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2-dimensional case

1. The Gorenstein Quotient Singularities in dimension 2
1. (C?/G,0): a cyclic quotient singularity.

= JThe correspondence w.r.t. self-intersection numbers.

{The coefficients of the Hirzebruch-Jung continued fraction}
< {The self-intersection numbers of the excep. div. of the min. resol. of C2/G}

2. (C%/G,0): a Gorenstein quotient singularity.

= 7The Mckay correspondence.

{The non-trivial irreducible representations of G}
+— {The excep. div. of the min. resol. of C2/G}
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2-dimensional case
Example 1.

C?/G: a C.QS. of %(1,a)—type where 1 <ag <7 —1.
(N’,0): a toric model of C?/G where N’ := Z* + 1(1,a)Z, 0 := R5((1,0) +R5,(0,1).

L= i —— [@1,..., 2] where x1,..., 25 € Z.
o

(0,1)

(0,0)

(1,1)

(1,0)

v = (0,1)
\

v = %(La)

(0,0)

vsr1 = (1,0)
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Higher dimensional case

2. The Gorenstein Quotient Singularities in higher dimension

2.1 A generalization of Hirzebruch-Jung continued fractions by Tadashi Ashikaga[1]

Definition 1.

nEZZl,reN,a:(al,...,an)eZn st. 0<ag; <r—1(1<i<n).
We call the symbol
a_ (ar,...,an)

an n-dimensional proper fraction.

[1] T. Ashikaga, Multidimensional continued fractions for cyclic quotient singularities and Dedekind sums, Kyoto
J. Math. Vol. 59 (2019), no.4, 993-1039
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Higher dimensional case

Definition 2.

A proper fraction s.t. at least one component of a is 1 is called semi-unimodular.

Setting 1.

A semi-unimodular proper fraction forms as the following.

a (l,ag,...,an)

r r
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Higher dimensional case

Definition 3.
The age of an n-dimensional proper fraction & = (‘117,7%) is defined as
a 1 —
age (;) = ; Zal
=1
Notation 1.

QP the set of n-dimensional proper fractions.
QU = QP U {oo}.

Zn = 7" U {oo}.
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Higher dimensional case

Definition 4.
a. di ional i-unimodul fracti
2. an n-dimensional semi-unimodular proper fraction.

(i) For 2 < i < n, the i-th round down map Z; : Q}? — 7" is defined by

Z <M>_{ (LEJ 122 (% L L5 L2 2]) i #0

00 if a; =0

and Z;(00) = oo where |x] is the greatest integer not exceeding x.

(ii) For 2 <i <, the i-th remainder map R; : Q” — Q)" is defined by

T @3%, o, Go1™, —1, Gpa %, Gn® .
(17(12"”’(1”) ( 52 7Yy ey A5—1 ,a' > @it1 Yy --8n ) 1fai7é0
R =) = i
r

00 if a; =0

and R;(o0) = oo where @;% is an integer satisfying 0 < @;* < a; and @;* = a; modulo
a;.
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Higher dimensional case

Example 2.

vy~ (00
o (1,2,2)
R3(v) = 3
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Higher dimensional case

Definition 5.

2: an n-dimensional semi-unimodular proper fraction.

(i) The remainder polynomial R, (2) € Q”[xa,...,2y] is defined by
ay a a
R (*) =—+ > (Ri; - - Ry Riy) (;) CTiy Tiy - Ty
(il,ig,...,il)EIl,lZI
(0,0,...,0)

I
(i) The round down polynomial Z, (2) € Z"[xs, ...,z is defined by

where we exclude terms with coefficients oo or

z.(7) - ZZ()wZ S iRy Rk (2) e,

‘7 =2 (7’177127 7”)EIZ7Z21

where I = {2,...,n} signifies the index set of the variables.

Ty g
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Higher dimensional case
Example 3.

Let v = (112718) then the remainder polynomial is

(1,2,8)\ 1 1 1
. - (1,2, S(1,1, 21,2,
R (U2Y) - La2g) ¢ S010m+ {025

1 1
+ 5(1707 1)ZE31‘2+ 5(1,2,2)$3$3

1 1
+ 5(1, 1, O)xgajgxg + 5(1, 0, 1)1‘3563333.

The round down polynomial is

1,2,8

+ (1, —4, 2)1‘35{?2 + (0, 0, —2)3331‘3
+ (0, -3, 1):133%3%2 + (0, 1, —3)1:3%3.%3.
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Higher dimensional case

):111(1,2,8) bR 1,00 + S (1,2,5)a

8
1
+ 7(1, 0, 1)%31‘2 + S(l, 2, 2)1’3%3

=N =N

1
+ 5(1, 1,0).%'3.1‘31‘2 + 5(1, 0, 1)1’3.%'3$3.

01

Figure: The basic triangulation of s by Fujiki-Oka resolution
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Higher dimensional case

Fact 1.

For a semi-isolated quotientsingularity (i.e. a C.Q.S. of 1(1,as,...,a,)-type), every
Fujiki-Oka resolution is always smooth and have a relation with a multi-dimensional
continued fraction (i.e. a pair of a remainder polynomial and a round down polynomial).

Question 1.
When does the McKay correspondence on the Fujiki-Oka resolutions hold?

Question 2.

When is a Fujiki-Oka resolution crepant?
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Higher dimensional case

2.2 Necessary and sufficient condition for the Fujiki-Oka resolutions to be crepant

Theorem 1. (K.S, Y.Sato)
For a C.Q.S. of %(1,a2, ..., ap)-type, the corresponding Fujiki-Oka resolution is crepant if and
only if the ages of all the coefficients of R, (M) are 1.
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Higher dimensional case

Outline of the proof.
1. G:={(1(1,as,...,a,)) s.t. 1+as++--+a, >2r = C"/G has no toric crepant
resolutions.

2. AssumeG'—<1(1 as, ... an>st l1+as+--+a,=r.
The Fujiki-Oka resolution of C™/G is crepant < all the C"/G; have a toric crepant resol.
where C"/G; is the C.Q.S. of L (1 %, .. @, = @Y, ., G )-type.

3. For x = (z1,...,2,) € Nir, the map ¢z : Nig < Ny is defined as follows:
Oi(w) = (21 + Lag, w0 + 2y, .,
where X (Nj,0) = C"/G; and N; = Z" + a%(l,a?“i, N T L L VA

a
Sai, w1+ B, w, + %)
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Higher dimensional case

Corollary 1.

For all three dimensional semi-isolated Gorenstein quotient singularities, the Fujiki-Oka
resolutions are crepant.

Outline of the proof.
1.1+as+az+---+a, =r = age (Rz ((1,1127“-,(171))) c7.

-
2. 14+ =r"+08" < 2a

3. By Theorem 1.
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Higher dimensional case

Question 3.

Does there exist a crepant fujiki-Oka resolution if a semi-isolated singularity C"/G has a
crepant resolution? — No.

Example 4.

The C.Q.S. of %(1,3,9,27)—type has a toric crepant resolution by [2]. However, the
Fujiki-Oka resolution is not crepant.

[2] D. I. Dais, M. Henk, and G. M. Ziegler, On the existence of crepant resolutions of Gorenstein Abelian
quotient singularities in dimensions> 4, Contemp. Math. 423, Amer. Math. Soc., Providence, RI, 2006.
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Higher dimensional case

Ro(U2i2) , Qaitn Ly, ﬁ'_\ﬁqf-—?’“xg s LAy
o o 3

) (ho.10) gz, o U300 g7, 4 _(Lfs—"«lx.,lz_
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Lo o) o o o oy res
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Higher dimensional case

2.3 The Fujiki-Oka resolutions in abelian case
G C SL(n,C): a finite abelian subgroup.
Assume the ages of all the generators of G are 1.

There exist a basic generating system of GG as follows:

1 1 1
{(allva].Q) .. 'aaln)7 7(0,&227 cee ’CLQn)p ety (07 R 707an—1 n—1,0an—1 n)}
1 T2

Tn—1

where 7, a5 (1 <i<n—1, i <j <n) are positive integers satisfying
LCM(r1,...,rm—1) = |G| and the following conditions:

(I) aii:0:>aij:0fori§j§n,

(ii) (0773 75 0=a;=1 and Zaij =T;.
Jj=t

18/31



Higher dimensional case

G can be decomposed to the cyclic components as follows:

1 1
G= <r1(a11,a12,a13)> X -ee X < 0,...,0,an-1 n—1,an-1 n)>-

Tn—1

Note 1.

Clearly, every cyclic component can be decomposed to the product of p-Sylow subgroups.
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Higher dimensional case

G C SL(n,C): a finite abelian subgroup.
H: a component of the above decomposition by cyclic subgroups of G.

C"™/H: semi-isolated = 3(}//\IZI,FOQ: Fujiki-Oka resolution, (Y, #): the toric partial
resolution satisfying the following diagram:

Cﬂ.

Jr«"rn
FOy

Yu — , cr/H
Fujiki-Oka Resolution

r
?Tr:,-'nl ) ]ﬂ'nf H

Vi [(G/H) =Yg ° c"/G

Toric Partial Resolution
where 7y (resp. T/ ) is the quotient map by H (resp. G/H).
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Higher dimensional case

All the singularities in Y are semi-isolated = 3(?&,1?02): a Fujiki-Oka resolutions for the
quotient singularities in Y.

FO,

Yo vy / G/H) =Ys
N Fujiki-Oka Resolution H ( - / ) G

Note 2.

Every singularity in Y is at worst Gorenstein cyclic quotient singularity which is canonical but
not terminal because of the construction.
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Higher dimensional case

Cﬂ.
l TH
Vi FO; cr

Fujiki-Oka Resolution

xc;nJ O JWG/H

Vi [(G/H) = Yo ° cr/G

Toric Partial Resolution

FO,

Y(}’ T .
Fujiki-Oka Resolution

Definition 6.

We call the resolution (}7(/;, FOg2 0 ¢) in the above diagrams an iterated Fujiki-Oka
resolution of C"/G.
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Higher dimensional case

EI:]‘L

TH

Yy —2LCr/H

TG/ H l TG/ H

— FO- @
Yo Yo c"/d
G G TPR. /1
“G’_ml Tor G
—— FO3 @' :
Y >~ Yo ! cn /G
G G TPR /I

As (?G//, FO3 0 ¢') in the above, iterated Fujiki-Oka resolutions can be extended under the
suitable conditions. We also call these resolutions and the ordinary Fujiki-Oka resolutions
iterated Fujiki-Oka resolutions.
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Higher dimensional case

Lemma 1.

G C SL(n,C): a finite abelian subgroup.
There exists at least one iterated Fujiki-Oka resolution for C"/G.

Outline of the proof.

1 1 . - :
{E(all’ 12y - Alp)s - - -, H(O’ e, 0,an-1 ne1, Gn_1 n)} a basic generating system of G.

1. H1:< ! (07-"707an—1n—17ann)>'

Tn—1

2. We have the Fujiki-Oka resolution X (N1, %) of the singularity C"/H;.
3. H2 - < n171 <07 cee 707an—2 n—2,An—2 n—1, An—2 n)> X <7“n1— (0, e 707 An—1 n—1,An—1 n)> .

r 1
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Higher dimensional case

4. We have the quotient map my, /g, : C"/Hy; — C"/Hy = X (N2, %1).

Every maximal cone in 1 is semi-unimodular, and we have an iterated Fujiki-Oka resolution
X (N2, 39).

5. By repeating similar operation to the above for the subgroup sequence:
H1CH2C"'CH,—L_1:G,
we have the sequence of iterated Fujiki-Oka resolutions:

Yir, = X(N1, 1), Y, = X(No, $2), ..., Yo = X(Np_1, Sp1).
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Higher dimensional case

Theorem 2. (K.S, Y.Sato)

(C”/G an n-dimensional Gorenstein abelian quotient singularity.

YHI,YHQ, .. YH,c = YG the above sequence of iterated Fujiki-Oka resolutions for C"/G.

If the ages of all the coefficients in the remainder polynomials associated with every

Yu, (i=1,...,k) are 1, then the corresponding iterated Fujiki-Oka resolution Y¢ for C"*/G is
crepant.

Corollary 2.

Assume that G is a finite abelian subgroup of SL(3,C). Then a crepant iterated Fujiki-Oka
resolution exists for C3/G.
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Higher dimensional case

Example 5. G := (1(1,3,0),1(0,1,3)).

ey Cg e
1m
FO. ‘
c}/H
TG/H o 7r(*/n
G/H CS/C Ho.3.1)
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Related topics

3. Related topics

1. G:=(3(1,1,r — 2)) C SL(3,C) = A unique projective crepant Fujiki-Oka resolution of
C3/G which coincides with A-Hilb(C?).

2. C3/G: an isolated Gorenstein quotient singularity = The Fujiki-Oka resolutions can be
obtained from three ways by changing generator of G.

— It can be shown that the Fujiki-Oka resolution is isomorphic to A-Hilb(C?) if and only if
these three Fujiki-Oka resolutions are isomorphic to each other as toric varieties.

Conjecture 1.

Let C3/G be a semi-isolated Gorenstein quotient singularity. If a Fujiki-Oka resolution is

isomorphic to A-Hilb(C?), then the projective toric crepant resolution of C3/G exists uniquely
up to isomorphism as toric varieties.
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Related topics

In the case that G = (1(1,a,7 — a)), X = C3/G has an economic resolution.

Definition 7.
Let G = <%(1,a,r — a)> and N/ =73 + %(1,@,7“ —a)Z. Let v; = L(i,ai’ ,r —ai') € N’ for

o

each integer 1 < i < r — 1. The economic resolution of C3/G is obtained by the consecutive
weighted blow-ups at vy, va,...,v,_1 from C3/G.

Since the weighted blow-up with vy, ..., v,._1 coincides with the Fujiki-Oka resolution, the
Fujiki-Oka resolution is an economic resolution. As S.J.Jung showed, economic resolutions can
be expressed in some moduli spaces. Thus, Fujiki-Oka resolutions can be written as a moduli
space in the case of G = (1(1,a,7 —a)).
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Related topics
Theorem 3. [3]

The economic resolution Y of a three fold terminal quotient singularity X = C3/G is
isomorphic to the birational component Yy of the moduli space My of #-stable
GG-constellations for a suitable parameter 6.

Kedzierski has shown that A-Hilb(C?) is an economic resolution in some special cases.

Theorem 4. [4]

Let G C GL(3,C) be the finite subgroups generated by %(1,a,r —a)witha=1orr—1.
Then A-Hilb(C?) is isomorphic to the economic resolution of the quotient variety C3/G.

[3]1 S. J. Jung, Terminal Quotient Singularities in Dimension Three via Variation of GIT, Jour. of Algebra 468
(2016) 354-394.
[4] O. Kedzierski, Cohomology of the G-Hilbert scheme for X(1,1,r — 1), Serdica Math. J. 30 (2004), no.2-3,

293-302.
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Thank you for listening!
For the details, see arXiv:2004.03522 [math.AG].
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