Walls for G-Hilb via Reid's recipe

Ben Wormleighton

Washington University in St. Louis

Main reference

B. Wormleighton; Walls for G-Hilb via Reid's recipe (2019)

Ben Wormleighton Walls for *G*-Hilb via Reid's recipe Washington University in St. Louis

McKay Correspondence

• The *n*-dimensional McKay correspondence seeks to relate:

geometry of crepant resolutions
$$\underset{\pi\colon Y\to X:=\mathbb{C}^n/G}{\longleftrightarrow} \xrightarrow{\text{representation theory}} \text{of } G$$

for finite $G \subseteq SL_n(\mathbb{C})$.

• We will focus on *wall-crossing* in the McKay correspondence.

Ben Wormleighton Walls for *G*-Hilb via Reid's recipe Washington University in St. Louis

- We will focus on *wall-crossing* in the McKay correspondence.
- Specifically, we will interpret walls in a stability space geometrically and combinatorially using representation theory.

Three dimensions	Walls for <i>G</i> -Hilb	Applications
 		c

There are several interlinked perspectives on this type of wall-crossing, for instance:

- quiver mutations (Nolla–Sekiya)
- VGIT (Craw–Ishii)
- **...**

- VGIT (Craw–Ishii)
- · · · ·
- We will emphasise the latter, though heavily inspired by the first two approaches.

Two dimensions

• Recall that in two dimensions the *G*-Hilbert scheme

$G\operatorname{-Hilb} \mathbb{C}^2$

is the unique crepant resolution of \mathbb{C}^2/G when $G \subseteq SL_2(\mathbb{C})$.

■ For the singularity of type A₂ the exceptional fibre in its crepant resolution and its dual graph are:

Two dimensions	Three dimensions	Walls for <i>G</i> -Hilb	Applications

• G-Hilb can also be viewed as a moduli space of θ -stable quiver representations

 $\mathcal{M}_{\theta}(Q^G,\underline{\mathsf{d}})$

Two dimensions	Three dimensions	Walls for G -Hilb	Applications

 G-Hilb can also be viewed as a moduli space of θ-stable quiver representations

$\mathcal{M}_{\theta}(Q^G,\underline{\mathsf{d}})$

Here Q^G is the McKay quiver for G, θ is a stability condition, and <u>d</u> is a distinguished dimension vector.

• We denote the vertices of the McKay quiver by Q_0 and the arrows by Q_1 .

• The stability condition θ lives in the *stability space*

$$\Theta_{\underline{\mathsf{d}}} := \{\eta \in \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}^{Q_0}, \mathbb{R}) : \eta(\underline{\mathsf{d}}) = 0\}$$

• The stability condition θ lives in the *stability space*

$$\Theta_{\underline{\mathsf{d}}} := \{\eta \in \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}^{Q_0}, \mathbb{R}) : \eta(\underline{\mathsf{d}}) = 0\}$$

■ Note that $\mathbb{Z}^{Q_0} = \operatorname{Rep}(G)$ and so we will often write elements of \mathbb{Z}^{Q_0} as linear combinations of characters.

• The stability space $\Theta_{\underline{d}}$ has a wall-and-chamber structure in which if θ, ϑ lie in the same open chamber \mathfrak{C} then

$$\mathcal{M}_{\theta}(Q^G, \underline{\mathsf{d}}) \cong \mathcal{M}_{\vartheta}(Q^G, \underline{\mathsf{d}})$$

 The stability space Θ_d has a wall-and-chamber structure in which if θ, θ lie in the same open chamber C then

$$\mathcal{M}_{\theta}(Q^G, \underline{\mathsf{d}}) \cong \mathcal{M}_{\vartheta}(Q^G, \underline{\mathsf{d}})$$

• We denote by $\mathcal{M}_{\mathfrak{C}}$ the moduli space for any generic $\theta \in \mathfrak{C}$.

• In type A_2 the chambers in $\Theta_{\underline{d}}$ are:

• In type A_2 the chambers in $\Theta_{\underline{d}}$ are:

• In type A_2 the chambers in Θ_d are:

In type A_2 , $\Theta_{\underline{d}}$ is:

Ben Wormleighton Walls for *G*-Hilb via Reid's recipe

Two dimensions	Three dimensions	Walls for G -Hilb

• One chamber \mathfrak{C}_0 'corresponds' to *G*-Hilb:

Theorem (Kronheimer)

Let $G \subseteq SL_2(\mathbb{C})$ be a finite subgroup of type Γ . There is an identification of $\Theta_{\underline{d}}$ with the Cartan subalgebra $\mathfrak{h}_{\Gamma} \subseteq \mathfrak{g}_{\Gamma}$ inside the simple Lie algebra of type Γ such that the walls in $\Theta_{\underline{d}}$ correspond to the root hyperplanes in \mathfrak{h}_{Γ} .

Outlook

Inspired by Kronheimer's theorem, we will describe walls in three dimensions with a few differences:

Outlook

Inspired by Kronheimer's theorem, we will describe walls in three dimensions with a few differences:

• it will be a 'local' description of the walls for \mathfrak{C}_0 only

Outlook

Inspired by Kronheimer's theorem, we will describe walls in three dimensions with a few differences:

- it will be a 'local' description of the walls for \mathfrak{C}_0 only
- the geometry of wall-crossings is *much* richer in three dimensions

Three dimensions

• When $G \subseteq SL_3(\mathbb{C})$ the same constructions

 $G\operatorname{-Hilb} \mathbb{C}^3$ and $\mathcal{M}_{ heta}(Q^G, \underline{\mathsf{d}})$

yield crepant resolutions of \mathbb{C}^3/G by BKR.

i wo dimensions	Thee uniensions	Walls for G-fillb	Applications
The stability	space Θ_d again has a v	wall-and-chamber	

Three dimensions

structure.

Two dimensions	Three dimensions	Walls for G-Hilb	Applications

- The stability space $\Theta_{\underline{d}}$ again has a wall-and-chamber structure.
- We denote the resolution for a chamber $\mathfrak{C} \subseteq \Theta_{\underline{d}}$ by $\mathcal{M}_{\mathfrak{C}}$.

- The stability space Θ_d again has a wall-and-chamber structure.
- We denote the resolution for a chamber $\mathfrak{C} \subseteq \Theta_d$ by $\mathcal{M}_{\mathfrak{C}}$.
- We denote the chamber for *G*-Hilb by 𝔅₀. This is the chamber containing

$$\Theta_{\mathsf{d}}^{+} = \{\theta \in \Theta_{\underline{\mathsf{d}}} : \theta(\rho) > 0 \text{ for all nontrivial } \rho\}$$

- The stability space Θ_d again has a wall-and-chamber structure.
- We denote the resolution for a chamber $\mathfrak{C} \subseteq \Theta_d$ by $\mathcal{M}_{\mathfrak{C}}$.
- We denote the chamber for *G*-Hilb by 𝔅₀. This is the chamber containing

 $\Theta^+_{\mathsf{d}} = \{\theta \in \Theta_{\underline{\mathsf{d}}}: \theta(\rho) > 0 \text{ for all nontrivial } \rho\}$

BKR also produces a triangulated equivalence

$$\Phi_{\mathfrak{C}} \colon D^b(\mathcal{M}_{\mathfrak{C}}) \to D^b_G(\mathbb{C}^3)$$

• We will focus on the case that G is abelian, actually cyclic.

Three dimensions	Walls for G -Hilb	Applications

- \blacksquare We will focus on the case that G is abelian, actually cyclic.
- \blacksquare We denote by $\frac{1}{r}(a,b,c)$ the cyclic group of order r generated by

$$g = \left(\begin{array}{cc} \varepsilon^a & & \\ & \varepsilon^b & \\ & & \varepsilon^c \end{array}\right)$$

where ε is an *r*th root of unity, and $a + b + c \equiv 0 \mod r$.

Three dimensions	Walls for G -Hilb	Applications

- \blacksquare We will focus on the case that G is abelian, actually cyclic.
- \blacksquare We denote by $\frac{1}{r}(a,b,c)$ the cyclic group of order r generated by

$$g = \left(\begin{array}{cc} \varepsilon^a & & \\ & \varepsilon^b & \\ & & \varepsilon^c \end{array}\right)$$

where ε is an *r*th root of unity, and $a + b + c \equiv 0 \mod r$.

• In this situation $\mathcal{M}_{\mathfrak{C}}$ is a toric variety.

Theorem (Craw–Ishii)

For finite abelian $G \subseteq SL_3(\mathbb{C})$, every (projective) crepant resolution of \mathbb{C}^3/G occurs as $\mathcal{M}_{\mathfrak{C}}$ for some chamber $\mathfrak{C} \subseteq \Theta_d$. ■ Crepant resolutions of C³/G correspond to 'regular triangulations' of a certain simplex.

- Crepant resolutions of C³/G correspond to 'regular triangulations' of a certain simplex.
- Craw–Reid produce a fun algorithm for computing the triangulation for *G*-Hilb.

Example This is G-Hilb for $G = \frac{1}{6}(1,2,3)$:

Example This is G-Hilb for $G = \frac{1}{6}(1,2,3)$:

Example This is *G*-Hilb for $G = \frac{1}{6}(1, 2, 3)$:

Ben Wormleighton Walls for *G*-Hilb via Reid's recipe

Reid's recipe

Reid, Craw, Logvinenko, and Craw–Cautis–Logvinenko construct a labelling of the exceptional fibre of G-Hilb \mathbb{C}^3 by characters of G called *Reid's recipe*

Reid's recipe

- Reid, Craw, Logvinenko, and Craw–Cautis–Logvinenko construct a labelling of the exceptional fibre of *G*-Hilb ℂ³ by characters of *G* called *Reid's recipe*
- Roughly, this labelling encodes where certain sheaves generating *D*^b(*G*-Hilb ℂ³) are supported.

Example

• Reid's recipe for $G = \frac{1}{6}(1,2,3)$ is:

• Here a denotes the character $\chi_a \colon g \mapsto \varepsilon^a$.

Ben Wormleighton Walls for G-Hilb via Reid's recipe

We will address the question:

Ben Wormleighton Walls for *G*-Hilb via Reid's recipe

Walls for G-Hilb

We will address the question:

How can one describe the walls of the chamber \mathfrak{C}_0 for *G*-Hilb?

Walls for G-Hilb

We will address the question:

How can one describe the walls of the chamber \mathfrak{C}_0 for *G*-Hilb?

More precisely,

- what are the equations of the walls?
- how can we describe the wall-crossing behaviour? (e.g. birational type, unstable locus, equivalences of derived categories,...)

Theorem (W. '19)

There is an algorithm – called the **unlocking procedure** – to explicitly compute a set of inequalities defining \mathfrak{C}_0 from the data of Reid's recipe and the combinatorics of the exceptional fibre.

Theorem (W. '19)

There is an algorithm – called the **unlocking procedure** – to explicitly compute a set of inequalities defining \mathfrak{C}_0 from the data of Reid's recipe and the combinatorics of the exceptional fibre. Moreover:

■ one can determine which of these inequalities are irredundant and so actually define walls of 𝔅₀.

Theorem (W. '19)

There is an algorithm – called the **unlocking procedure** – to explicitly compute a set of inequalities defining \mathfrak{C}_0 from the data of Reid's recipe and the combinatorics of the exceptional fibre. Moreover:

- one can determine which of these inequalities are irredundant and so actually define walls of 𝔅₀.
- the birational type, unstable locus, and derived equivalence for the wall can be read from the wall equation.

Unlocking

 The unlocking procedure associates to each exceptional curve a set of characters

 $C \rightsquigarrow \operatorname{G-ig}(C)$

Unlocking

 The unlocking procedure associates to each exceptional curve a set of characters

$C \leadsto \operatorname{G-ig}(C)$

■ Each exceptional curve *C* produces a potentially redundant inequality defining 𝔅₀, and the unlocking procedure takes a curve to the collection of characters G-ig(*C*) appearing in this inequality.

Unlocking

 The unlocking procedure associates to each exceptional curve a set of characters

 $C \leadsto \operatorname{G-ig}(C)$

■ Each exceptional curve *C* produces a potentially redundant inequality defining 𝔅₀, and the unlocking procedure takes a curve to the collection of characters G-ig(*C*) appearing in this inequality. The coefficients in these inequalities can also be calculated in a uniform way.

• Let $S = \{\chi\}$

• Let $S = \{\chi\}$

• For each divisor D containing two $\chi\text{-curves}$ add the character marking D to S

• Let $S = \{\chi\}$

- For each divisor D containing two χ-curves add the character marking D to S
- For each 'broken curve' B that is 'downstream' of C add $\operatorname{G-ig}(B)$ to S

Then $\operatorname{G-ig}(C) = S$.

- Let $S = \{\chi\}$
- For each divisor D containing two χ-curves add the character marking D to S
- For each 'broken **curve**' B that is 'downstream' of C add $\operatorname{G-ig}(B)$ to S

Then $\operatorname{G-ig}(C) = S$.

Example (Unlocking for $G = \frac{1}{6}(1, 2, 3)$) For $G = \frac{1}{6}(1, 2, 3)...$

Unlocking for the 4-curve C_4 has $G-ig(C_4) = \{\chi_4\}$.

Example (Unlocking for $G = \frac{1}{6}(1, 2, 3)$) For $G = \frac{1}{6}(1, 2, 3)...$

Unlocking for the dashed curve C_3 gives G-ig $(C_3) = \{\chi_3, \chi_4, \chi_5\}$.

Using this, we compute the walls for \mathfrak{C}_0 to be

$$\theta(\chi_1) = 0$$

$$\theta(\chi_2) + \theta(\chi_5) = 0$$

$$\theta(\chi_3) + \theta(\chi_5) = 0$$

$$\theta(\chi_4) = 0$$

$$\theta(\chi_5) = 0$$

$$\theta(\chi_2) + \theta(\chi_3) + \theta(\chi_4) + \theta(\chi_5) = 0$$

The chamber \mathfrak{C}_0 is given by replacing = by > in these equations.

Ben Wormleighton Walls for G-Hilb via Reid's recipe

• The curve C_3 from before produces the inequality

 $\theta(\chi_3) + \theta(\chi_5) + \theta(\chi_4) > 0$

• The curve C_3 from before produces the inequality

$$\theta(\chi_3) + \theta(\chi_5) + \theta(\chi_4) > 0$$

 Notice that this is the sum of two wall inequalities and so is redundant

• The curve C_3 from before produces the inequality

$$\theta(\chi_3) + \theta(\chi_5) + \theta(\chi_4) > 0$$

- Notice that this is the sum of two wall inequalities and so is redundant
- This comes from unlocking: the characters in the inequality come from the characters captured by the other 3-curve and from the unlocked 4-curve.

Example (Reid's recipe for $G = \frac{1}{25}(1,3,21)$)

Ben Wormleighton Walls for *G*-Hilb via Reid's recipe

Let's consider the curve ${\boldsymbol C}$ marked with 1 that's dashed in the following picture.

Ben Wormleighton Walls for *G*-Hilb via Reid's recipe

Ben Wormleighton Walls for *G*-Hilb via Reid's recipe

We can conclude that the characters featuring in the inequality for \boldsymbol{C} are

 $\{\chi_1, \chi_2, \chi_4, \chi_6, \chi_7, \chi_{10}, \chi_{11}, \chi_{14}, \chi_{15}, \chi_{18}, \chi_{19}, \chi_{22}, \chi_{23}\}$

 We can also deduce some corollaries describing the structure of Θ_d and the geometry of the wall-crossings.

• Given a wall $\mathfrak{w} \subseteq \mathfrak{C}$ there is a contraction morphism

$\operatorname{cont}_{\mathfrak{w}}\colon \mathcal{M}_{\mathfrak{C}}\to \overline{\mathcal{M}}_{\theta}$

for generic $\theta \in \mathfrak{w}$.

We say that $\mathfrak w$ is...

- \blacksquare Type 0 if $\operatorname{cont}_{\mathfrak{w}}$ is an isomorphism
- \blacksquare Type I if $\operatorname{cont}_{\mathfrak{w}}$ contracts a curve to a point
- \blacksquare Type II if $\operatorname{cont}_{\mathfrak{w}}$ contracts a divisor to a point
- Type III if $\operatorname{cont}_{\mathfrak{w}}$ contracts a divisor to a curve

Corollary (Craw–Ishii, W.)

The flop in each (-1, -1)-curve in G-Hilb \mathbb{C}^3 can be realised by a single wall-crossing from \mathfrak{C}_0 . There are no walls of \mathfrak{C}_0 that contract a divisor to a point (Type II).

Corollary (Craw–Ishii, W.)

The flop in each (-1, -1)-curve in G-Hilb \mathbb{C}^3 can be realised by a single wall-crossing from \mathfrak{C}_0 . There are no walls of \mathfrak{C}_0 that contract a divisor to a point (Type II).

Corollary (W.)

The unstable locus of each wall can be reconstructed combinatorially from the characters appearing in the wall equation.

Beyond assessing whether inequalities in a given example are redundant, the techniques of the theorem provide a general classification of the walls for C₀ in combinatorial terms.

Theorem (W. '19)

Suppose $G \subseteq SL_3(\mathbb{C})$ is a finite abelian subgroup. The walls of the chamber \mathfrak{C}_0 for G-Hilb and their types are as follows:

- a Type I wall for each exceptional (-1, -1)-curve,
- a Type III wall for each generalised long side,
- a Type 0 wall for each irreducible exceptional divisor,
- each remaining wall is of Type 0 and comes from a divisor parameterising a rigid quotient.

Example (Reid's recipe for $G = \frac{1}{25}(1,3,21)$)

Ben Wormleighton Walls for *G*-Hilb via Reid's recipe

Idea of the proof:

Ben Wormleighton Walls for G-Hilb via Reid's recipe

Washington University in St. Louis

Idea of the proof:

Ben Wormleighton Walls for G-Hilb via Reid's recipe

Washington University in St. Louis

- compute inequalities explicitly in terms of characters
- identify which inequalities give walls
- show that walls remember geometry

- compute inequalities explicitly in terms of characters
 - Craw–Ishii did this for some divisors
 - We complete this for curves and all divisors, which yields the unlocking procedure
- identify which inequalities give walls
- show that walls remember geometry

- compute inequalities explicitly in terms of characters
 - Craw–Ishii did this for some divisors
 - We complete this for curves and all divisors, which yields the unlocking procedure
- identify which inequalities give walls
 - unlocking is recursive
- show that walls remember geometry

- compute inequalities explicitly in terms of characters
 - Craw–Ishii did this for some divisors
 - We complete this for curves and all divisors, which yields the unlocking procedure
- identify which inequalities give walls
 - unlocking is recursive
- show that walls remember geometry
 - unlocking is reversible

Applications – in progress

Ben Wormleighton Walls for *G*-Hilb via Reid's recipe

Applications – in progress

 One motivation for having explicit expressions for walls is to compare the position of chambers of different crepant resolutions of C³/G.

• Suppose $A \subseteq G$ is a normal subgroup with quotient G/A = T.

- Suppose $A \subseteq G$ is a normal subgroup with quotient G/A = T.
- ${\hfill}\ T$ acts on $A{\hfill}\ \mathbb{C}^3$ and so one obtains the crepant resolution

 $T\operatorname{-Hilb} A\operatorname{-Hilb} \mathbb{C}^3 \to \mathbb{C}^3/G$

Conjecture: Let \mathfrak{C}_0 denote the chamber for *G*-Hilb and let \mathfrak{C}_1 denote the/a chamber for *T*-Hilb *A*-Hilb.

Conjecture: Let \mathfrak{C}_0 denote the chamber for *G*-Hilb and let \mathfrak{C}_1 denote the/a chamber for *T*-Hilb *A*-Hilb. There exists a path from \mathfrak{C}_0 to \mathfrak{C}_1 crossing walls 'mostly' indexed by exceptional subvarieties marked by Reid's recipe by characters of *G* lifted from *T*.

We return to $G=\frac{1}{6}(1,2,3)$ with $G\operatorname{-Hilb}\mathbb{C}^3$ and Reid's recipe shown below.

G can be expressed as a direct product of $A=\frac{1}{3}(1,2,0)$ and $T=\frac{1}{2}(1,0,1).$ We show $T\text{-Hilb}\,A\text{-Hilb}\,\mathbb{A}^3$:

G can be expressed as a direct product of $A=\frac{1}{3}(1,2,0)$ and $T=\frac{1}{2}(1,0,1).$ We show $T\text{-Hilb}\,A\text{-Hilb}\,\mathbb{A}^3$:

One obtains *T*-Hilb *A*-Hilb from flopping the (-1, -1)-curve labelled with χ_3 , the only character lifted from the quotient *T*.

As G is a direct product we can also compute A-Hilb \mathbb{A}^3 .

Ben Wormleighton Walls for *G*-Hilb via Reid's recipe

As G is a direct product we can also compute A-Hilb \mathbb{A}^3 .

In this case two flops are required to reach A-Hilb T-Hilb, first in the curve marked with χ_4 , then in the image of the curve marked with χ_2 in G-Hilb. These are exactly the characters lifted from A.

■ Ishii–Ito–Nolla de Celis construct a stability condition ϑ defining *T*-Hilb *A*-Hilb C³. It is not so hard to show that their stability condition satisfies the following:

Ishii–Ito–Nolla de Celis construct a stability condition ϑ defining *T*-Hilb *A*-Hilb C³. It is not so hard to show that their stability condition satisfies the following:

Lemma

Let χ be an irreducible representation of G. Then $\vartheta(\chi) < 0$ if and only if χ is lifted from T.

Recall that C₀ contains the locus where θ(χ) > 0 for all nontrivial irreducible representations χ.

- Recall that C₀ contains the locus where θ(χ) > 0 for all nontrivial irreducible representations χ.
- Hence, it is plausible that the negativity of $\vartheta(\chi)$ will contrast with the positivity in \mathfrak{C}_0 .

- Recall that \mathfrak{C}_0 contains the locus where $\theta(\chi) > 0$ for all nontrivial irreducible representations χ .
- Hence, it is plausible that the negativity of $\vartheta(\chi)$ will contrast with the positivity in \mathfrak{C}_0 .
- We hope to use the explicit expressions of walls of C₀ to codify this and offer further evidence towards the conjecture stated above.

References

- [1] Derived Reid's recipe for abelian subgroups of $SL_3(\mathbb{C})$, S. Cautis, A. Craw & T. Logvinenko ('14)
- [2] An explicit construction of the McKay correspondence for A-Hilb C³, A. Craw ('01)
- [3] Flops of *G*-Hilb and equivalences of derived categories by variation of *GIT* quotient, A. Craw & A. Ishii ('03)
- [4] How to compute A-Hilb \mathbb{C}^3 , A. Craw & M. Reid ('00)
- [5] On G/N-Hilb of N-Hilb, A. Ishii, Y. Ito & Á. Nolla ('11)
- [6] Le correspondance de McKay, M. Reid ('97)
- [7] Flops and clusters in the homological minimal model program, M. Wemyss ('14)
- [8] Walls for G-Hilb via Reid's recipe, B. Wormleighton ('19)