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Preprojective algebras and the McKay correspondence
Let G < SL(2, k) be a finite group which acts on S := k[x, y].
Theorem (Reiten–Van den Bergh 89)
There is an equivalence of categories

mod (S ∗ G) ∼=modΠQ̃G,
where Q̃G is an extended Dynkin quiver associated to G via the McKay
correspondence and Π is the preprojective algebra.
Theorem (Derived McKay correspondence (Kapranov–Vasserot 00))
Let X̃ be the minimal resolution of the Kleinian singularity X := Spec SG. There is an
equivalence

Db(modΠQ̃G) ∼= Db(coh X̃).



Preprojective algebras
I Preprojective algebras were first defined by Gel’fand and Ponomarev to
study the representation theory of finite-dimensional hereditary algebras.

Definition
Let Λ := kQ be a finite-dimensional algebra. Define D(−) := Homk(−, k). Thepreprojective algebra Π(Λ) is defined as

Π(Λ) := kQ/
∑
a∈Q1

(aa∗ − a∗a)

 ∼= TΛ Ext1Λ(DΛ,Λ),

where Q is the double quiver of Q, whose vertices are given by Q0 = Q0 and
arrows are given by Q1 = Q1 ∪ {a∗ : j→ i | a : i→ j ∈ Q1}.
I From the tensor algebra structure, we see that the preprojective algebra
comes equipped with a natural grading, obtained by putting the arrows in
Q1 in degree 0 and the other ones in degree 1.



Higher Auslander–Reiten theory
I Many of the central concepts in Auslander–Reiten theory were
generalized to a ’higher dimensional setting’.

I In particular, n-representation-infinite algebras are finite-dimensional
algebras of global dimension n which enjoy properties analogous to
representation-infinite hereditary algebras in the classical theory.

I One can define Higher preprojective algebras in this setting. Let Λ be an
n-representation-infinite algebra, then the higher preprojective algebra
Π(Λ) is defined as

Π(Λ) := TΛ Extn(DΛ,Λ).

I As in the classical case, these preprojective algebras are equipped with a
natural grading induced from the tensor algebra structure.



Question

Let G < SL(n, k) be a finite group which acts on S = k[x1, . . . , xn].

A generalization of [RVdB89]?
Is the skew-group algebra S ∗ GMorita equivalent to a higher preprojective
algebra?



Partial answer

Theorem (Amiot–Iyama–Reiten 15)
Let G < SL(n, k) be a finite cyclic group of order r. Suppose that there exists a
generator g = 1

r (a1, . . . ,an) of G such that
1. gcd(ai, r) = 1 and 0 < ai < r for all i;2. ∑n

i=1 ai = r.
Then there exists a grading on S ∗ G endowing it with the structure of a higher
preprojective algebra.



Negative answer
Definition
Let n1,n2 ≥ 1 such that n1 + n2 = n. We say that G embeds into
SL(n1, k)× SL(n2, k) if G is conjugate to a group in which each element is of the
form (g1 0

0 g2
)
,

where g1 ∈ SL(n1, k) and g2 ∈ SL(n2, k).
Theorem (T. 20)
Let G be a finite group which embeds in SL(n1, k)× SL(n2, k). The skew-group
algebra S ∗ G is not Morita equivalent to a higher preprojective algebra.



Connection with age

Definition
Let G < SL(n,C) finite and g ∈ G. Choose a representation g = 1

r (a1, . . . ,an).
Define the age of g by age(g) := 1

r
∑ai.

Lemma
If G embeds in SL(n1, k)× SL(n2, k), then it does not contain any junior element.
Proposition
Let G < SL(4,C) be a finite cyclic group such that SG is an isolated singularity. Then
the singularity Spec SG is terminal if and only if S ∗ G does not admit the grading
structure of a preprojective algebra.



Graded singularity category
Let R be a graded noetherian Gorenstein ring.
Definition
The graded singularity category of R is the Verdier localization

DgrSg(R) := Db(grR)/Db(grprojR),

where Db(grprojR) is the triangulated subcategory consisting of objects that
are isomorphic to bounded complexes of projectives.
I It is analogous to the singularity category over algebraic varieties, which
reflects the properties of the singularities of X .

I There is a triangle equivalence CMZ(R) ∼= DgrSg(R) [Buchweitz 87, Orlov 04].



Tilting objects and the McKay correspondence
Let G < SL(2, k) be a finite group which acts on S := k[x, y] and R := SG be
endowed with a grading induced from the preprojective algebra grading on
S ∗ G ∼=m ΠQ̃G.
Theorem (Kajiura–Saito–Takahashi 07, Lenzing–de la Pena 11)
The singularity category DgrSg(R) admits a tilting object. There is a triangle
equivalence

DgrSg(R) ∼= Db(mod kQG),

where QG is the Dynkin quiver associated to G via the McKay correspondence.
Theorem (AIR 15)
Let Π be a higher preprojective algebra, e be an idempotent satisfying certain
axioms and R := eΠe. There is a triangle equivalence

DgrSg(R) ∼= Db(modΠ0/〈e〉).



Tilting objects with a different grading
Theorem (Iyama–Takahashi 13)
Let S = k[x1, . . . , xn] be graded by putting the variables in degree 1, G < SL(n, k) be
finite and R := SG be an isolated singularity. Let e = 1

|G|
∑
g∈G g. There is a triangle

equivalence
DgrSg(R) ∼= Db(mod (1− e)∇(S! ∗ G)(1− e)),

where S! is the Koszul dual of S, and ∇ is the Beilinson algebra.
Theorem (Mori–Ueyama 16)
Let S be a noetherian AS-regular Koszul algebra, G < GrAut S be finite with
homological determinant 1 and R := SG be a non-commutative isolated singularity.
Let e = 1

|G|
∑
g∈G g. There is a triangle equivalence

DgrSg(R) ∼= Db(mod (1− e)∇(S! ∗ G)(1− e)).



The setting
Definition
Let A = ⊕i≥0Ai be a noetherian locally finite graded algebra. We say that A is
n-AS-regular (resp. n-AS-Gorenstein) of Gorenstein parameter ` if
gl.dim A = n and gl.dim A0 <∞ (resp. inj.dimA A = inj.dimAop A = n) and⊕

i∈Z
RHomGr A(A0, A(i)) ∼= (DA0)(`)[−n] in D(Gr A0) and in D(Gr Aop

0 ).

Setting
Let A = ⊕i≥0Ai be a locally finite noetherian n-AS-regular algebra of Gorenstein
parameter `, with ` ≥ 1. Let e = e2 ∈ A be such that
a) A/AeA is finite-dimensional;
b) R := eAe is n-AS-Gorenstein of parameter `;
c) eA0e ∼= k.



Tilting objects with other gradings?
Question
When does DgrSg(R) admit a tilting object?
Running example
Let S = k[x1, . . . , xn], G < SL(n, k) be finite and e = 1

|G|
∑
g∈G g. Let A = S ∗ G be

the skew-group algebra. Then R := eAe ∼= SG and the conditions of the setting
are satisfied for many different gradings on A.

I Both previous situations give partial answers to the question. We are
interesting in finding other classes where there is a tilting object, for
example for the skew-group algebras which do not admit a structure of
preprojective algebra.



Example: A = S ∗ G, DgrSg(R) ∼= Db(modΛ)
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Derived category of graded tails
Definition
We define the quotient abelian category of graded tails

qgr A := gr A/tors A,
where tors A is the full subcategory consisting of all graded finite-dimensional
A-modules.
Theorem (Orlov 09)
Let R be an AS-Gorenstein algebra of Gorenstein parameter `. There is a fully
faithful functor

Φ : DgrSg(R)→ Db(qgrR)

and a semiorthogonal decomposition
Db(qgrR) = 〈qR, . . . ,qR(`− 1),Φ(DgrSg(R))〉



Beilinson algebra
Definition
The Beilinson algebra, ∇A, is defined as

∇A :=


A0 A1 · · · A`−1
0 A0 · · · A`−2... . . . ...
0 0 · · · A0



Theorem (Minamoto–Mori 11)
Let A be a locally finite noetherian n-AS-regular algebra of Gorenstein parameter `.
There is a semiorthogonal decomposition and an equivalence of derived categories:

Db(qgr A) = 〈qA, . . . ,qA(`− 1)〉 ∼= Db(∇A).



Strategy
Let A be a locally finite noetherian n-AS-regular algebra of Gorenstein
parameter `, e be an idempotent as in the setting so that R = eAe is
AS-Gorenstein.
I We compare two semi-orthogonal decompositions in Db(qgrR):

Db(qgrR) = 〈qAe, . . . ,qAe(`− 1)〉 ∼= Db(∇A) (Minamoto–Mori)
Db(qgrR) = 〈qeAe, . . . ,qeAe(`− 1),Φ(DgrSg(R))〉 (Orlov)

I We can then hope to obtain a tilting object in DgrSg(R) by using mutations.
I Unfortunately, mutations do not always preserve tilting objects, so we
need more assumptions.



Levelled algebras
Definition
A quiver Q is ordered if Q0 = {0, . . . ,m} and there is no arrow i→ j if j ≤ i.
Definition (Hille)
A quiver Q is levelled if Q is ordered and there exists s : Q0 → {0, . . . ,M} which
is surjective, monotonic and there are only arrows i→ j if s(j) = s(i) + 1.

Levelled algebras behave well under mutations.



Tilting object
Theorem (T.)
If ∇A is a Koszul levelled algebra, then there is a triangle equivalence

DgrSg(R) ∼= Db((1− ẽ)(∇A)!(1− ẽ)),

where (−)! denotes the Koszul dual and ẽ is the idempotent in (∇A)! induced by e.

The theorem recovers the situation of the result by [Iyama–Takahashi,
Mori–Ueyama].
Lemma
If S is an AS-regular Koszul algebra, and G < GrAut S is finite, then ∇(S ∗ G) is a
Koszul levelled algebra.



Example
S = k[x1, x2, x3, x4], G = 〈14(1,3,1,3)〉, A= S ∗ G, e is the idempotent
corresponding to vertex 0, so that R = eS ∗ Ge ∼= SG.

QS∗G: 0

1

2

3

+ commutativity relations.

Grading: The thick arrows are in degree 1, the others in degree 0.
Then A is a (non-Koszul) 4-AS regular algebra of Gor. parameter 2.
Remark: S ∗ G cannot be endowed with a grading structure of Gor. parameter
1.



Example
QS∗G: 0
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, Q(∇A)! :
0 1
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The induced idempotent ẽ is the one corresponding to the vertices in the
boxes.

Q(1−ẽ)(∇A)!(1−ẽ): 2
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3
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There is a triangle equivalence
DgrSg(SG) ∼= Db((1− ẽ)(∇A)!(1− ẽ)).
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