On the crepant Fujiki-Oka resolutions

(Joint work with Yusuke Sato)

Kohei Sato
National Institute of Technology, Oyama college

7. 8. 2020

1. The Gorenstein Quotient Singularities in dimension 2

1. $\left(\mathbb{C}^{2} / G, 0\right)$: a cyclic quotient singularity.
$\Rightarrow{ }^{\exists}$ The correspondence w.r.t. self-intersection numbers.
\{The coefficients of the Hirzebruch-Jung continued fraction \}
$\longleftrightarrow\left\{\right.$ The self-intersection numbers of the excep. div. of the min. resol. of $\left.\mathbb{C}^{2} / G\right\}$
2. $\left(\mathbb{C}^{2} / G, 0\right)$: a Gorenstein quotient singularity.
$\Rightarrow{ }^{\exists}$ The Mckay correspondence.
\{The non-trivial irreducible representations of G \}
$\longleftrightarrow\left\{\right.$ The excep. div. of the min. resol. of $\left.\mathbb{C}^{2} / G\right\}$

Example 1.

\mathbb{C}^{2} / G : a C.Q.S. of $\frac{1}{r}(1, a)$-type where $1 \leq a \leq r-1$. $\left(N^{\prime}, \sigma\right)$: a toric model of \mathbb{C}^{2} / G where $N^{\prime}:=\mathbb{Z}^{3}+\frac{1}{r}(1, a) \mathbb{Z}, \sigma:=\mathbb{R}_{\geq 0}(1,0)+\mathbb{R}_{\geq 0}(0,1)$.

$$
\frac{r}{a}=x_{1}-\frac{1}{x_{2}-\frac{1}{x_{3}-\cdots \frac{1}{x_{s}}}}=\left[x_{1}, \ldots, x_{s}\right] \text { where } x_{1}, \ldots, x_{s} \in \mathbb{Z}_{>0}
$$

2. The Gorenstein Quotient Singularities in higher dimension

2.1 A generalization of Hirzebruch-Jung continued fractions by Tadashi Ashikaga[1]

Definition 1.

$n \in \mathbb{Z}_{\geq 1}, r \in \mathbb{N}, \mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}^{n}$ s.t. $0 \leq a_{i} \leq r-1(1 \leq i \leq n)$.
We call the symbol

$$
\frac{\mathbf{a}}{r}=\frac{\left(a_{1}, \ldots, a_{n}\right)}{r}
$$

an n-dimensional proper fraction.
[1] T. Ashikaga, Multidimensional continued fractions for cyclic quotient singularities and Dedekind sums, Kyoto J. Math. Vol. 59 (2019), no.4, 993-1039.

Definition 2.

A proper fraction s.t. at least one component of \mathbf{a} is 1 is called semi-unimodular.

Setting 1.

A semi-unimodular proper fraction forms as the following.

$$
\frac{\mathbf{a}}{r}=\frac{\left(1, a_{2}, \ldots, a_{n}\right)}{r}
$$

Definition 3.

The age of an n-dimensional proper fraction $\frac{\mathbf{a}}{r}=\frac{\left(a_{1}, \ldots, a_{n}\right)}{r}$ is defined as

$$
\operatorname{age}\left(\frac{\mathbf{a}}{r}\right)=\frac{1}{r} \sum_{i=1}^{n} a_{i}
$$

Notation 1.

$\mathbb{Q}_{n}^{p r o p}$: the set of n-dimensional proper fractions.

$$
\overline{\mathbb{Q}_{n}^{p r o p}}:=\mathbb{Q}_{n}^{\text {prop }} \cup\{\infty\} .
$$

$$
\overline{\mathbb{Z}^{n}}:=\mathbb{Z}^{n} \cup\{\infty\}
$$

Definition 4.

$\frac{\mathbf{a}}{r}$: an n-dimensional semi-unimodular proper fraction.
(i) For $2 \leq i \leq n$, the i-th round down map $Z_{i}: \overline{\mathbb{Q}_{n}^{\text {prop }}} \rightarrow \overline{\mathbb{Z}^{n}}$ is defined by

$$
Z_{i}\left(\frac{\left(1, a_{2}, \ldots, a_{n}\right)}{r}\right)=\left\{\begin{array}{cl}
\left(\left\lfloor\frac{1}{a_{i}}\right\rfloor,\left\lfloor\frac{a_{2}}{a_{i}}\right\rfloor, \ldots,\left\lfloor\frac{a_{i-1}}{a_{i}}\right\rfloor,\left\lfloor\frac{-r}{a_{i}}\right\rfloor,\left\lfloor\frac{a_{i+1}}{a_{i}}\right\rfloor, \ldots,\left\lfloor\frac{a_{n}}{a_{i}}\right\rfloor\right) & \text { if } a_{i} \neq 0 \\
\infty & \text { if } a_{i}=0
\end{array}\right.
$$

and $Z_{i}(\infty)=\infty$ where $\lfloor x\rfloor$ is the greatest integer not exceeding x.
(ii) For $2 \leq i \leq n$, the i-th remainder map $R_{i}: \overline{\mathbb{Q}_{n}^{p r o p}} \rightarrow \overline{\mathbb{Q}_{n}^{p r o p}}$ is defined by

$$
R_{i}\left(\frac{\left(1, a_{2}, \ldots, a_{n}\right)}{r}\right)=\left\{\begin{array}{cl}
\left(\frac{\overline{1}^{a_{i}}, \overline{a_{2}} a_{i}, \ldots, \overline{a_{i-1}} a_{i}, \overline{-r} \bar{r}_{i}, \overline{a_{i+1}} a_{i}, \ldots, \overline{a_{n}} a_{i}}{a_{i}}\right) & \text { if } a_{i} \neq 0 \\
\infty & \text { if } a_{i}=0
\end{array}\right.
$$

and $R_{i}(\infty)=\infty$ where ${\overline{a_{j}}}^{a_{i}}$ is an integer satisfying $0 \leq{\overline{a_{j}}}^{a_{i}}<a_{i}$ and ${\overline{a_{j}}}^{a_{i}} \equiv a_{j}$ modulo a_{i}.

Example 2.

$$
\begin{aligned}
v & =\frac{(1,2,5)}{8} \\
Z_{2}(v) & =(0,-4,2), \\
Z_{3}(v) & =(0,0,-2), \\
R_{2}(v) & =\frac{(1,0,1)}{2}, \\
R_{3}(v) & =\frac{(1,2,2)}{5} .
\end{aligned}
$$

Definition 5.

$\frac{\mathrm{a}}{r}$: an n-dimensional semi-unimodular proper fraction.
(i) The remainder polynomial $\mathcal{R}_{*}\left(\frac{\mathbf{a}}{r}\right) \in \overline{\mathbb{Q}_{n}^{p r o p}}\left[x_{2}, \ldots, x_{n}\right]$ is defined by

$$
\mathcal{R}_{*}\left(\frac{\mathbf{a}}{r}\right)=\frac{\mathbf{a}}{r}+\sum_{\left(i_{1}, i_{2}, \ldots, i_{l}\right) \in \mathbf{I}^{l}, l \geq 1}\left(R_{i_{l}} \cdots R_{i_{2}} R_{i_{1}}\right)\left(\frac{\mathbf{a}}{r}\right) \cdot x_{i_{1}} x_{i_{2}} \cdots x_{i_{l}}
$$

where we exclude terms with coefficients ∞ or $\frac{(0,0, \ldots, 0)}{1}$.
(ii) The round down polynomial $Z_{*}\left(\frac{\mathrm{a}}{r}\right) \in \overline{\mathbb{Z}^{n}}\left[x_{2}, \ldots, x_{n}\right]$ is defined by

$$
\mathcal{Z}_{*}\left(\frac{\mathbf{a}}{r}\right)=\sum_{j=2}^{n} Z_{j}\left(\frac{\mathbf{a}}{r}\right) x_{j}+\sum_{j=2}^{n} \sum_{\left(i_{1}, i_{2}, \ldots, i_{l}\right) \in \mathbf{I}^{l}, l \geq 1}\left(Z_{j} R_{i_{l}} \cdots R_{i_{2}} R_{i_{1}}\right)\left(\frac{\mathbf{a}}{r}\right) \cdot x_{i_{1}} x_{i_{2}} \cdots x_{i_{l}} x_{j}
$$

where $\mathbf{I}=\{2, \ldots, n\}$ signifies the index set of the variables.

Example 3.

Let $v=\frac{(1,2,8)}{11}$, then the remainder polynomial is

$$
\begin{aligned}
\mathcal{R}_{*}\left(\frac{(1,2,8)}{11}\right)=\frac{1}{11}(1,2,8) & +\frac{1}{2}(1,1,0) x_{2}+\frac{1}{8}(1,2,5) x_{3} \\
& +\frac{1}{2}(1,0,1) x_{3} x_{2}+\frac{1}{5}(1,2,2) x_{3} x_{3} \\
& +\frac{1}{2}(1,1,0) x_{3} x_{3} x_{2}+\frac{1}{2}(1,0,1) x_{3} x_{3} x_{3} .
\end{aligned}
$$

The round down polynomial is

$$
\begin{aligned}
\mathcal{Z}_{*}\left(\frac{(1,2,8)}{11}\right) & =(0,-6,4) x_{2}+(0,0,-2) x_{3} \\
& +(1,-4,2) x_{3} x_{2}+(0,0,-2) x_{3} x_{3} \\
& +(0,-3,1) x_{3} x_{3} x_{2}+(0,1,-3) x_{3} x_{3} x_{3}
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{R}_{*}\left(\frac{(1,2,8)}{11}\right)=\frac{1}{11}(1,2,8) & +\frac{1}{2}(1,1,0) x_{2}+\frac{1}{8}(1,2,5) x_{3} \\
& +\frac{1}{2}(1,0,1) x_{3} x_{2}+\frac{1}{5}(1,2,2) x_{3} x_{3} \\
& +\frac{1}{2}(1,1,0) x_{3} x_{3} x_{2}+\frac{1}{2}(1,0,1) x_{3} x_{3} x_{3} .
\end{aligned}
$$

Figure: The basic triangulation of \mathfrak{s}_{G} by Fujiki-Oka resolution

Fact 1.

For a semi-isolated quotientsingularity (i.e. a C.Q.S. of $\frac{1}{r}\left(1, a_{2}, \ldots, a_{n}\right)$-type), every Fujiki-Oka resolution is always smooth and have a relation with a multi-dimensional continued fraction (i.e. a pair of a remainder polynomial and a round down polynomial).

Question 1.

When does the McKay correspondence on the Fujiki-Oka resolutions hold?

Question 2.

When is a Fujiki-Oka resolution crepant?
2.2 Necessary and sufficient condition for the Fujiki-Oka resolutions to be crepant

Theorem 1. (K.S, Y.Sato)

For a C.Q.S. of $\frac{1}{r}\left(1, a_{2}, \ldots, a_{n}\right)$-type, the corresponding Fujiki-Oka resolution is crepant if and only if the ages of all the coefficients of $\mathcal{R}_{*}\left(\frac{\left(1, a_{2}, \ldots, a_{n}\right)}{r}\right)$ are 1 .

Outline of the proof.

1. $G:=\left\langle\frac{1}{r}\left(1, a_{2}, \ldots, a_{n}\right)\right\rangle$ s.t. $1+a_{2}+\cdots+a_{n} \geq 2 r \Rightarrow \mathbb{C}^{n} / G$ has no toric crepant resolutions.
2. Assume $G:=\left\langle\frac{1}{r}\left(1, a_{2}, \ldots, a_{n}\right)\right\rangle$ s.t. $1+a_{2}+\cdots+a_{n}=r$.

The Fujiki-Oka resolution of \mathbb{C}^{n} / G is crepant \Leftrightarrow all the \mathbb{C}^{n} / G_{i} have a toric crepant resol. where \mathbb{C}^{n} / G_{i} is the C.Q.S. of $\frac{1}{a_{i}}\left(1,{\overline{a_{2}}}^{a_{i}}, \ldots, \overline{a_{i-1}}{ }^{a_{i}}, \overline{-r}^{a_{i}}, \overline{a_{i+1}}{ }^{a_{i}}, \ldots,{\overline{a_{n}}}^{a_{i}}\right)$-type.
3. For $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right) \in N_{i \mathbb{R}}$, the map $\phi_{i}: N_{i \mathbb{R}} \hookrightarrow N_{\mathbb{R}}^{\prime}$ is defined as follows:
$\phi_{i}(\boldsymbol{x})=\left(x_{1}+\frac{1}{r} x_{i}, x_{2}+\frac{a_{2}}{r} x_{i}, \ldots, x_{i-1}+\frac{a_{i-1}}{r} x_{i}, \frac{a_{i}}{r} x_{i}, x_{i+1}+\frac{a_{i+1}}{r} x_{i}, \ldots, x_{n}+\frac{a_{n}}{r} x_{i}\right)$ where $X\left(N_{i}, \sigma\right) \cong \mathbb{C}^{n} / G_{i}$ and $N_{i}=\mathbb{Z}^{n}+\frac{1}{a_{i}}\left(1,{\overline{a_{2}}}^{a_{i}}, \ldots,{\overline{a_{i-1}}}_{a_{i}}, \overline{-r}^{a_{i}}, \overline{a_{i+1}} a_{i}, \ldots,{\overline{a_{n}}}^{a_{i}}\right) \mathbb{Z}$.

Corollary 1.

For all three dimensional semi-isolated Gorenstein quotient singularities, the Fujiki-Oka resolutions are crepant.

Outline of the proof.

1. $1+a_{2}+a_{3}+\cdots+a_{n}=r \Rightarrow \operatorname{age}\left(\mathcal{R}_{i}\left(\frac{\left(1, a_{2}, \ldots, a_{n}\right)}{r}\right)\right) \in \mathbb{Z}$.
2. $1+\overline{-r}^{a}+\bar{b}^{a}<2 a$
3. By Theorem 1.

Question 3.

Does there exist a crepant fujiki-Oka resolution if a semi-isolated singularity \mathbb{C}^{n} / G has a crepant resolution? \rightarrow No.

Example 4.

The C.Q.S. of $\frac{1}{40}(1,3,9,27)$-type has a toric crepant resolution by [2]. However, the Fujiki-Oka resolution is not crepant.
[2] D. I. Dais, M. Henk, and G. M. Ziegler, On the existence of crepant resolutions of Gorenstein Abelian quotient singularities in dimensions ≥ 4, Contemp. Math. 423, Amer. Math. Soc., Providence, RI, 2006.

$$
\begin{aligned}
& R_{k}\left(\frac{(1,3,9,27)}{40}\right)= \frac{(1,3,9,27)}{40}+\frac{(1,2,0,0)}{3} x_{2}+\frac{(1,3,5,0)}{9} x_{3}+\frac{(1,3,9,14)}{27} x_{4} \\
&+\frac{(1,1,0,0)}{2} x_{2} x_{2}+\frac{(1,0,2,0)}{3} x_{3} x_{2}+\frac{(1,3,1,0)}{5} x_{3} x_{3}+\frac{(1,0,0,2)}{3} x_{4} x_{2} \\
&+\frac{(1,3,0,5)}{9} x_{4} x_{3}+\frac{(1,3,9,1)}{14} x_{4} x_{4}+\frac{(1,0,1,0)}{2} x_{3} x_{2} x_{3}+\frac{(1,1,1,0)}{3} x_{3} x_{3} x_{3} \\
&+\frac{(1,0,0,1)}{2} x_{4} x_{2} x_{4}+\frac{(1,0,0,2)}{3} x_{4} x_{3} x_{2}+\frac{(1,3,0,1)}{5} x_{4} x_{3} x_{4}+\frac{(1,1,0,1)}{3} x_{4} x_{4} x_{2} \\
&+\frac{(1,3,4,1)}{9} x_{4} x_{4} x_{3}+\frac{(1,0,0,1)}{2} x_{4} x_{3} x_{2} x_{4}+\frac{(1,1,0,1)}{3} x_{4} x_{3} x_{4} x_{2} \\
&+ \frac{(1,0,1,1)}{3} x_{4} x_{4} x_{3} x_{2}+\frac{(1,3,3,1)}{4} x_{4} x_{4} x_{3} x_{3}+\cdots \\
& \text { The age is }{ }_{2} .
\end{aligned}
$$

2.3 The Fujiki-Oka resolutions in abelian case
$G \subset S L(n, \mathbb{C}):$ a finite abelian subgroup.
Assume the ages of all the generators of G are 1 .
There exist a basic generating system of G as follows:

$$
\left\{\frac{1}{r_{1}}\left(a_{11}, a_{12}, \ldots, a_{1 n}\right), \frac{1}{r_{2}}\left(0, a_{22}, \ldots, a_{2 n}\right), \ldots, \frac{1}{r_{n-1}}\left(0, \ldots, 0, a_{n-1}{ }_{n-1}, a_{n-1}\right)\right\}
$$

where $r_{i}, a_{i j}(1 \leq i \leq n-1, i \leq j \leq n)$ are positive integers satisfying $\operatorname{LCM}\left(r_{1}, \ldots, r_{n-1}\right)=|G|$ and the following conditions:
(i) $a_{i i}=0 \Rightarrow a_{i j}=0$ for $i \leq j \leq n$,
(ii) $a_{i i} \neq 0 \Rightarrow a_{i i}=1$ and $\sum_{j=i}^{n} a_{i j}=r_{i}$.
G can be decomposed to the cyclic components as follows:

$$
G \cong\left\langle\frac{1}{r_{1}}\left(a_{11}, a_{12}, a_{13}\right)\right\rangle \times \cdots \times\left\langle\frac{1}{r_{n-1}}\left(0, \ldots, 0, a_{n-1}{ }_{n-1}, a_{n-1}\right)\right\rangle
$$

Note 1.

Clearly, every cyclic component can be decomposed to the product of p-Sylow subgroups.
$G \subset S L(n, \mathbb{C}):$ a finite abelian subgroup.
H : a component of the above decomposition by cyclic subgroups of G.
\mathbb{C}^{n} / H : semi-isolated $\Rightarrow{ }^{\exists}\left(\widetilde{Y_{H}}, \mathrm{FO}_{1}\right)$: Fujiki-Oka resolution, ${ }^{\exists}\left(Y_{G}, \phi\right)$: the toric partial resolution satisfying the following diagram:

where $\pi_{H}\left(\right.$ resp. $\left.\pi_{G / H}\right)$ is the quotient map by H (resp. G / H).

All the singularities in Y_{G} are semi-isolated $\Rightarrow^{\exists}\left(\widetilde{Y_{G}}, \mathrm{FO}_{2}\right)$: a Fujiki-Oka resolutions for the quotient singularities in Y_{G}.

$$
\widetilde{Y_{G}} \xrightarrow[\text { Fujiki-Oka Resolution }]{\mathrm{FO}_{2}} \widetilde{Y_{H}} /(G / H)=Y_{G}
$$

Note 2.
Every singularity in Y_{G} is at worst Gorenstein cyclic quotient singularity which is canonical but not terminal because of the construction.

Definition 6.

We call the resolution $\left(\widetilde{Y_{G}}, \mathrm{FO}_{2} \circ \phi\right)$ in the above diagrams an iterated Fujiki-Oka resolution of \mathbb{C}^{n} / G.

As $\left(\widetilde{Y_{G^{\prime}}}, \mathrm{FO}_{3} \circ \phi^{\prime}\right)$ in the above, iterated Fujiki-Oka resolutions can be extended under the suitable conditions. We also call these resolutions and the ordinary Fujiki-Oka resolutions iterated Fujiki-Oka resolutions.

Lemma 1.

$G \subset S L(n, \mathbb{C}):$ a finite abelian subgroup.
There exists at least one iterated Fujiki-Oka resolution for \mathbb{C}^{n} / G.

Outline of the proof.

$\left\{\frac{1}{r_{1}}\left(a_{11}, a_{12}, \ldots, a_{1 n}\right), \ldots, \frac{1}{r_{n-1}}\left(0, \ldots, 0, a_{n-1}{ }_{n-1}, a_{n-1}\right)\right\}$: a basic generating system of G.

1. $H_{1}=\left\langle\frac{1}{r_{n-1}}\left(0, \ldots, 0, a_{n-1}{ }_{n-1}, a_{n} n\right)\right\rangle$.
2. We have the Fujiki-Oka resolution $X\left(N_{1}, \Sigma_{1}\right)$ of the singularity \mathbb{C}^{n} / H_{1}.
3. $H_{2}=\left\langle\frac{1}{r_{n-1}}\left(0, \ldots, 0, a_{n-2}{ }_{n-2}, a_{n-2}{ }_{n-1}, a_{n-2} n\right)\right\rangle \times\left\langle\frac{1}{r_{n-1}}\left(0, \ldots, 0, a_{n-1}{ }_{n-1}, a_{n-1}\right)\right\rangle$.
4. We have the quotient map $\pi_{H_{2} / H_{1}}: \mathbb{C}^{n} / H_{1} \rightarrow \mathbb{C}^{n} / H_{2}=X\left(N_{2}, \Sigma_{1}\right)$.

Every maximal cone in Σ_{1} is semi-unimodular, and we have an iterated Fujiki-Oka resolution $X\left(N_{2}, \Sigma_{2}\right)$.
5. By repeating similar operation to the above for the subgroup sequence:

$$
H_{1} \subset H_{2} \subset \cdots \subset H_{n-1}=G
$$

we have the sequence of iterated Fujiki-Oka resolutions:

$$
\widetilde{Y_{H_{1}}}=X\left(N_{1}, \Sigma_{1}\right), \widetilde{Y_{H_{2}}}=X\left(N_{2}, \Sigma_{2}\right), \ldots, \widetilde{Y_{G}}=X\left(N_{n-1}, \Sigma_{n-1}\right)
$$

Theorem 2. (K.S, Y.Sato)

\mathbb{C}^{n} / G : an n-dimensional Gorenstein abelian quotient singularity.
$\widetilde{Y_{H_{1}}}, \widetilde{Y_{H_{2}}}, \ldots, \widetilde{Y_{H_{k}}}=\widetilde{Y_{G}}$: the above sequence of iterated Fujiki-Oka resolutions for \mathbb{C}^{n} / G. If the ages of all the coefficients in the remainder polynomials associated with every $\widetilde{Y_{H_{i}}}(i=1, \ldots, k)$ are 1, then the corresponding iterated Fujiki-Oka resolution $\widetilde{Y_{G}}$ for \mathbb{C}^{n} / G is crepant.

Corollary 2.

Assume that G is a finite abelian subgroup of $S L(3, \mathbb{C})$. Then a crepant iterated Fujiki-Oka resolution exists for \mathbb{C}^{3} / G.

Example 5. $G:=\left\langle\frac{1}{4}(1,3,0), \frac{1}{4}(0,1,3)\right\rangle$.

3. Related topics

1. $G:=\left\langle\frac{1}{r}(1,1, r-2)\right\rangle \subset S L(3, \mathbb{C}) \Rightarrow{ }^{\exists} \mathrm{A}$ unique projective crepant Fujiki-Oka resolution of \mathbb{C}^{3} / G which coincides with A- $\operatorname{Hilb}\left(\mathbb{C}^{3}\right)$.
2. \mathbb{C}^{3} / G : an isolated Gorenstein quotient singularity \Rightarrow The Fujiki-Oka resolutions can be obtained from three ways by changing generator of G.
\rightarrow It can be shown that the Fujiki-Oka resolution is isomorphic to A-Hilb $\left(\mathbb{C}^{3}\right)$ if and only if these three Fujiki-Oka resolutions are isomorphic to each other as toric varieties.

Conjecture 1.

Let \mathbb{C}^{3} / G be a semi-isolated Gorenstein quotient singularity. If a Fujiki-Oka resolution is isomorphic to $\mathrm{A}-\mathrm{Hilb}\left(\mathbb{C}^{3}\right)$, then the projective toric crepant resolution of \mathbb{C}^{3} / G exists uniquely up to isomorphism as toric varieties.

In the case that $G=\left\langle\frac{1}{r}(1, a, r-a)\right\rangle, X=\mathbb{C}^{3} / G$ has an economic resolution.

Definition 7.

Let $G=\left\langle\frac{1}{r}(1, a, r-a)\right\rangle$ and $N^{\prime}=\mathbb{Z}^{3}+\frac{1}{r}(1, a, r-a) \mathbb{Z}$. Let $\boldsymbol{v}_{i}=\frac{1}{r}\left(i, \overline{a i}^{r}, \overline{r-a i}^{r}\right) \in N^{\prime}$ for each integer $1 \leq i \leq r-1$. The economic resolution of \mathbb{C}^{3} / G is obtained by the consecutive weighted blow-ups at $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{r-1}$ from \mathbb{C}^{3} / G.

Since the weighted blow-up with $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{r-1}$ coincides with the Fujiki-Oka resolution, the Fujiki-Oka resolution is an economic resolution. As S.J.Jung showed, economic resolutions can be expressed in some moduli spaces. Thus, Fujiki-Oka resolutions can be written as a moduli space in the case of $G=\left\langle\frac{1}{r}(1, a, r-a)\right\rangle$.

Theorem 3. [3]

The economic resolution Y of a three fold terminal quotient singularity $X=\mathbb{C}^{3} / G$ is isomorphic to the birational component Y_{θ} of the moduli space \mathcal{M}_{θ} of θ-stable G-constellations for a suitable parameter θ.

Kedzierski has shown that $\mathrm{A}-\operatorname{Hilb}\left(\mathbb{C}^{3}\right)$ is an economic resolution in some special cases.

Theorem 4. [4]

Let $G \subset G L(3, \mathbb{C})$ be the finite subgroups generated by $\frac{1}{r}(1, a, r-a)$ with $a=1$ or $r-1$. Then $\mathrm{A}-\operatorname{Hilb}\left(\mathbb{C}^{3}\right)$ is isomorphic to the economic resolution of the quotient variety \mathbb{C}^{3} / G.
[3] S. J. Jung, Terminal Quotient Singularities in Dimension Three via Variation of GIT, Jour. of Algebra 468 (2016) 354-394.
[4] O. Kedzierski, Cohomology of the G-Hilbert scheme for $\frac{1}{r}(1,1, r-1)$, Serdica Math. J. 30 (2004), no.2-3, 293-302.

Thank you for listening!

For the details, see arXiv:2004.03522 [math.AG].

