Walls for G-Hilb via Reid's recipe

Ben Wormleighton

Washington University in St. Louis

Main reference

- B. Wormleighton; Walls for G-Hilb via Reid's recipe (2019)

McKay Correspondence

- The n-dimensional McKay correspondence seeks to relate:
geometry of crepant resolutions

$$
\pi: Y \rightarrow X:=\mathbb{C}^{n} / G
$$

for finite $G \subseteq \mathrm{SL}_{n}(\mathbb{C})$.

■ We will focus on wall-crossing in the McKay correspondence.

■ We will focus on wall-crossing in the McKay correspondence.

- Specifically, we will interpret walls in a stability space geometrically and combinatorially using representation theory.
- There are several interlinked perspectives on this type of wall-crossing, for instance:
- There are several interlinked perspectives on this type of wall-crossing, for instance:
- Homological Minimal Model Program (Wemyss)
- quiver mutations (Nolla-Sekiya)
- VGIT (Craw-Ishii)
- There are several interlinked perspectives on this type of wall-crossing, for instance:
- Homological Minimal Model Program (Wemyss)
- quiver mutations (Nolla-Sekiya)
- VGIT (Craw-Ishii)

■ We will emphasise the latter, though heavily inspired by the first two approaches.

Two dimensions

- Recall that in two dimensions the G-Hilbert scheme

$$
G \text {-Hilb } \mathbb{C}^{2}
$$

is the unique crepant resolution of \mathbb{C}^{2} / G when $G \subseteq \mathrm{SL}_{2}(\mathbb{C})$.

Example

■ For the singularity of type A_{2} the exceptional fibre in its crepant resolution and its dual graph are:

- G-Hilb can also be viewed as a moduli space of θ-stable quiver representations

$$
\mathcal{M}_{\theta}\left(Q^{G}, \underline{d}\right)
$$

- G-Hilb can also be viewed as a moduli space of θ-stable quiver representations

$$
\mathcal{M}_{\theta}\left(Q^{G}, \underline{d}\right)
$$

Here Q^{G} is the McKay quiver for G, θ is a stability condition, and \underline{d} is a distinguished dimension vector.

- We denote the vertices of the McKay quiver by Q_{0} and the arrows by Q_{1}.
- The stability condition θ lives in the stability space

$$
\Theta_{\underline{\mathbf{d}}}:=\left\{\eta \in \operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{Z}^{Q_{0}}, \mathbb{R}\right): \eta(\underline{\mathbf{d}})=0\right\}
$$

- The stability condition θ lives in the stability space

$$
\Theta_{\underline{\mathbf{d}}}:=\left\{\eta \in \operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{Z}^{Q_{0}}, \mathbb{R}\right): \eta(\underline{\mathbf{d}})=0\right\}
$$

- Note that $\mathbb{Z}^{Q_{0}}=\operatorname{Rep}(G)$ and so we will often write elements of $\mathbb{Z}^{Q_{0}}$ as linear combinations of characters.
- The stability space $\Theta_{\underline{d}}$ has a wall-and-chamber structure in which if θ, ϑ lie in the same open chamber \mathfrak{C} then

$$
\mathcal{M}_{\theta}\left(Q^{G}, \underline{d}\right) \cong \mathcal{M}_{\vartheta}\left(Q^{G}, \underline{d}\right)
$$

- The stability space $\Theta_{\underline{d}}$ has a wall-and-chamber structure in which if θ, ϑ lie in the same open chamber \mathfrak{C} then

$$
\mathcal{M}_{\theta}\left(Q^{G}, \underline{d}\right) \cong \mathcal{M}_{\vartheta}\left(Q^{G}, \underline{d}\right)
$$

- We denote by $\mathcal{M}_{\mathfrak{C}}$ the moduli space for any generic $\theta \in \mathfrak{C}$.

Example

■ In type A_{2} the chambers in $\Theta_{\underline{d}}$ are:

Example

■ In type A_{2} the chambers in $\Theta_{\underline{d}}$ are:

Example

■ In type A_{2} the chambers in $\Theta_{\underline{d}}$ are:

Example

■ In type $A_{2}, \Theta_{\underline{d}}$ is:

Example

■ One chamber \mathfrak{C}_{0} 'corresponds' to G-Hilb:

Theorem (Kronheimer)
Let $G \subseteq \mathrm{SL}_{2}(\mathbb{C})$ be a finite subgroup of type Γ. There is an identification of $\Theta_{\underline{d}}$ with the Cartan subalgebra $\mathfrak{h}_{\Gamma} \subseteq \mathfrak{g}_{\Gamma}$ inside the simple Lie algebra of type Γ such that the walls in $\Theta_{\underline{d}}$ correspond to the root hyperplanes in \mathfrak{h}_{Γ}.

Outlook

Inspired by Kronheimer's theorem, we will describe walls in three dimensions with a few differences:

Outlook

Inspired by Kronheimer's theorem, we will describe walls in three dimensions with a few differences:

- it will be a 'local' description of the walls for \mathfrak{C}_{0} only

Outlook

Inspired by Kronheimer's theorem, we will describe walls in three dimensions with a few differences:

- it will be a 'local' description of the walls for \mathfrak{C}_{0} only
- the geometry of wall-crossings is much richer in three dimensions

Three dimensions

■ When $G \subseteq \mathrm{SL}_{3}(\mathbb{C})$ the same constructions

$$
G \text { - } \operatorname{Hilb} \mathbb{C}^{3} \text { and } \mathcal{M}_{\theta}\left(Q^{G}, \underline{d}\right)
$$

yield crepant resolutions of \mathbb{C}^{3} / G by BKR.

■ The stability space $\Theta_{\underline{d}}$ again has a wall-and-chamber structure.

■ The stability space $\Theta_{\underline{d}}$ again has a wall-and-chamber structure.

- We denote the resolution for a chamber $\mathfrak{C} \subseteq \Theta_{\underline{d}}$ by $\mathcal{M}_{\mathfrak{C}}$.

■ The stability space $\Theta_{\underline{d}}$ again has a wall-and-chamber structure.

- We denote the resolution for a chamber $\mathfrak{C} \subseteq \Theta_{\underline{d}}$ by $\mathcal{M}_{\mathfrak{C}}$.
- We denote the chamber for G-Hilb by \mathfrak{C}_{0}. This is the chamber containing

$$
\Theta_{\underline{d}}^{+}=\left\{\theta \in \Theta_{\underline{d}}: \theta(\rho)>0 \text { for all nontrivial } \rho\right\}
$$

■ The stability space $\Theta_{\underline{d}}$ again has a wall-and-chamber structure.

- We denote the resolution for a chamber $\mathfrak{C} \subseteq \Theta_{\underline{d}}$ by $\mathcal{M}_{\mathfrak{C}}$.
- We denote the chamber for G-Hilb by \mathfrak{C}_{0}. This is the chamber containing

$$
\Theta_{\underline{d}}^{+}=\left\{\theta \in \Theta_{\underline{d}}: \theta(\rho)>0 \text { for all nontrivial } \rho\right\}
$$

- BKR also produces a triangulated equivalence

$$
\Phi_{\mathfrak{C}}: D^{b}\left(\mathcal{M}_{\mathfrak{C}}\right) \rightarrow D_{G}^{b}\left(\mathbb{C}^{3}\right)
$$

- We will focus on the case that G is abelian, actually cyclic.

■ We will focus on the case that G is abelian, actually cyclic.
■ We denote by $\frac{1}{r}(a, b, c)$ the cyclic group of order r generated by

$$
g=\left(\begin{array}{lll}
\varepsilon^{a} & & \\
& \varepsilon^{b} & \\
& & \varepsilon^{c}
\end{array}\right)
$$

where ε is an r th root of unity, and $a+b+c \equiv 0 \bmod r$.

■ We will focus on the case that G is abelian, actually cyclic.
■ We denote by $\frac{1}{r}(a, b, c)$ the cyclic group of order r generated by

$$
g=\left(\begin{array}{lll}
\varepsilon^{a} & & \\
& \varepsilon^{b} & \\
& & \varepsilon^{c}
\end{array}\right)
$$

where ε is an r th root of unity, and $a+b+c \equiv 0 \bmod r$.
■ In this situation $\mathcal{M}_{\mathfrak{C}}$ is a toric variety.

Theorem (Craw-Ishii)
 For finite abelian $G \subseteq \mathrm{SL}_{3}(\mathbb{C})$, every (projective) crepant resolution of \mathbb{C}^{3} / G occurs as $\mathcal{M}_{\mathfrak{C}}$ for some chamber $\mathfrak{C} \subseteq \Theta_{\underline{d}}$.

- Crepant resolutions of \mathbb{C}^{3} / G correspond to 'regular triangulations' of a certain simplex.
- Crepant resolutions of \mathbb{C}^{3} / G correspond to 'regular triangulations' of a certain simplex.
- Craw-Reid produce a fun algorithm for computing the triangulation for G-Hilb.

Example

This is G-Hilb for $G=\frac{1}{6}(1,2,3)$:

Example

This is G-Hilb for $G=\frac{1}{6}(1,2,3)$:

Example

This is G-Hilb for $G=\frac{1}{6}(1,2,3)$:

Reid's recipe

- Reid, Craw, Logvinenko, and Craw-Cautis-Logvinenko construct a labelling of the exceptional fibre of G-Hilb \mathbb{C}^{3} by characters of G called Reid's recipe

Reid's recipe

- Reid, Craw, Logvinenko, and Craw-Cautis-Logvinenko construct a labelling of the exceptional fibre of G-Hilb \mathbb{C}^{3} by characters of G called Reid's recipe
- Roughly, this labelling encodes where certain sheaves generating $D^{b}\left(G\right.$-Hilb $\left.\mathbb{C}^{3}\right)$ are supported.

Example

- Reid's recipe for $G=\frac{1}{6}(1,2,3)$ is:

■ Here a denotes the character $\chi_{a}: g \mapsto \varepsilon^{a}$.

Walls for G-Hilb

We will address the question:

Walls for G-Hilb

We will address the question:

How can one describe the walls of the chamber \mathfrak{C}_{0} for G-Hilb?

Walls for G-Hilb

We will address the question:

How can one describe the walls of the chamber \mathfrak{C}_{0} for G-Hilb?

More precisely,

- what are the equations of the walls?
- how can we describe the wall-crossing behaviour? (e.g. birational type, unstable locus, equivalences of derived categories,...)

Theorem (W. '19)
There is an algorithm - called the unlocking procedure - to explicitly compute a set of inequalities defining \mathfrak{C}_{0} from the data of Reid's recipe and the combinatorics of the exceptional fibre.

Theorem (W. '19)
There is an algorithm - called the unlocking procedure - to explicitly compute a set of inequalities defining \mathfrak{C}_{0} from the data of Reid's recipe and the combinatorics of the exceptional fibre. Moreover:

■ one can determine which of these inequalities are irredundant and so actually define walls of \mathfrak{C}_{0}.

Theorem (W. '19)
There is an algorithm - called the unlocking procedure - to explicitly compute a set of inequalities defining \mathfrak{C}_{0} from the data of Reid's recipe and the combinatorics of the exceptional fibre. Moreover:

- one can determine which of these inequalities are irredundant and so actually define walls of \mathfrak{C}_{0}.
- the birational type, unstable locus, and derived equivalence for the wall can be read from the wall equation.

Unlocking

- The unlocking procedure associates to each exceptional curve a set of characters

$$
C \rightsquigarrow \mathrm{G}-\mathrm{ig}(C)
$$

Unlocking

- The unlocking procedure associates to each exceptional curve a set of characters

$$
C \rightsquigarrow \mathrm{G}-\mathrm{ig}(C)
$$

- Each exceptional curve C produces a potentially redundant inequality defining \mathfrak{C}_{0}, and the unlocking procedure takes a curve to the collection of characters $\mathrm{G}-\mathrm{ig}(C)$ appearing in this inequality.

Unlocking

- The unlocking procedure associates to each exceptional curve a set of characters

$$
C \rightsquigarrow \mathrm{G}-\mathrm{ig}(C)
$$

- Each exceptional curve C produces a potentially redundant inequality defining \mathfrak{C}_{0}, and the unlocking procedure takes a curve to the collection of characters $\mathrm{G}-\mathrm{ig}(C)$ appearing in this inequality. The coefficients in these inequalities can also be calculated in a uniform way.

Let C be a curve marked with χ by Reid's recipe. Roughly, the unlocking procedure does the following:

- Let $S=\{\chi\}$

Let C be a curve marked with χ by Reid's recipe. Roughly, the unlocking procedure does the following:

- Let $S=\{\chi\}$
- For each divisor D containing two χ-curves add the character marking D to S

Let C be a curve marked with χ by Reid's recipe. Roughly, the unlocking procedure does the following:

- Let $S=\{\chi\}$
- For each divisor D containing two χ-curves add the character marking D to S
■ For each 'broken curve' B that is 'downstream' of C add $\mathrm{G}-\mathrm{ig}(B)$ to S
Then $\mathrm{G}-\mathrm{ig}(C)=S$.

Let C be a curve marked with χ by Reid's recipe. Roughly, the unlocking procedure does the following:

- Let $S=\{\chi\}$
- For each divisor D containing two χ-curves add the character marking D to S
- For each 'broken curve' B that is 'downstream' of C add $\mathrm{G}-\mathrm{ig}(B)$ to S
Then G-ig $(C)=S$.

Example (Unlocking for $G=\frac{1}{6}(1,2,3)$)
For $G=\frac{1}{6}(1,2,3) \ldots$

Unlocking for the 4-curve C_{4} has G-ig $\left(C_{4}\right)=\left\{\chi_{4}\right\}$.

Example (Unlocking for $G=\frac{1}{6}(1,2,3)$)
For $G=\frac{1}{6}(1,2,3) \ldots$

Unlocking for the dashed curve C_{3} gives G-ig $\left(C_{3}\right)=\left\{\chi_{3}, \chi_{4}, \chi_{5}\right\}$.

Example (Unlocking for $G=\frac{1}{6}(1,2,3)$)

Using this, we compute the walls for \mathfrak{C}_{0} to be

$$
\begin{aligned}
\theta\left(\chi_{1}\right) & =0 \\
\theta\left(\chi_{2}\right)+\theta\left(\chi_{5}\right) & =0 \\
\theta\left(\chi_{3}\right)+\theta\left(\chi_{5}\right) & =0 \\
\theta\left(\chi_{4}\right) & =0 \\
\theta\left(\chi_{5}\right) & =0 \\
\theta\left(\chi_{2}\right)+\theta\left(\chi_{3}\right)+\theta\left(\chi_{4}\right)+\theta\left(\chi_{5}\right) & =0
\end{aligned}
$$

The chamber \mathfrak{C}_{0} is given by replacing $=$ by $>$ in these equations.

Example (Unlocking for $G=\frac{1}{6}(1,2,3)$)

- The curve C_{3} from before produces the inequality

$$
\theta\left(\chi_{3}\right)+\theta\left(\chi_{5}\right)+\theta\left(\chi_{4}\right)>0
$$

Example (Unlocking for $G=\frac{1}{6}(1,2,3)$)

- The curve C_{3} from before produces the inequality

$$
\theta\left(\chi_{3}\right)+\theta\left(\chi_{5}\right)+\theta\left(\chi_{4}\right)>0
$$

- Notice that this is the sum of two wall inequalities and so is redundant

Example (Unlocking for $G=\frac{1}{6}(1,2,3)$)

- The curve C_{3} from before produces the inequality

$$
\theta\left(\chi_{3}\right)+\theta\left(\chi_{5}\right)+\theta\left(\chi_{4}\right)>0
$$

- Notice that this is the sum of two wall inequalities and so is redundant
- This comes from unlocking: the characters in the inequality come from the characters captured by the other 3-curve and from the unlocked 4-curve.

Example (Reid's recipe for $G=\frac{1}{25}(1,3,21)$)

Example (Unlocking for a 1-curve)
 Let's consider the curve C marked with 1 that's dashed in the following picture.

Example (Unlocking for a 1-curve)

Example (Unlocking for a 1-curve)

We can conclude that the characters featuring in the inequality for
C are

$$
\left\{\chi_{1}, \chi_{2}, \chi_{4}, \chi_{6}, \chi_{7}, \chi_{10}, \chi_{11}, \chi_{14}, \chi_{15}, \chi_{18}, \chi_{19}, \chi_{22}, \chi_{23}\right\}
$$

- We can also deduce some corollaries describing the structure of $\Theta_{\underline{d}}$ and the geometry of the wall-crossings.

■ Given a wall $\mathfrak{w} \subseteq \mathfrak{C}$ there is a contraction morphism

$$
\operatorname{cont}_{\mathfrak{w}}: \mathcal{M}_{\mathfrak{C}} \rightarrow \overline{\mathcal{M}}_{\theta}
$$

for generic $\theta \in \mathfrak{w}$.

We say that \mathfrak{w} is...

- Type 0 if cont $_{\mathfrak{w}}$ is an isomorphism
- Type I if cont $_{\mathfrak{w}}$ contracts a curve to a point
- Type II if cont ${ }_{\mathfrak{w}}$ contracts a divisor to a point
- Type III if cont $_{\mathfrak{w}}$ contracts a divisor to a curve

Corollary (Craw-Ishii, W.)

The flop in each $(-1,-1)$-curve in G-Hilb \mathbb{C}^{3} can be realised by a single wall-crossing from \mathfrak{C}_{0}. There are no walls of \mathfrak{C}_{0} that contract a divisor to a point (Type II).

Corollary (Craw-Ishii, W.)

The flop in each $(-1,-1)$-curve in G-Hilb \mathbb{C}^{3} can be realised by a single wall-crossing from \mathfrak{C}_{0}. There are no walls of \mathfrak{C}_{0} that contract a divisor to a point (Type II).

Corollary (W.)
The unstable locus of each wall can be reconstructed combinatorially from the characters appearing in the wall equation.

- Beyond assessing whether inequalities in a given example are redundant, the techniques of the theorem provide a general classification of the walls for \mathfrak{C}_{0} in combinatorial terms.

Theorem (W. '19)
Suppose $G \subseteq \mathrm{SL}_{3}(\mathbb{C})$ is a finite abelian subgroup. The walls of the chamber \mathfrak{C}_{0} for G-Hilb and their types are as follows:

- a Type I wall for each exceptional ($-1,-1$)-curve,
- a Type III wall for each generalised long side,
- a Type 0 wall for each irreducible exceptional divisor,
- each remaining wall is of Type 0 and comes from a divisor parameterising a rigid quotient.

Example (Reid's recipe for $G=\frac{1}{25}(1,3,21)$)

Idea of the proof:

Θ_{d}

$\operatorname{Pic}\left(\mathcal{M}_{\mathfrak{C}}\right)_{\mathbb{R}}$

Idea of the proof:

$\Theta_{\underline{d}}$

$\operatorname{Pic}\left(\mathcal{M}_{\mathfrak{C}}\right)_{\mathbb{R}}$

At this point there are three things that remain to be shown:

- compute inequalities explicitly in terms of characters
- identify which inequalities give walls

■ show that walls remember geometry

At this point there are three things that remain to be shown:

- compute inequalities explicitly in terms of characters
- Craw-Ishii did this for some divisors
- We complete this for curves and all divisors, which yields the unlocking procedure
■ identify which inequalities give walls
- show that walls remember geometry

At this point there are three things that remain to be shown:

- compute inequalities explicitly in terms of characters
- Craw-Ishii did this for some divisors
- We complete this for curves and all divisors, which yields the unlocking procedure
- identify which inequalities give walls
- unlocking is recursive
- show that walls remember geometry

At this point there are three things that remain to be shown:

- compute inequalities explicitly in terms of characters

■ Craw-Ishii did this for some divisors

- We complete this for curves and all divisors, which yields the unlocking procedure
■ identify which inequalities give walls
- unlocking is recursive
- show that walls remember geometry
- unlocking is reversible

Applications - in progress

Applications - in progress

- One motivation for having explicit expressions for walls is to compare the position of chambers of different crepant resolutions of \mathbb{C}^{3} / G.
- Suppose $A \subseteq G$ is a normal subgroup with quotient $G / A=T$.
- Suppose $A \subseteq G$ is a normal subgroup with quotient $G / A=T$.
- T acts on A-Hilb \mathbb{C}^{3} and so one obtains the crepant resolution

$$
T \text {-Hilb } A \text {-Hilb } \mathbb{C}^{3} \rightarrow \mathbb{C}^{3} / G
$$

Conjecture: Let \mathfrak{C}_{0} denote the chamber for G-Hilb and let \mathfrak{C}_{1} denote the/a chamber for T-Hilb A-Hilb.

Conjecture: Let \mathfrak{C}_{0} denote the chamber for G-Hilb and let \mathfrak{C}_{1} denote the/a chamber for T-Hilb A-Hilb. There exists a path from \mathfrak{C}_{0} to \mathfrak{C}_{1} crossing walls 'mostly' indexed by exceptional subvarieties marked by Reid's recipe by characters of G lifted from T.

Example (Geometric evidence)

We return to $G=\frac{1}{6}(1,2,3)$ with G-Hilb \mathbb{C}^{3} and Reid's recipe shown below.

Example (Geometric evidence)

G can be expressed as a direct product of $A=\frac{1}{3}(1,2,0)$ and $T=\frac{1}{2}(1,0,1)$. We show T-Hilb A-Hilb \mathbb{A}^{3} :

Example (Geometric evidence)

G can be expressed as a direct product of $A=\frac{1}{3}(1,2,0)$ and $T=\frac{1}{2}(1,0,1)$. We show T-Hilb A-Hilb \mathbb{A}^{3} :

One obtains T-Hilb A-Hilb from flopping the $(-1,-1)$-curve labelled with χ_{3}, the only character lifted from the quotient T.

Example (Geometric evidence)

As G is a direct product we can also compute A - $\operatorname{Hilb} T$ - $\operatorname{Hilb} \mathbb{A}^{3}$.

Example (Geometric evidence)

As G is a direct product we can also compute A - $\operatorname{Hilb} T$ - $\mathrm{Hilb} \mathbb{A}^{3}$.

In this case two flops are required to reach A-Hilb T-Hilb, first in the curve marked with χ_{4}, then in the image of the curve marked with χ_{2} in G-Hilb. These are exactly the characters lifted from A.

Algebraic evidence
■ Ishii-Ito-Nolla de Celis construct a stability condition ϑ defining T-Hilb A-Hilb \mathbb{C}^{3}. It is not so hard to show that their stability condition satisfies the following:

Algebraic evidence
■ Ishii-Ito-Nolla de Celis construct a stability condition ϑ defining T-Hilb A-Hilb \mathbb{C}^{3}. It is not so hard to show that their stability condition satisfies the following:

Lemma
Let χ be an irreducible representation of G. Then $\vartheta(\chi)<0$ if and only if χ is lifted from T.

Algebraic evidence

- Recall that \mathfrak{C}_{0} contains the locus where $\theta(\chi)>0$ for all nontrivial irreducible representations χ.

Algebraic evidence

- Recall that \mathfrak{C}_{0} contains the locus where $\theta(\chi)>0$ for all nontrivial irreducible representations χ.
- Hence, it is plausible that the negativity of $\vartheta(\chi)$ will contrast with the positivity in \mathfrak{C}_{0}.

Algebraic evidence

- Recall that \mathfrak{C}_{0} contains the locus where $\theta(\chi)>0$ for all nontrivial irreducible representations χ.
- Hence, it is plausible that the negativity of $\vartheta(\chi)$ will contrast with the positivity in \mathfrak{C}_{0}.
■ We hope to use the explicit expressions of walls of \mathfrak{C}_{0} to codify this and offer further evidence towards the conjecture stated above.

References

[1] Derived Reid's recipe for abelian subgroups of $\mathrm{SL}_{3}(\mathbb{C})$, S. Cautis, A. Craw \& T. Logvinenko ('14)
[2] An explicit construction of the McKay correspondence for A-Hilb \mathbb{C}^{3}, A. Craw ('01)
[3] Flops of G-Hilb and equivalences of derived categories by variation of GIT quotient, A. Craw \& A. Ishii ('03)
[4] How to compute A-Hilb $\mathbb{C}^{3}, \mathrm{~A}$. Craw \& M. Reid ('00)
[5] On G / N-Hilb of N-Hilb, A. Ishii, Y. Ito \& Á. Nolla ('11)
[6] Le correspondance de McKay, M. Reid ('97)
[7] Flops and clusters in the homological minimal model program, M. Wemyss ('14)
[8] Walls for G-Hilb via Reid's recipe, B. Wormleighton ('19)

