Hypersurface symplectic singularities

Quivers - Higgs branch - Coulomb branch

Quivers and symplectic singularities

Higgs branch - Coulomb branch

- In this talk we will look at moduli spaces which can be constructed from quivers similar to those which appear in the McKay correspondence
- Given a quiver, there are two types of moduli spaces (symplectic singularities)
- We will use here the physics terminology
- Higgs branch - these are known as Nakajima quiver varieties and are well studied
- Coulomb branch - these are relatively new objects (~90's) and produce very interesting moduli spaces

Affine ADE quivers

Higgs branch - Klein singularity. Coulomb branch - minimal nilpotent orbit
a)

d)

e)

Coulomb branch

Recall the Oct 2014 McKay correspondence meeting

- In my talk at this meeting, I presented the formula
- So called "monopole formula"
- Computes the Hilbert Series of the Coulomb branch
- Extracted out of the combinatorial data of the quiver
- Progress in understanding of symplectic singularities
- An explicit evaluation for many moduli spaces
- Construction of known and also of new (previusly unknown) moduli spaces

Example - known symplectic singularities

Coulomb branch - Klein singularity. Higgs branch - minimal SL(N) nilpotent orbit

Example - new symplectic singularities

Structure of symplectic leaves - left: Coulomb branch; right: Higgs branch

Definition of the Coulomb branch

Braverman Finkelberg Nakajima

- In the following we will skip technical details and present results for computations of Higgs branch and Coulomb branch of some quivers

4 types of quivers (graphs)

- quivers with unitary nodes - Nakajima quiver varieties
- orthosymplectic quivers - nodes alternate between symplectic and orthogonal gauge groups
- non simply laced quivers - nodes are unitary but some edges are not simply laced
- graphs made out of trivalent vertices

Examples of unitary quivers

a)

d)

e)

Examples of orthosymplectic quivers

Examples of non simply laced quivers

Example of a trivalent graph

Each line SL(2), each vertex trifundamental; semi infinite - global

Graph with n loops

Hypersurface Symplectic Singularities

- We will use such quivers to construct a family of symplectic singularities which are also hypersurfaces
- Apparently, the combination of these two conditions is highly restrictive

Hypersurface Symplectic Singularities

 known singularities (Yamagishi Namikawa..) conjectured classification- 1. ADE Klein singularities in 2 complex dimensions
- 2. Transverse slices in $\operatorname{Sp}(\mathrm{n})$ in 4 complex dimensions $\mathcal{S} \cap \mathcal{N}$
- where \mathcal{S} is the slodowy slice to the orbit $2^{2 n-2} 1^{2}$ of $\operatorname{Sp}(\mathrm{n})$ and \mathcal{N} is the nilpotent cone of $\mathrm{Sp}(\mathrm{n})$
- 3. Transverse slice in 6 complex dimensions $\mathcal{S}^{\prime} \cap \mathcal{N}^{\prime}$
- where \mathcal{S}^{\prime} is the slodowy slice to the minimal nilpotent orbit of G2 and \mathcal{N}^{\prime} is the nilpotent cone of G2

Quivers for hyper surface symplectic singularities

D type

Quivers for hyper surface symplectic singularities

E6 type

Quivers for hyper surface symplectic singularities

 E7 type

Quivers for hyper surface symplectic singularities

 E8 type

Quivers for hyper surface symplectic singularities

 Slices in $\mathrm{Sp}(\mathrm{n})$

Quivers for hyper surface symplectic singularities

Slice in G2

Thank you

