}) \xrightarrow{\mathrm{res}} \mathrm{D}^{\mathrm{b}}(\mathrm{mod}\,\Lambda) \xrightarrow{\sim} \mathrm{D}^{\mathrm{b}}(\mathrm{coh}\,X).$

< 日 > < 同 > < 三 > < 三 > <

Definition

Let \mathcal{T} be a triangulated category with $K_0(\mathcal{T}) \cong \mathbb{Z}^n$. A stability condition on \mathcal{T} is a pair (Z, \mathcal{A}) where:

- \mathcal{A} is the heart of a bounded t-structure on \mathcal{T} ;
- Z: K₀(T) → C is a group homomorphism which we call the central charge;

with the compatibility conditions:

Definition

Let \mathcal{T} be a triangulated category with $K_0(\mathcal{T}) \cong \mathbb{Z}^n$. A stability condition on \mathcal{T} is a pair (Z, \mathcal{A}) where:

- \mathcal{A} is the heart of a bounded t-structure on \mathcal{T} ;
- Z: K₀(T) → C is a group homomorphism which we call the central charge;

with the compatibility conditions:

- If $E \in \mathcal{A}$ then $Z(E) \in \mathbb{H}$, where $\mathbb{H} = \mathbb{R}_{>0}e^{i\pi\phi}$, $\phi \in (0, 1]$;
- Z satisfies the Harder-Narasimhan (HN) property.

< □ > < □ > < □ > < □ > < □ > < □ >

Definition

Let \mathcal{T} be a triangulated category with $K_0(\mathcal{T}) \cong \mathbb{Z}^n$. A stability condition on \mathcal{T} is a pair (Z, \mathcal{A}) where:

- \mathcal{A} is the heart of a bounded t-structure on \mathcal{T} ;
- Z: K₀(T) → C is a group homomorphism which we call the central charge;

with the compatibility conditions:

- If $E \in \mathcal{A}$ then $Z(E) \in \mathbb{H}$, where $\mathbb{H} = \mathbb{R}_{>0}e^{i\pi\phi}$, $\phi \in (0, 1]$;
- **2** *Satisfies the Harder-Narasimhan (HN) property.*

We write $Stab(\mathcal{T})$ for the set of all (locally-finite) stability conditions on \mathcal{T} .

If $\mathcal{A}\subset\mathcal{T}$ has finite length, the locally-finite and HN properties are automatically satisfied, and so

 $\mathsf{Stab}(\mathcal{A}) = \{(Z, \mathcal{B}) \in \mathsf{Stab}(\mathcal{T}) \mid \mathcal{B} = \mathcal{A}\} \cong \mathbb{H}^n.$

イロト 不得 トイヨト イヨト

If $A \subset T$ has finite length, the locally-finite and HN properties are automatically satisfied, and so

$$\mathsf{Stab}(\mathcal{A}) = \{(Z, \mathcal{B}) \in \mathsf{Stab}(\mathcal{T}) \mid \mathcal{B} = \mathcal{A}\} \cong \mathbb{H}^n.$$

Theorem (Bridgeland)

There is a topology on $Stab(\mathcal{T})$ such that the forgetful map

$$p\colon \operatorname{Stab}(\mathcal{T}) o \operatorname{Hom}_{\mathbb{Z}}(K_0(\mathcal{T}), \mathbb{C}) \cong \mathbb{C}^n$$

 $(Z, \mathcal{A}) \mapsto Z$

is a local homeomorphism. In particular, $Stab(\mathcal{T})$ is a complex manifold.

One of the key difficulties in describing this space is understanding all the hearts of \mathcal{T} .

Stability for Minimal Resolutions

For both the surface and 3-fold settings we do not study stability of $D^{b}(\operatorname{coh} X)$, but instead on the full subcategory

$$\mathcal{C} := \{ \mathcal{F} \in \mathrm{D^b}(\mathrm{coh}\, X) \mid \mathsf{R} f_* \mathcal{F} = \mathsf{0} \}.$$

イロト イボト イヨト イヨト

Stability for Minimal Resolutions

For both the surface and 3-fold settings we do not study stability of $D^{b}(\operatorname{coh} X)$, but instead on the full subcategory

$$\mathcal{C} := \{ \mathcal{F} \in \mathrm{D^b}(\mathrm{coh}\, X) \mid \mathsf{R} f_* \mathcal{F} = \mathsf{0} \}.$$

Suppose that $f: X \to \operatorname{Spec} R$ is the minimal resolution of a Kleinian singularity and \mathfrak{h} is the corresponding ADE root system. The complexified complement of \mathfrak{h} is $\mathfrak{h}_{\operatorname{reg}}$.

Theorem (Bridgeland, Brav-Thomas)

In this surfaces case, there is a connected component of Stab(C) which is the universal cover of \mathfrak{h}_{reg} .

< □ > < □ > < □ > < □ > < □ > < □ >

Stability for Minimal Models

In the 3-fold setting, since a minimal model $f: X \to \text{Spec } R$ cuts to a partial resolution of a Kleinian singularity, it has an associated real hyperplane arrangement \mathcal{H} , given by (an intersection arrangement of) the corresponding ADE root system.

e.g. for the cA_2 example given before the associated hyperplane arrangement is the A_2 root system.

< □ > < □ > < □ > < □ > < □ > < □ >

Stability for Minimal Models

In the 3-fold setting, since a minimal model $f: X \to \text{Spec } R$ cuts to a partial resolution of a Kleinian singularity, it has an associated real hyperplane arrangement \mathcal{H} , given by (an intersection arrangement of) the corresponding ADE root system.

e.g. for the cA_2 example given before the associated hyperplane arrangement is the A_2 root system.

< 日 > < 同 > < 三 > < 三 > <

Theorem (Hirano-Wemyss)

In the 3-fold setting, there is a connected component of $Stab(\mathcal{C})$ given by the universal cover of $\mathbb{C}^n \setminus \mathcal{H}_{\mathbb{C}}$.

To show the stability manifold is contractible, they have to use a result known as Deligne's $K(\pi, 1)$ theorem for ADE root systems.

${\sf Silting}/{\sf Tilting} \ {\sf Theory}$

Suppose A is a finite dimensional algebra over \mathbb{C} .

Definition

- A complex $T \in K^{b}(\text{proj } A)$ is called tilting (silting) if:
 - Hom_A(T, T[n]) = 0 for all $n \neq 0$ (n > 0);
 - **2** T generates $K^{b}(\text{proj } A)$ as a triangulated category.
- e.g. A, A[n] are tilting complexes over A.

Theorem (Rickard)

Two finite dimensional algebras A and B are derived equivalent if and only if there exists a tilting complex $T \in K^{b}(\text{proj } A)$ such that $\text{End}_{A}(T) \cong B$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Connection with Stability

Theorem (Koenig-Yang Correspondence)

There is a bijection between:

- *silting complexes in* K^b(proj *A*);
- hearts of bounded t-structures on $D^{b}(A)$ with finite length.

So each silting complex in $K^{b}(\text{proj } A)$ gives a piece of $Stab(D^{b}(A))$ isomorphic to \mathbb{H}^{n} , and mutation controls how these pieces fit together.

.

Connection with Stability

Theorem (Koenig-Yang Correspondence)

There is a bijection between:

- *silting complexes in* K^b(proj *A*);
- hearts of bounded t-structures on $D^{b}(A)$ with finite length.

So each silting complex in $K^{b}(\text{proj } A)$ gives a piece of $Stab(D^{b}(A))$ isomorphic to \mathbb{H}^{n} , and mutation controls how these pieces fit together.

If A is silting-discrete (a finiteness condition on the number of silting complexes), then Pauksztello–Saorin–Zvonareva show:

the heart of any bounded *t*-structure on D^b(A) has finite length;
Stab(D^b(A)) is contractible.

イロト 不得 トイヨト イヨト

Back to Contraction Algebras

For now, assume we are in the 3-fold setting:

Theorem (A.)

Contraction algebras are silting-discrete.

With a bit of work, this essentially comes down to the fact each cDV singularity has finitely many minimal models.

- So we know Stab($D^{b}(\Lambda_{con})$) is contractible, and that all hearts can be described using silting complexes.
- But moreover, contraction algebras are symmetric!
- One consequence is that every silting complex is in fact a tilting complex.
- So all hearts of $D^b(\Lambda_{con})$ can be described using tilting complexes, or equivalently, standard derived equivalences.

・ロト ・ 同ト ・ ヨト ・ ヨト

For a given isolated cDV singularity, all its minimal models are connected by *flops*.

- Loosely, we can think of these as choosing a curve in the exceptional locus, cutting it out, and gluing it back in differently.
- If we label the curves C₁,..., C_n, and denote the minimal model obtained by flopping curve C_i by f_i: X_i → Spec R, there are associated derived equivalences

$$G_i \colon \operatorname{D^b}(\operatorname{coh} X) \to \operatorname{D^b}(\operatorname{coh} X_i)$$

called flop functors.

• Understanding compositions of these flop functors, and in particular the autoequivalences obtained by composing flop functors is key to obtaining the Hirano-Wemyss result.

イロト 不得 トイヨト イヨト

Flops and Contraction Algebras

Suppose $f: X \to \text{Spec } R$ has contraction algebra Λ_{con} and the $f_i: X_i \to \text{Spec } R$ has contraction algebra $\nu_i \Lambda_{\text{con}}$.

Theorem (A.)

There is a standard derived equivalence $F_i \colon D^{\mathrm{b}}(\Lambda_{\mathrm{con}}) \to D^{\mathrm{b}}(\nu_i \Lambda_{\mathrm{con}})$ making the following diagram commute:

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

If $f: X \to \text{Spec } R$ is a minimal model with associated hyperplane arrangement \mathcal{H} , Wemyss shows the chambers are in bijection with the minimal models of Spec R, and wall crossing corresponds to flopping.

• • = • • = •

If $f: X \to \text{Spec } R$ is a minimal model with associated hyperplane arrangement \mathcal{H} , Wemyss shows the chambers are in bijection with the minimal models of Spec R, and wall crossing corresponds to flopping.

A B A A B A

If $f: X \to \text{Spec } R$ is a minimal model with associated hyperplane arrangement \mathcal{H} , Wemyss shows the chambers are in bijection with the minimal models of Spec R, and wall crossing corresponds to flopping.

- Replace each minimal model with its contraction algebra.
- Label the wall crossings with the equivalences induced by flopping.

A B A A B A

If $f: X \to \text{Spec } R$ is a minimal model with associated hyperplane arrangement \mathcal{H} , Wemyss shows the chambers are in bijection with the minimal models of Spec R, and wall crossing corresponds to flopping.

- Replace each minimal model with its contraction algebra.
- Label the wall crossings with the equivalences induced by flopping.

- E > - E >

If $f: X \to \text{Spec } R$ is a minimal model with associated hyperplane arrangement \mathcal{H} , Wemyss shows the chambers are in bijection with the minimal models of Spec R, and wall crossing corresponds to flopping.

- Replace each minimal model with its contraction algebra.
- Label the wall crossings with the equivalences induced by flopping.
- Repeat for each algebra.

If $f: X \to \text{Spec } R$ is a minimal model with associated hyperplane arrangement \mathcal{H} , Wemyss shows the chambers are in bijection with the minimal models of Spec R, and wall crossing corresponds to flopping.

- Replace each minimal model with its contraction algebra.
- Label the wall crossings with the equivalences induced by flopping.
- Repeat for each algebra.

4 B K 4 B K

If $f: X \to \text{Spec } R$ is a minimal model with associated hyperplane arrangement \mathcal{H} , Wemyss shows the chambers are in bijection with the minimal models of Spec R, and wall crossing corresponds to flopping.

- Replace each minimal model with its contraction algebra.
- Label the wall crossings with the equivalences induced by flopping.
- Repeat for each algebra.

- B - - B

If $f: X \to \text{Spec } R$ is a minimal model with associated hyperplane arrangement \mathcal{H} , Wemyss shows the chambers are in bijection with the minimal models of Spec R, and wall crossing corresponds to flopping.

- Replace each minimal model with its contraction algebra.
- Label the wall crossings with the equivalences induced by flopping.
- Repeat for each algebra.

- B - - B

If $f: X \to \text{Spec } R$ is a minimal model with associated hyperplane arrangement \mathcal{H} , Wemyss shows the chambers are in bijection with the minimal models of Spec R, and wall crossing corresponds to flopping.

- Replace each minimal model with its contraction algebra.
- Label the wall crossings with the equivalences induced by flopping.
- Repeat for each algebra.

If $f: X \to \text{Spec } R$ is a minimal model with associated hyperplane arrangement \mathcal{H} , Wemyss shows the chambers are in bijection with the minimal models of Spec R, and wall crossing corresponds to flopping.

- Replace each minimal model with its contraction algebra.
- Label the wall crossings with the equivalences induced by flopping.
- Repeat for each algebra.
- Paths correspond to composition of functors.

(<)</pre>

If $f: X \to \text{Spec } R$ is a minimal model with associated hyperplane arrangement \mathcal{H} , Wemyss shows the chambers are in bijection with the minimal models of Spec R, and wall crossing corresponds to flopping.

- Replace each minimal model with its contraction algebra.
- Label the wall crossings with the equivalences induced by flopping.
- Repeat for each algebra.
- Paths correspond to composition of functors.

 $\textit{F}_2 \circ \textit{F}_1^{-1} \circ \textit{F}_2 \colon \operatorname{D^b}(\Lambda_{con}) {\rightarrow} \operatorname{D^b}(\nu_1 \nu_2 \nu_1 \Lambda_{con})$

• • = • • = •

Results

Theorem (A.)

- Since Λ_{con} is silting-discrete, any standard equivalance from $D^{b}(\Lambda_{con})$, up to algebra isomorphism, is obtained as a path in this picture starting at $C_{\Lambda_{con}}$.
- 2 Or equivalently, any heart of ${\rm D}^{\rm b}(\Lambda_{con})$ is obtained as a path ending at $C_{\Lambda_{con}}$.
- Solution The F_i satisfy the Deligne relations coming from H e.g. the braid relation F₁ F₂ F₁ ≅ F₂ F₁ F₂.
- As a consequence, there is a group homomorphism

$$\begin{split} \phi \colon \pi_1(\mathbb{C}^n \backslash \mathcal{H}_{\mathbb{C}}) &\to \mathsf{Auteq}(\mathrm{D^b}(\Lambda_{\mathsf{con}})) \\ \alpha \colon \mathcal{C}_{\Lambda_{\mathsf{con}}} \to \mathcal{C}_{\Lambda_{\mathsf{con}}} \mapsto \mathcal{F}_{\alpha}. \end{split}$$

Corollary (A.-Wemyss)

If $\alpha: C_{\Lambda_{con}} \to C_{\Lambda_{con}}$, then the isomorphism that F_{α} induces on the Grothendieck group is the identity.

Jenny August (MPIM)

Stability and McKay

What does this mean for stability?

Consequence: Every point of $\operatorname{Stab}(\operatorname{D^b}(\Lambda_{\operatorname{con}}))$ can be described as $(Z, \alpha \colon C_A \to C_{\Lambda_{\operatorname{con}}})$ where α is a path in our picture, and Z is a compatible group homomorphism.

The heart of $D^{b}(\Lambda_{con})$ corresponding to α is $F_{\alpha}(\operatorname{mod} A)$ where recall,

$$F_{\alpha}$$
: $\mathrm{D}^{\mathrm{b}}(A) \to \mathrm{D}^{\mathrm{b}}(\Lambda_{\mathsf{con}}).$

When is *Z* compatible?

- By definition, we need $Z(E) \in \mathbb{H}$ for all $E \in F_{\alpha}(\text{mod } A)$;
- Or equivalently, $Z \circ F_{\alpha}(E) \in \mathbb{H}$ for all $E \in \text{mod } A$;

イロト 不得 トイラト イラト 一日

Group Actions

In any setting, the group $\mathsf{Auteq}(\mathcal{T})$ acts on $\mathsf{Stab}(\mathcal{T})$ via

$$\Phi \cdot (Z, \mathcal{A}) = (Z \circ \Phi^{-1}, \Phi(\mathcal{A})).$$

Restricting to $\operatorname{im}(\phi) \leq \operatorname{Auteq}(\operatorname{D^b}(\Lambda_{\operatorname{con}}))$, if $\beta \colon C_{\Lambda_{\operatorname{con}}} \to C_{\Lambda_{\operatorname{con}}}$ then

$$F_{\beta} \cdot (Z, \alpha) = (Z, \beta \circ \alpha).$$

Since the action does not effect the central charge it is clear the forgetful map factors as

$$\frac{\operatorname{Stab}(\operatorname{D^b}(\Lambda_{\operatorname{con}})) \xrightarrow{\rho} \mathbb{C}^n}{\operatorname{Stab}(\operatorname{D^b}(\Lambda_{\operatorname{con}}))/\operatorname{im}(\phi)} \mathbb{C}^n$$

イロト 不得 トイラト イラト 一日

Stability Conditions on Contraction Algebras

It remains to show that:

- p_2 gives an isomorphism onto $\mathbb{C}^n \setminus \mathcal{H}_{\mathbb{C}}$:
 - show that $\mathbb{C}^n \backslash \mathcal{H}_\mathbb{C}$ can be written as a disjoint union of $\mathbb{H}^{n'}s;$
 - observe that the action identifies (Z, α) and (Z, β) , where α and β start in the same chamber.
- *p*₁ is a regular covering map:
 - show the action is of im(φ) on Stab(D^b(Λ_{con})) is free and properly discontinuous;
 - the commutative diagram linking F_i with the flop functors is crucial.

Theorem (A.-Wemyss)

 $\mathsf{Stab}(\mathrm{D}^{\mathrm{b}}(\Lambda_{\mathsf{con}})) \text{ is the universal cover of } \mathbb{C}^n \backslash \mathcal{H}_{\mathbb{C}}.$

What about the surface story?

We can summarise the 3-fold story as saying that studying stability for a minimal model, and for its contraction algebra, both give the same answer. Since things are so similar in the surfaces story, should we expect the same answer there?

・ 何 ト ・ ヨ ト ・ ヨ ト

What about the surface story?

We can summarise the 3-fold story as saying that studying stability for a minimal model, and for its contraction algebra, both give the same answer. Since things are so similar in the surfaces story, should we expect the same answer there?

Two obstacles:

- Preprojective algebras of ADE Dynkin type are not symmetric, only self-injective. As a consequence, there might be some silting complexes which are not tilting.
- Aihara–Mizuno show preprojective algebras of ADE Dynkin type are tilting-discrete, but not silting-discrete so we can't use the results of Paukzstello–Saorin–Zvonareva.

イロト 不得 トイヨト イヨト

Silting Quiver of Contraction Algebra with A_2 root system

Jenny August (MPIM)

Stability and McKay

20/23

Silting Quiver for A_2 Preprojective Algebra

Picture from Aihara-Iyama's Silting Mutation in Triangulated Categories

Jenny August (MPIM)

Stability and McKay

21/23

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

Weakly symmetric algebras

The preprojective algebras of type D_{2n} , E_7 and E_8 have trivial Nakayama permutation i.e. they are weakly symmetric algebras.

Theorem

A tilting-discrete weakly symmetric algebra is in fact silting-discrete, and every silting complex is a tilting complex.

Now Mizuno's work completely describes the tilting theory of these algebras, including providing a commutative diagram linking their derived autoequivalences to the twist functors (surface analogue of flop functors) on the geometric side.

Theorem

If Λ is a weakly symmetric preprojective algebra of ADE Dynkin type, then $Stab(D^b(\Lambda))$ is the universal cover of the corresponding Dynkin root system.

Thank you!

Jenny August (MPIM)

æ

イロン イ理 とく ヨン イヨン