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Quivers and symplectic singularities

Higgs branch — Coulomb branch

* |n this talk we will look at moduli spaces which can be constructed from
quivers similar to those which appear in the McKay correspondence

* (Given a quiver, there are two types of moduli spaces (symplectic singularities)
* We will use here the physics terminology

* Higgs branch — these are known as Nakajima quiver varieties and are well
studied

 Coulomb branch — these are relatively new objects (~90’s) and produce very
Interesting moduli spaces



Affine ADE quivers

Higgs branch — Klein singularity. Coulomb branch — minimal nilpotent orbit
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Coulomb branch

Recall the Oct 2014 McKay correspondence meeting

* |n my talk at this meeting, | presented the formula

e So called “monopole formula”

 Computes the Hilbert Series of the Coulomb branch

 Extracted out of the combinatorial data of the quiver
* Progress in understanding of symplectic singularities
* An explicit evaluation for many moduli spaces

* Construction of known and also of new (previusly unknown) moduli spaces



Example — known symplectic singularities

Coulomb branch — Kilein singularity. Higgs branch — minimal SL(N) nilpotent orbit




Example — new symplectic singularities

Structure of symplectic leaves — left: Coulomb branch; right: Higgs branch
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Definition of the Coulomb branch

Braverman Finkelberg Nakajima

* |n the following we will skip technical details and present results for
computations of Higgs branch and Coulomb branch of some quivers



4 types of quivers (graphs)

e quivers with unitary nodes — Nakajima quiver varieties

» orthosymplectic quivers — nodes alternate between symplectic and
orthogonal gauge groups

* non simply laced quivers — nodes are unitary but some edges are not simply
laced

e graphs made out of trivalent vertices



Examples of unitary quivers
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Examples of orthosymplectic quivers
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Examples of hon simply laced quivers
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Example of a trivalent graph

Each line SL(2), each vertex trifundamental; semi infinite — global
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Hypersurface Symplectic Singularities

* We will use such quivers to construct a family of symplectic singularities
which are also hypersurfaces

» Apparently, the combination of these two conditions is highly restrictive



Hypersurface Symplectic Singularities

known singularities (Yamagishi Namikawa..) conjectured classification

* 1. ADE Klein singularities in 2 complex dimensions
« 2. Transverse slices in Sp(n) in 4 complex dimensions & N A/

. where & is the slodowy slice to the orbit 22”7217 of Sp(n) and ./ is the
nilpotent cone of Sp(n)

3. Transverse slice in 6 complex dimensions &' N A"

« where & is the slodowy slice to the minimal nilpotent orbit of G2 and /' is
the nilpotent cone of G2



Quivers for hyper surface symplectic singularities
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Quivers for hyper surface symplectic singularities
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Quivers for hyper surface symplectic singularities
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Quivers for hyper surface symplectic singularities

E8 type
i 3
O—=0O O O O—=0O O O
C?/Fx 1 2 3 4 5 6 4 2
dimH =1 i Cl
O O O O—=0O O O—=0O O O O—=0O O
D1 Cl D2 CQ Dg 03 D4 03 D3 CQ DQ 01 D1



Quivers for hyper surface symplectic singularities
Slices in Sp(n)
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Quivers for hyper surface symplectic singularities
Slice in G2
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Thank you



