Cohomology rings of toric bundles

Johannes Hofschecier

University of Nottingham
UK I CHINA | MALAYSIA
joint with
Asked d Khovauskii
Leonid Monin

Plan: Find "good" descriptions of the cohomology ring $H^{*}(X, R)$ for certain classes of manifolds X.

1) Recap: smooth projective toric case
2) Tori bundles
3) Applications
§1. Smooth projective tori case
$-T \cong\left(\mathbb{C}^{*}\right)^{n} \quad$ algebraic torus

- $M=$ character lattice of T
- $N=\operatorname{Hom}(M, \mathbb{Z})$ dual lattice
$X=X_{\Sigma}$ smooth projective toric variety with corresponding fan $\Sigma \subseteq N_{\mathbb{R}}$

How to compute $H^{*}\left(X_{\Sigma}, \mathbb{R}\right)$?
Many answers exist:

* Stanley - Reisner description
* Minkowski weights
* Volume polynomial

Volume polynomial approach:
Let $D \subseteq X_{\Sigma}$ Cartier divisor.
Then $D=D_{1}-D_{2}$ for ample divisors
$D_{1}, D_{2} \subseteq X_{\Sigma} \leadsto \infty D_{i}$ correspond to polytopes $P_{i} \subseteq M_{\mathbb{R}}$

Leads to
$P_{\Sigma}{ }^{+}=\left\{\right.$polytopes $P_{\subseteq} M_{\Omega}$ whose normal fan coarsen $\left.\sum\right\} \underset{\text { " }}{\stackrel{1 i-1}{\leftrightarrows}}\binom{$ ample divisors }{ on $X_{\Sigma}}$ I mean "correspads to",
ρ_{ε}^{+}is a cone w.r.t. Minkowski addition \& scaling $\leadsto P_{\Sigma}=$ vector space $\left(\rho_{\Sigma}^{+}\right)$
$=\left\{\right.$ virtual polytopes $P_{1}-P_{2}$ for

$$
\left.P_{1}, P_{2} \in P_{\Sigma}^{+}\right\}
$$

$=\left\{\right.$ piecewise linear functions on $\left.\sum\right\}$
$\stackrel{1.1}{\longleftrightarrow}$ (Cartier divisors on X_{Σ})
see above
Need 2 more ingredients:
"algebraic ingredient":

$$
H^{*}\left(X_{\Sigma}, \mathbb{R}\right)=\bigoplus_{i=0}^{n} H^{2 i}\left(X_{\Sigma}, \mathbb{R}\right)
$$

graded commutative with

1) $H^{\circ}\left(X_{\Sigma}, \mathbb{R}\right) \cong H^{2 n}\left(X_{\Sigma}, \mathbb{R}\right) \cong \mathbb{R}$
2) $\quad H^{2 i}\left(X_{\Sigma}, \mathbb{R}\right) \times H^{2(n-i)}\left(X_{\Sigma}, \mathbb{R}\right) \rightarrow \mathbb{R}$
non-degenerate (Poincare' duality)
3) generated in degree 2 :

$$
\mathbb{R}\left[H^{2}\right] \cong H^{*}\left(X_{\Sigma}, \mathbb{R}\right)
$$

Any ring satisfying 1,2,3 con be constructed as

$$
\operatorname{Diff}_{\operatorname{ff}}\left(H^{2}\right) / \operatorname{Ann}(\rho) \cong H^{*}\left(X_{\Sigma}, \mathbb{R}\right)
$$

* Diff $\left(H^{2}\right)$ ring of differential operators with constant coefficients.
* $\rho: H^{2} \rightarrow H^{2 n} \cong \mathbb{R}$

$$
x \mapsto x^{n}
$$

polynomial
"convex geometric ingredient":

BKK Theorem:
For all $P_{\epsilon} P_{\Sigma}$

$$
D_{p}^{n}=n!\operatorname{vol}(p)
$$

All together gives:

$$
H^{*}\left(X_{\Sigma}, \mathbb{R}\right) \cong \operatorname{Diff}\left(\rho_{\Sigma}\right) / A_{n u}\left(v_{0} l\right)
$$

§2. Tori bundles

Like before $T \cong\left(\mathbb{C}^{*}\right)^{n}$ algebraic torus Principal torus bundle

$$
\begin{aligned}
T \rightarrow & E \\
& \dot{b} \rho \\
& B
\end{aligned}
$$

B closed compact orientable manifold of (real) dimension k.

Example: (horospherical homogeneous spaces)
G connected reductive group /C
$H \subseteq G$ closed subgroup with $U \leq H$ maximal unipotent

$$
\begin{gathered}
\stackrel{\text { algebraic torus }}{\overbrace{G}(H) / H} \rightarrow \\
\\
\\
\\
\\
\\
G / H \\
G / N_{G}(H)
\end{gathered}
$$

generalised flog variety

For any T-boric variety X_{Σ}, let E_{Σ} be the associated fibre bundle

$$
X_{\Sigma} \longrightarrow E_{\Sigma}=\left(E \times X_{\Sigma}\right) / T
$$

Suppose X_{Σ} is smooth \&s projective Question: How to compute $H^{*}\left(E_{\Sigma}, \mathbb{R}\right) ?$

Remark: Sankaran \& Una generalised the Stanlyy-Reisner description to this case (2003)

Leray - Hirsch theorem:

As vector spaces

$$
H^{*}\left(E_{\Sigma}, \mathbb{R}\right) \cong H^{*}(B, \mathbb{R}) \otimes H^{*}\left(X_{\Sigma}, \mathbb{R}\right)
$$

Recall: $P_{\Sigma} \longrightarrow H^{2}\left(X_{\Sigma}, \mathbb{R}\right)$
If x_{1}, \ldots, x_{r} basis of ρ_{Σ}, then

$$
\mathbb{R}\left[x_{1}, \ldots, x_{r}\right] \longrightarrow H^{*}\left(x_{\Sigma}, \mathbb{R}\right)
$$

Surjection
Together with Leray-Hirsch:

$$
H^{*}(B, \mathbb{R})\left[x_{1}, \ldots, x_{r}\right] \longrightarrow H^{*}\left(E_{\Sigma}, \mathbb{R}\right)
$$

surjection
What is the kernel?

Need 2 more ingredients
"algebraic ingredient":

$$
H^{*}\left(E_{\Sigma}, \mathbb{R}\right)=\bigoplus_{i=0}^{2 n+k} H^{i}\left(E_{\Sigma}, \mathbb{R}\right)
$$

graded commutative with

1) multiplicative identity in $H^{0}\left(E_{\Sigma}, \mathbb{R}\right)$
2) $\quad H^{0}\left(E_{\Sigma}, \mathbb{R}\right) \cong H^{2 n+k}\left(E_{\Sigma}, \mathbb{R}\right) \cong \mathbb{R}$
3) pairing $H^{i}\left(E_{\Sigma}, \mathbb{R}\right) \times H^{2 n+k-i}\left(E_{\Sigma}, \mathbb{R}\right) \rightarrow \mathbb{R}$ non-degenerate (Poincare' duality)
\cdots algebraic description of the kernel of

$$
\phi: \underbrace{H^{*}(B, \mathbb{R})}_{\text {graded }}\left[\underset{\substack{x_{1} \\ \text { degree } 2}}{\substack{x_{1}}} \rightarrow x_{r}\right] \longrightarrow H^{*}\left(E_{\Sigma}, \mathbb{R}\right)
$$

$$
R:=H^{*}(B, \mathbb{R})\left[x_{1}, \ldots, x_{r}\right]=\bigoplus_{i \geq 0} R^{i}
$$

graded commutative
define linear function:

$$
\begin{aligned}
l: \mathbb{R}^{2 n+k} & \longrightarrow \mathbb{R} \\
x & \longmapsto l(x)=\phi(x) \in H^{2 n+k}\left(E_{\mathbb{E}}, \mathbb{R}\right) \cong \mathbb{R}
\end{aligned}
$$

extend by 0 to all of R.
(such linear functions are called $(2 n+k)$-homogeneens)
The kernel of the surjection ϕ accepts the following algebraic description:

$$
\left.\begin{array}{rl}
I_{l} & =\{a \in R: \quad l(a \cdot b)=0 \quad \text { for all } b \in R\} \\
& =\{b \in R: \quad l(a \cdot b)=0 \quad \text { for all } a \in R\}
\end{array}\right] \begin{aligned}
& m H^{*}\left(E_{S}, R\right) \cong H^{*}(B, R)\left[x_{1}, \ldots, x_{r}\right] / I_{l} \\
& \\
& \text { What is } I_{l} ?
\end{aligned}
$$

It suffices to compute

$$
\ell\left(\eta \cdot x_{i_{1}} \cdots x_{i s}\right)
$$

for $\gamma^{\prime} \in H^{k+2(n-s)}(B, \mathbb{R})$ and $i_{1}, \ldots, i_{s} \in\{1, \ldots, r\}$

$$
\left(\operatorname{deg}\left(\eta \cdot x_{i_{1}} \cdots x_{i s}\right)=k+2 u\right) .
$$

"convex geometric ingredient":
First note that $l\left(y^{r} \cdot x_{c_{1}} \cdots x_{i s}\right)$ is a polynomial on P_{Σ} of degree s for fixed γ r m By polarisation, enough to compute

$$
l\left(r \cdot x^{s}\right) \quad \text { for } x \in \rho_{\Sigma}
$$

idea: express this number as an integral ("volume")
$\lambda \in M \quad$ character of T
$\leadsto \mathcal{L}_{\lambda}=E X_{T} \mathbb{C}_{\lambda}$ line bundle on B m obtain linear map

$$
\begin{aligned}
& c: M \longrightarrow H^{2}(B, \mathbb{Z}) ; \lambda \longmapsto C_{1}\left(\mathscr{L}_{\lambda}\right) \\
&(\text { (hern class) }
\end{aligned}
$$

$$
\text { Fix } \gamma^{r} \in H^{k+2(n-s)}(B, \mathbb{R})
$$

Define function

$$
\begin{aligned}
f_{\gamma}: \quad M_{\mathbb{R}} \rightarrow \mathbb{R} ; x \mapsto f_{\gamma}(x) & =\gamma^{r \cdot c(x)^{s-n}} \\
& \in H^{k}(B, \mathbb{R}) \cong \mathbb{R}
\end{aligned}
$$

Let $I_{\gamma r}: \rho_{\Sigma} \rightarrow \mathbb{R}$

$$
I_{\gamma^{\prime}}(\Delta)=\int_{\Delta} f_{p^{\prime}}(x) d x
$$

(integral makes sense on ρ^{+}), extend to all of ρ_{Σ})

BKK-type theorem (- , Khovanskii, Monin):

$$
s!I_{g^{n}}(\Delta)=(s-n)!l\left(g \cdot \Delta^{s}\right)
$$

Special case: If $B=p t$, then $H^{*}(B, \mathbb{R}) \cong \mathbb{R}$

$$
\begin{aligned}
& \text { * } \quad f \gamma(x)=1 \\
& \quad \Rightarrow I_{\gamma}(\Delta)=\int_{\Delta} f \gamma(x) d x=\operatorname{vol}(\Delta) \\
& * \quad l(\underbrace{\tau_{r}}_{\text {coust. }} \cdot \Delta^{s})=l\left(\Delta^{s}\right)=\left\{\begin{array}{cc}
0, & \text { ifs } \neq u \\
D_{\Delta}^{n}, & \text { if nos }
\end{array}\right.
\end{aligned}
$$

Say 1
\leadsto

$$
\underbrace{s!I_{\gamma^{n}}(\Delta)}_{n!v_{0}((\Delta)}=\underbrace{(s-n)!l\left(\Delta^{x} \cdot \Delta^{s}\right)}_{0!\cdot D_{\Delta}^{n}}
$$

(classical BKK theorem)

All together gives

$$
H^{*}\left(E_{\varepsilon}, \mathbb{R}\right) \cong H^{*}(B, \mathbb{R})\left[x_{1}, \ldots, x_{r}\right] / I_{e}
$$

where $l: H^{*}(B, \mathbb{R})\left[x_{1}, \ldots, x_{r}\right] \rightarrow \mathbb{R}$ $(k+2 u)$-homogeneous linear form given by

$$
\ell\left(\eta^{r} \cdot x_{i_{1}} \ldots x_{i_{s}}\right)=I_{\gamma}\left(x_{i_{1}}, \ldots, x_{i_{s}}\right)
$$

\&3. Applications
original motivation:
compute ring of conditions $C^{*}(G / H)$ of horospherical homogeneous spaces G/H.

De Concini k Procesi showed:

$$
C^{*}(G / H)=\lim _{\Sigma} H^{*}\left(G / H x_{N_{G}(H) \mid H} X_{\Sigma}, \mathbb{R}\right)
$$

there exists a natural object

$$
P=\lim _{\Sigma} P_{\Sigma}
$$

space of (arbitrary) virtual polytopes

$$
m C^{*}(G H)=\left(H^{*}\left(G / N_{G}(H), \mathbb{R}\right) \otimes S_{y m}(\rho)\right) \mid I_{e}
$$

where $l\left(\gamma^{r} \otimes \Delta_{i_{1}}, \Delta_{i j}\right)=I_{\gamma_{r}}\left(\Delta_{i_{1}}, \ldots, \Delta_{i_{s}}\right)$

Relation to string polytopes:
For simplicity, consider principal torus bundle

maximal torus

SLuIB
${ }^{t}$ Bored with $u \leq B$
Λ^{+}monacid of dominant weights
$M=$ character la ttice of T
Geffand-Zetlin polytopes
$G Z: \Lambda^{+} \rightarrow \rho_{R^{N}}^{+}$for $N=\frac{n(n-1)}{2}$
linear family of polytopes
(note: this map is the restriction of a linear map)
We construct a "iffled family":
define cone

$$
\begin{aligned}
& \mathscr{C}=\left\{Q \in \mathcal{P}_{M \mathbb{R}}^{+}: Q \subseteq \text { cone }\left(\Lambda^{+}\right)\right\} \\
& \widetilde{G Z}: \varphi \rightarrow \mathcal{P}_{M_{R} \oplus \mathbb{R}^{N}}^{+} \\
& \widetilde{G Z}(Q)=\left\{\left(\lambda_{1} x\right) \in M_{\mathbb{R}} \oplus \mathbb{R}^{N}: \lambda \in Q,\right. \\
& \quad y \in \operatorname{GZ}(\lambda)\}
\end{aligned}
$$

denote composition of (linear) lifted family $\widetilde{G Z: ~} l \rightarrow P_{M R \oplus \mathbb{R}^{N}}^{+}$with volume polynomial on $P_{\mu_{\mathbb{R} \oplus R N}}$ by $\widetilde{\operatorname{vol} \text {. }}$

Thu. (-, Khovanskii, Monin):
Torus bundle $E=S L_{n} \mid U$
$X=X_{\mathcal{E}}$ smooth projective T-toric variety Then

$$
H^{* / 2}\left(E_{\Sigma}, \mathbb{R}\right) \cong D_{i f f}\left(\rho_{\Sigma}\right) / A_{n u}(\tilde{v o l})
$$

