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2-dimensional case

1. The Gorenstein Quotient Singularities in dimension 2

1. (C2/G, 0): a cyclic quotient singularity.

⇒ ∃The correspondence w.r.t. self-intersection numbers.

{The coefficients of the Hirzebruch-Jung continued fraction}
←→ {The self-intersection numbers of the excep. div. of the min. resol. of C2/G}

2. (C2/G, 0): a Gorenstein quotient singularity.

⇒ ∃The Mckay correspondence.

{The non-trivial irreducible representations of G}
←→ {The excep. div. of the min. resol. of C2/G}
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2-dimensional case

Example 1.

C2/G: a C.Q.S. of 1
r (1, a)-type where 1 ≤ a ≤ r − 1.

(N ′, σ): a toric model of C2/G where N ′ := Z3 + 1
r (1, a)Z, σ := R≥0(1, 0) + R≥0(0, 1).

r
a = x1 − 1

x2− 1

x3−··· 1
xs

= [x1, . . . , xs] where x1, . . . , xs ∈ Z>0.
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Higher dimensional case

2. The Gorenstein Quotient Singularities in higher dimension

2.1 A generalization of Hirzebruch-Jung continued fractions by Tadashi Ashikaga[1]

Definition 1.

n ∈ Z≥1, r ∈ N, a = (a1, . . . , an) ∈ Zn s.t. 0 ≤ ai ≤ r − 1 (1 ≤ i ≤ n).
We call the symbol

a

r
=

(a1, . . . , an)

r

an n-dimensional proper fraction.

[1] T. Ashikaga, Multidimensional continued fractions for cyclic quotient singularities and Dedekind sums, Kyoto
J. Math. Vol. 59 (2019), no.4, 993–1039.
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Higher dimensional case

Definition 2.

A proper fraction s.t. at least one component of a is 1 is called semi-unimodular.

Setting 1.

A semi-unimodular proper fraction forms as the following.

a

r
=

(1, a2, . . . , an)

r
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Higher dimensional case

Definition 3.

The age of an n-dimensional proper fraction a
r = (a1,...,an)

r is defined as

age
(a
r

)
=

1

r

n∑
i=1

ai.

Notation 1.

Qprop
n : the set of n-dimensional proper fractions.

Qprop
n := Qprop

n ∪ {∞}.

Zn := Zn ∪ {∞}.
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Higher dimensional case

Definition 4.

a
r : an n-dimensional semi-unimodular proper fraction.

(i) For 2 ≤ i ≤ n, the i-th round down map Zi : Qprop
n → Zn is defined by

Zi

(
(1, a2, . . . , an)

r

)
=

{ (
⌊ 1
ai
⌋, ⌊a2ai ⌋, . . . , ⌊

ai−1

ai
⌋, ⌊−r

ai
⌋, ⌊ai+1

ai
⌋, . . . , ⌊anai ⌋

)
if ai ̸= 0

∞ if ai = 0

and Zi(∞) =∞ where ⌊x⌋ is the greatest integer not exceeding x.

(ii) For 2 ≤ i ≤ n, the i-th remainder map Ri : Qprop
n → Qprop

n is defined by

Ri

(
(1, a2, . . . , an)

r

)
=

{ (
1
ai ,a2ai , ..., ai−1

ai , −r
ai , ai+1

ai , ...,anai

ai

)
if ai ̸= 0

∞ if ai = 0

and Ri(∞) =∞ where aj
ai is an integer satisfying 0 ≤ aj

ai < ai and aj
ai ≡ aj modulo

ai.
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Higher dimensional case

Example 2.

v =
(1, 2, 5)

8

Z2(v) = (0,−4, 2),
Z3(v) = (0, 0,−2),

R2(v) =
(1, 0, 1)

2
,

R3(v) =
(1, 2, 2)

5
.
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Higher dimensional case

Definition 5.

a
r : an n-dimensional semi-unimodular proper fraction.

(i) The remainder polynomial R∗
(
a
r

)
∈ Qprop

n [x2, . . . , xn] is defined by

R∗

(a
r

)
=

a

r
+

∑
(i1,i2,...,il)∈Il, l≥1

(Ril · · ·Ri2Ri1)
(a
r

)
· xi1xi2 · · ·xil

where we exclude terms with coefficients ∞ or (0,0,...,0)
1 .

(ii) The round down polynomial Z∗
(
a
r

)
∈ Zn[x2, . . . , xn] is defined by

Z∗

(a
r

)
=

n∑
j=2

Zj

(a
r

)
xj +

n∑
j=2

∑
(i1,i2,...,il)∈Il, l≥1

(ZjRil · · ·Ri2Ri1)
(a
r

)
· xi1xi2 · · ·xilxj

where I = {2, . . . , n} signifies the index set of the variables.
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Higher dimensional case

Example 3.

Let v = (1,2,8)
11 , then the remainder polynomial is

R∗

(
(1, 2, 8)

11

)
=

1

11
(1, 2, 8) +

1

2
(1, 1, 0)x2 +

1

8
(1, 2, 5)x3

+
1

2
(1, 0, 1)x3x2 +

1

5
(1, 2, 2)x3x3

+
1

2
(1, 1, 0)x3x3x2 +

1

2
(1, 0, 1)x3x3x3.

The round down polynomial is

Z∗

(
(1, 2, 8)

11

)
= (0,−6, 4)x2 + (0, 0,−2)x3

+ (1,−4, 2)x3x2 + (0, 0,−2)x3x3
+ (0,−3, 1)x3x3x2 + (0, 1,−3)x3x3x3.
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Higher dimensional case

R∗

(
(1, 2, 8)

11

)
=

1

11
(1, 2, 8) +

1

2
(1, 1, 0)x2 +

1

8
(1, 2, 5)x3

+
1

2
(1, 0, 1)x3x2 +

1

5
(1, 2, 2)x3x3

+
1

2
(1, 1, 0)x3x3x2 +

1

2
(1, 0, 1)x3x3x3.

Figure: The basic triangulation of sG by Fujiki-Oka resolution
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Higher dimensional case

Fact 1.

For a semi-isolated quotientsingularity (i.e. a C.Q.S. of 1
r (1, a2, . . . , an)-type), every

Fujiki-Oka resolution is always smooth and have a relation with a multi-dimensional
continued fraction (i.e. a pair of a remainder polynomial and a round down polynomial).

Question 1.

When does the McKay correspondence on the Fujiki-Oka resolutions hold?

Question 2.

When is a Fujiki-Oka resolution crepant?
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Higher dimensional case

2.2 Necessary and sufficient condition for the Fujiki-Oka resolutions to be crepant

Theorem 1. (K.S, Y.Sato)

For a C.Q.S. of 1
r (1, a2, . . . , an)-type, the corresponding Fujiki-Oka resolution is crepant if and

only if the ages of all the coefficients of R∗

(
(1,a2,...,an)

r

)
are 1.

13 / 31



Higher dimensional case

Outline of the proof.
1. G :=

〈
1
r (1, a2, . . . , an)

〉
s.t. 1 + a2 + · · ·+ an ≥ 2r ⇒ Cn/G has no toric crepant

resolutions.

2. Assume G :=
〈
1
r (1, a2, . . . , an)

〉
s.t. 1 + a2 + · · ·+ an = r.

The Fujiki-Oka resolution of Cn/G is crepant ⇔ all the Cn/Gi have a toric crepant resol.
where Cn/Gi is the C.Q.S. of 1

ai
(1, a2

ai , . . . , ai−1
ai ,−rai , ai+1

ai , . . . , an
ai)-type.

3. For x = (x1, . . . , xn) ∈ NiR, the map φi : NiR ↪→ N ′
R is defined as follows:

φi(x) =
(
x1 +

1
rxi, x2 +

a2
r xi, . . . , xi−1 +

ai−1

r xi,
ai
r xi, xi+1 +

ai+1

r xi, . . . , xn + an
r xi

)
where X(Ni, σ) ∼= Cn/Gi and Ni = Zn + 1

ai
(1, a2

ai , . . . , ai−1
ai ,−rai , ai+1

ai , . . . , an
ai)Z.

2
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Higher dimensional case

Corollary 1.

For all three dimensional semi-isolated Gorenstein quotient singularities, the Fujiki-Oka
resolutions are crepant.

Outline of the proof.

1. 1 + a2 + a3 + · · ·+ an = r ⇒ age
(
Ri

(
(1,a2,...,an)

r

))
∈ Z.

2. 1 +−ra + b
a
< 2a

3. By Theorem 1.

2
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Higher dimensional case

Question 3.

Does there exist a crepant fujiki-Oka resolution if a semi-isolated singularity Cn/G has a
crepant resolution? → No.

Example 4.

The C.Q.S. of 1
40(1, 3, 9, 27)-type has a toric crepant resolution by [2]. However, the

Fujiki-Oka resolution is not crepant.

[2] D. I. Dais, M. Henk, and G. M. Ziegler, On the existence of crepant resolutions of Gorenstein Abelian
quotient singularities in dimensions≥ 4, Contemp. Math. 423, Amer. Math. Soc., Providence, RI, 2006.
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Higher dimensional case
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Higher dimensional case

2.3 The Fujiki-Oka resolutions in abelian case

G ⊂ SL(n,C): a finite abelian subgroup.
Assume the ages of all the generators of G are 1.

There exist a basic generating system of G as follows:{
1

r1
(a11, a12, . . . , a1n),

1

r2
(0, a22, . . . , a2n), . . . ,

1

rn−1
(0, . . . , 0, an−1 n−1, an−1 n)

}
where ri, aij (1 ≤ i ≤ n− 1, i ≤ j ≤ n) are positive integers satisfying
LCM(r1, . . . , rn−1) = |G| and the following conditions:

(i) aii = 0 ⇒ aij = 0 for i ≤ j ≤ n,

(ii) aii ̸= 0 ⇒ aii = 1 and
n∑

j=i

aij = ri.
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Higher dimensional case

G can be decomposed to the cyclic components as follows:

G ∼=
〈

1

r1
(a11, a12, a13)

〉
× · · · ×

〈
1

rn−1
(0, . . . , 0, an−1 n−1, an−1 n)

〉
.

Note 1.

Clearly, every cyclic component can be decomposed to the product of p-Sylow subgroups.
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Higher dimensional case

G ⊂ SL(n,C): a finite abelian subgroup.
H: a component of the above decomposition by cyclic subgroups of G.

Cn/H: semi-isolated ⇒ ∃(ỸH ,FO1): Fujiki-Oka resolution, ∃(YG, φ): the toric partial
resolution satisfying the following diagram:

where πH (resp. πG/H) is the quotient map by H (resp. G/H).
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Higher dimensional case

All the singularities in YG are semi-isolated ⇒ ∃(ỸG,FO2): a Fujiki-Oka resolutions for the
quotient singularities in YG.

Note 2.

Every singularity in YG is at worst Gorenstein cyclic quotient singularity which is canonical but
not terminal because of the construction.
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Higher dimensional case

Definition 6.

We call the resolution (ỸG,FO2 ◦ φ) in the above diagrams an iterated Fujiki-Oka
resolution of Cn/G.
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Higher dimensional case

As (ỸG′ ,FO3 ◦ φ′) in the above, iterated Fujiki-Oka resolutions can be extended under the
suitable conditions. We also call these resolutions and the ordinary Fujiki-Oka resolutions
iterated Fujiki-Oka resolutions.
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Higher dimensional case

Lemma 1.

G ⊂ SL(n,C): a finite abelian subgroup.
There exists at least one iterated Fujiki-Oka resolution for Cn/G.

Outline of the proof.{
1
r1
(a11, a12, . . . , a1n), . . . ,

1
rn−1

(0, . . . , 0, an−1 n−1, an−1 n)
}
: a basic generating system of G.

1. H1 =
〈

1
rn−1

(0, . . . , 0, an−1 n−1, an n)
〉
.

2. We have the Fujiki-Oka resolution X(N1,Σ1) of the singularity Cn/H1.

3. H2 =
〈

1
rn−1

(0, . . . , 0, an−2 n−2, an−2 n−1, an−2 n)
〉
×
〈

1
rn−1

(0, . . . , 0, an−1 n−1, an−1 n)
〉
.
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Higher dimensional case

4. We have the quotient map πH2/H1
: Cn/H1 → Cn/H2 = X(N2,Σ1).

Every maximal cone in Σ1 is semi-unimodular, and we have an iterated Fujiki-Oka resolution
X(N2,Σ2).

5. By repeating similar operation to the above for the subgroup sequence:

H1 ⊂ H2 ⊂ · · · ⊂ Hn−1 = G,

we have the sequence of iterated Fujiki-Oka resolutions:

ỸH1 = X(N1,Σ1), ỸH2 = X(N2,Σ2), . . . , ỸG = X(Nn−1,Σn−1).

2
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Higher dimensional case

Theorem 2. (K.S, Y.Sato)

Cn/G: an n-dimensional Gorenstein abelian quotient singularity.

ỸH1 , ỸH2 , . . . , ỸHk
= ỸG: the above sequence of iterated Fujiki-Oka resolutions for Cn/G.

If the ages of all the coefficients in the remainder polynomials associated with every
ỸHi (i = 1, . . . , k) are 1, then the corresponding iterated Fujiki-Oka resolution ỸG for Cn/G is
crepant.

Corollary 2.

Assume that G is a finite abelian subgroup of SL(3,C). Then a crepant iterated Fujiki-Oka
resolution exists for C3/G.
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Higher dimensional case

Example 5. G :=
〈
1
4(1, 3, 0),

1
4(0, 1, 3)

〉
.
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Related topics

3. Related topics

1. G := ⟨1r (1, 1, r − 2)⟩ ⊂ SL(3,C) ⇒ ∃A unique projective crepant Fujiki-Oka resolution of
C3/G which coincides with A-Hilb(C3).

2. C3/G: an isolated Gorenstein quotient singularity ⇒ The Fujiki-Oka resolutions can be
obtained from three ways by changing generator of G.

→ It can be shown that the Fujiki-Oka resolution is isomorphic to A-Hilb(C3) if and only if
these three Fujiki-Oka resolutions are isomorphic to each other as toric varieties.

Conjecture 1.

Let C3/G be a semi-isolated Gorenstein quotient singularity. If a Fujiki-Oka resolution is
isomorphic to A-Hilb(C3), then the projective toric crepant resolution of C3/G exists uniquely
up to isomorphism as toric varieties.
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Related topics

In the case that G =
〈
1
r (1, a, r − a)

〉
, X = C3/G has an economic resolution.

Definition 7.

Let G =
〈
1
r (1, a, r − a)

〉
and N ′ = Z3 + 1

r (1, a, r − a)Z. Let vi = 1
r (i, ai

r
, r − ai

r
) ∈ N ′ for

each integer 1 ≤ i ≤ r − 1. The economic resolution of C3/G is obtained by the consecutive
weighted blow-ups at v1,v2, . . . ,vr−1 from C3/G.

Since the weighted blow-up with v1, . . . ,vr−1 coincides with the Fujiki-Oka resolution, the
Fujiki-Oka resolution is an economic resolution. As S.J.Jung showed, economic resolutions can
be expressed in some moduli spaces. Thus, Fujiki-Oka resolutions can be written as a moduli
space in the case of G =

〈
1
r (1, a, r − a)

〉
.
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Related topics

Theorem 3. [3]

The economic resolution Y of a three fold terminal quotient singularity X = C3/G is
isomorphic to the birational component Yθ of the moduli spaceMθ of θ-stable
G-constellations for a suitable parameter θ.

Kedzierski has shown that A-Hilb(C3) is an economic resolution in some special cases.

Theorem 4. [4]

Let G ⊂ GL(3,C) be the finite subgroups generated by 1
r (1, a, r − a) with a = 1 or r − 1.

Then A-Hilb(C3) is isomorphic to the economic resolution of the quotient variety C3/G.

[3] S. J. Jung, Terminal Quotient Singularities in Dimension Three via Variation of GIT, Jour. of Algebra 468
(2016) 354–394.
[4] O. Kedzierski, Cohomology of the G-Hilbert scheme for 1

r
(1, 1, r − 1), Serdica Math. J. 30 (2004), no.2-3,

293–302.
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Thank you for listening!
For the details, see arXiv:2004.03522 [math.AG].
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