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McKay Correspondence

The n-dimensional McKay correspondence seeks to relate:

geometry of crepant resolutions
π : Y → X := Cn/G ←→ representation theory

of G

for finite G ⊆ SLn(C).
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We will focus on wall-crossing in the McKay correspondence.

Specifically, we will interpret walls in a stability space
geometrically and combinatorially using representation theory.
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There are several interlinked perspectives on this type of
wall-crossing, for instance:

Homological Minimal Model Program (Wemyss)
quiver mutations (Nolla–Sekiya)
VGIT (Craw–Ishii)
...

We will emphasise the latter, though heavily inspired by the
first two approaches.
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Two dimensions

Recall that in two dimensions the G-Hilbert scheme

G-HilbC2

is the unique crepant resolution of C2/G when G ⊆ SL2(C).
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Example

For the singularity of type A2 the exceptional fibre in its
crepant resolution and its dual graph are:

• •
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G-Hilb can also be viewed as a moduli space of θ-stable
quiver representations

Mθ(Q
G, d)

Here QG is the McKay quiver for G, θ is a stability condition,
and d is a distinguished dimension vector.

We denote the vertices of the McKay quiver by Q0 and the
arrows by Q1.
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The stability condition θ lives in the stability space

Θd := {η ∈ HomZ(ZQ0 ,R) : η(d) = 0}

Note that ZQ0 = Rep(G) and so we will often write elements
of ZQ0 as linear combinations of characters.
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The stability space Θd has a wall-and-chamber structure in
which if θ, ϑ lie in the same open chamber C then

Mθ(Q
G, d) ∼=Mϑ(QG, d)

We denote by MC the moduli space for any generic θ ∈ C.
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Example

In type A2 the chambers in Θd are:

•
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Example

In type A2, Θd is:

•

••
•

C2/G
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Example

One chamber C0 ‘corresponds’ to G-Hilb:

•

C0
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Theorem (Kronheimer)

Let G ⊆ SL2(C) be a finite subgroup of type Γ. There is an
identification of Θd with the Cartan subalgebra hΓ ⊆ gΓ inside the
simple Lie algebra of type Γ such that the walls in Θd correspond
to the root hyperplanes in hΓ.
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Outlook

Inspired by Kronheimer’s theorem, we will describe walls in three
dimensions with a few differences:

it will be a ‘local’ description of the walls for C0 only

the geometry of wall-crossings is much richer in three
dimensions
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Three dimensions

When G ⊆ SL3(C) the same constructions

G-HilbC3 and Mθ(Q
G, d)

yield crepant resolutions of C3/G by BKR.
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The stability space Θd again has a wall-and-chamber
structure.

We denote the resolution for a chamber C ⊆ Θd by MC.

We denote the chamber for G-Hilb by C0. This is the
chamber containing

Θ+
d = {θ ∈ Θd : θ(ρ) > 0 for all nontrivial ρ}

BKR also produces a triangulated equivalence

ΦC : Db(MC)→ Db
G(C3)
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We will focus on the case that G is abelian, actually cyclic.

We denote by 1
r (a, b, c) the cyclic group of order r generated

by

g =

 εa

εb

εc


where ε is an rth root of unity, and a+ b+ c ≡ 0 mod r.

In this situation MC is a toric variety.
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Theorem (Craw–Ishii)

For finite abelian G ⊆ SL3(C), every (projective) crepant
resolution of C3/G occurs as MC for some chamber C ⊆ Θd.
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Crepant resolutions of C3/G correspond to ‘regular
triangulations’ of a certain simplex.

Craw–Reid produce a fun algorithm for computing the
triangulation for G-Hilb.
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Example

This is G-Hilb for G = 1
6(1, 2, 3):

•

••
•

•

•
•

exceptional curve

exceptional prime divisor
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Reid’s recipe

Reid, Craw, Logvinenko, and Craw–Cautis–Logvinenko
construct a labelling of the exceptional fibre of G-HilbC3 by
characters of G called Reid’s recipe

Roughly, this labelling encodes where certain sheaves
generating Db(G-HilbC3) are supported.
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Example

Reid’s recipe for G = 1
6(1, 2, 3) is:

•

••
5

•

•
•

32

2

1

3
4

Here a denotes the character χa : g 7→ εa.
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Walls for G-Hilb

We will address the question:

How can one describe the walls of the
chamber C0 for G-Hilb?

More precisely,

what are the equations of the walls?

how can we describe the wall-crossing behaviour? (e.g.
birational type, unstable locus, equivalences of derived
categories,...)
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Theorem (W. ’19)

There is an algorithm – called the unlocking procedure – to
explicitly compute a set of inequalities defining C0 from the data of
Reid’s recipe and the combinatorics of the exceptional fibre.

Moreover:

one can determine which of these inequalities are irredundant
and so actually define walls of C0.

the birational type, unstable locus, and derived equivalence for
the wall can be read from the wall equation.

Ben Wormleighton Washington University in St. Louis

Walls for G-Hilb via Reid’s recipe



Two dimensions Three dimensions Walls for G-Hilb Applications

Theorem (W. ’19)

There is an algorithm – called the unlocking procedure – to
explicitly compute a set of inequalities defining C0 from the data of
Reid’s recipe and the combinatorics of the exceptional fibre.
Moreover:

one can determine which of these inequalities are irredundant
and so actually define walls of C0.

the birational type, unstable locus, and derived equivalence for
the wall can be read from the wall equation.

Ben Wormleighton Washington University in St. Louis

Walls for G-Hilb via Reid’s recipe



Two dimensions Three dimensions Walls for G-Hilb Applications

Theorem (W. ’19)

There is an algorithm – called the unlocking procedure – to
explicitly compute a set of inequalities defining C0 from the data of
Reid’s recipe and the combinatorics of the exceptional fibre.
Moreover:

one can determine which of these inequalities are irredundant
and so actually define walls of C0.

the birational type, unstable locus, and derived equivalence for
the wall can be read from the wall equation.

Ben Wormleighton Washington University in St. Louis

Walls for G-Hilb via Reid’s recipe



Two dimensions Three dimensions Walls for G-Hilb Applications

Unlocking

The unlocking procedure associates to each exceptional curve
a set of characters

C  G-ig(C)

Each exceptional curve C produces a potentially redundant
inequality defining C0, and the unlocking procedure takes a
curve to the collection of characters G-ig(C) appearing in this
inequality. The coefficients in these inequalities can also be
calculated in a uniform way.
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Let C be a curve marked with χ by Reid’s recipe. Roughly, the
unlocking procedure does the following:

Let S = {χ}

For each divisor D containing two χ-curves
add the character marking D to S

For each ‘broken curve’ B that is ‘downstream’ of C
add G-ig(B) to S

Then G-ig(C) = S.

Ben Wormleighton Washington University in St. Louis
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Example (Unlocking for G = 1
6(1, 2, 3))

For G = 1
6(1, 2, 3)...

•

••
5

•

•

•

32

2

1

3
4

Unlocking for the 4-curve C4 has G-ig(C4) = {χ4}.
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Example (Unlocking for G = 1
6(1, 2, 3))

For G = 1
6(1, 2, 3)...

•

••
5

•

•

•

32

2

1

3
4

Unlocking for the dashed curve C3 gives G-ig(C3) = {χ3, χ4, χ5}.
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Example (Unlocking for G = 1
6(1, 2, 3))

Using this, we compute the walls for C0 to be

θ(χ1) = 0

θ(χ2) + θ(χ5) = 0

θ(χ3) + θ(χ5) = 0

θ(χ4) = 0

θ(χ5) = 0

θ(χ2) + θ(χ3) + θ(χ4) + θ(χ5) = 0

The chamber C0 is given by replacing = by > in these equations.
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Example (Unlocking for G = 1
6(1, 2, 3))

The curve C3 from before produces the inequality

θ(χ3) + θ(χ5) + θ(χ4) > 0

Notice that this is the sum of two wall inequalities and so is
redundant

This comes from unlocking: the characters in the inequality
come from the characters captured by the other 3-curve and
from the unlocked 4-curve.
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Example (Reid’s recipe for G = 1
25(1, 3, 21))

•

••
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Example (Unlocking for a 1-curve)

Let’s consider the curve C marked with 1 that’s dashed in the
following picture.
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Example (Unlocking for a 1-curve)
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Example (Unlocking for a 1-curve)
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Example (Unlocking for a 1-curve)

•

••

4

7

11

10

23

19

1

6

1

18

15

2

2

6

2

2

Ben Wormleighton Washington University in St. Louis

Walls for G-Hilb via Reid’s recipe



Two dimensions Three dimensions Walls for G-Hilb Applications

Example (Unlocking for a 1-curve)

•

••

4

7

11

10

23

14
19

22

1

6

1

18

18

15

2

2

6

2

2

1

Ben Wormleighton Washington University in St. Louis

Walls for G-Hilb via Reid’s recipe



Two dimensions Three dimensions Walls for G-Hilb Applications

Example (Unlocking for a 1-curve)
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Example (Unlocking for a 1-curve)

We can conclude that the characters featuring in the inequality for
C are

{χ1, χ2, χ4, χ6, χ7, χ10, χ11, χ14, χ15, χ18, χ19, χ22, χ23}
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We can also deduce some corollaries describing the structure
of Θd and the geometry of the wall-crossings.
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Given a wall w ⊆ C there is a contraction morphism

contw : MC →Mθ

for generic θ ∈ w.
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We say that w is...

Type 0 if contw is an isomorphism

Type I if contw contracts a curve to a point

Type II if contw contracts a divisor to a point

Type III if contw contracts a divisor to a curve
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Corollary (Craw–Ishii, W.)

The flop in each (−1,−1)-curve in G-HilbC3 can be realised by a
single wall-crossing from C0. There are no walls of C0 that
contract a divisor to a point (Type II).

Corollary (W.)

The unstable locus of each wall can be reconstructed
combinatorially from the characters appearing in the wall equation.
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Beyond assessing whether inequalities in a given example are
redundant, the techniques of the theorem provide a general
classification of the walls for C0 in combinatorial terms.
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Theorem (W. ’19)

Suppose G ⊆ SL3(C) is a finite abelian subgroup. The walls of the
chamber C0 for G-Hilb and their types are as follows:

a Type I wall for each exceptional (−1,−1)-curve,

a Type III wall for each generalised long side,

a Type 0 wall for each irreducible exceptional divisor,

each remaining wall is of Type 0 and comes from a divisor
parameterising a rigid quotient.
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Example (Reid’s recipe for G = 1
25(1, 3, 21))
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Idea of the proof:

Θd

Pic(MC)R

LC

C

Nef(MC)
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Idea of the proof:

Θd

Pic(MC)R

LC

C

LC(C)
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At this point there are three things that remain to be shown:

compute inequalities explicitly in terms of characters

identify which inequalities give walls

show that walls remember geometry
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At this point there are three things that remain to be shown:

compute inequalities explicitly in terms of characters

Craw–Ishii did this for some divisors
We complete this for curves and all divisors, which yields the
unlocking procedure

identify which inequalities give walls

show that walls remember geometry
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At this point there are three things that remain to be shown:

compute inequalities explicitly in terms of characters

Craw–Ishii did this for some divisors
We complete this for curves and all divisors, which yields the
unlocking procedure

identify which inequalities give walls

unlocking is recursive

show that walls remember geometry
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At this point there are three things that remain to be shown:

compute inequalities explicitly in terms of characters

Craw–Ishii did this for some divisors
We complete this for curves and all divisors, which yields the
unlocking procedure

identify which inequalities give walls

unlocking is recursive

show that walls remember geometry

unlocking is reversible
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Applications – in progress

One motivation for having explicit expressions for walls is to
compare the position of chambers of different crepant
resolutions of C3/G.
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Applications – in progress

One motivation for having explicit expressions for walls is to
compare the position of chambers of different crepant
resolutions of C3/G.
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Suppose A ⊆ G is a normal subgroup with quotient G/A = T .

T acts on A-HilbC3 and so one obtains the crepant resolution

T -HilbA-HilbC3 → C3/G
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Suppose A ⊆ G is a normal subgroup with quotient G/A = T .

T acts on A-HilbC3 and so one obtains the crepant resolution

T -HilbA-HilbC3 → C3/G
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Conjecture: Let C0 denote the chamber for G-Hilb and let C1

denote the/a chamber for T -HilbA-Hilb.

There exists a path from
C0 to C1 crossing walls ‘mostly’ indexed by exceptional subvarieties
marked by Reid’s recipe by characters of G lifted from T .
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Conjecture: Let C0 denote the chamber for G-Hilb and let C1

denote the/a chamber for T -HilbA-Hilb. There exists a path from
C0 to C1 crossing walls ‘mostly’ indexed by exceptional subvarieties
marked by Reid’s recipe by characters of G lifted from T .
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Example (Geometric evidence)

We return to G = 1
6(1, 2, 3) with G-HilbC3 and Reid’s recipe

shown below.

•

••
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•

•
•
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Example (Geometric evidence)

G can be expressed as a direct product of A = 1
3(1, 2, 0) and

T = 1
2(1, 0, 1). We show T -HilbA-HilbA3:

•

••
•

•

•
•

One obtains T -HilbA-Hilb from flopping the (−1,−1)-curve
labelled with χ3, the only character lifted from the quotient T .
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Example (Geometric evidence)

As G is a direct product we can also compute A-HilbT -HilbA3.

•

••
•

•

•
•

In this case two flops are required to reach A-HilbT -Hilb, first in
the curve marked with χ4, then in the image of the curve marked
with χ2 in G-Hilb. These are exactly the characters lifted from A.
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Algebraic evidence

Ishii–Ito–Nolla de Celis construct a stability condition ϑ
defining T -HilbA-HilbC3. It is not so hard to show that their
stability condition satisfies the following:

Lemma
Let χ be an irreducible representation of G. Then ϑ(χ) < 0 if and
only if χ is lifted from T .
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Algebraic evidence

Recall that C0 contains the locus where θ(χ) > 0 for all
nontrivial irreducible representations χ.

Hence, it is plausible that the negativity of ϑ(χ) will contrast
with the positivity in C0.

We hope to use the explicit expressions of walls of C0 to
codify this and offer further evidence towards the conjecture
stated above.
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