On the stringy E-functions of minimal models

Victor Batyrev

Eberhard Karls Universität Tübingen

The McKay correspondence, mutation and related topics 31 July 2020

KAVLI INSTITUTE FOR THE PHYSICS AND MATHEMATICS OF THE UNIVERSE

(日) (四) (문) (문) (문)

Defintion

Let X be a d-dimensional smooth projective variety over \mathbb{C} . The generating polynomial of the Hodge numbers $h^{p,q}(X)$ of X

$$E(X; u, v) := \sum_{0 \le p, q \le d} (-1)^{p+q} h^{p,q}(X) u^p v^q$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りへぐ

we call *E*-polynomial (or Hodge polynomial) of *X*. Its value E(X; 1, 1) is the usual Euler number of *X*.

Using the mixed Hodge structure on the cohomology groups with compact supports $H_c^k(X, \mathbb{C})$, one can extend by additivity usual *E*-polynomials to Hodge-Deligne *E*-polynomials

$$E(X; u, v) := \sum_{p,q} e^{p,q}(X) u^p v^q,$$

where the coefficients

$$e^{p,q}(X) := \sum_{k\geq 0} (-1)^k h^{p,q}(H^k_c(X,\mathbb{C})).$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りへぐ

are called Hodge-Deligne numbers of X.

Stringy Hodge numbers of Gorenstein varieties: One needs *stringy Hodge numbers* $h_{\text{str}}^{p,q}(X)$ of singular Gorenstein projective algebraic varieties X satisfying the equations

 $h^{p,q}_{\mathrm{str}}(X) = h^{p,q}(Y) \ \forall p,q,$

if X admits a crepant desingularization ρ : $Y \rightarrow X$ ($\rho^* K_X = K_Y$).

Topological mirror symmetry test:

X is a *d*-dimensional Calabi-Yau variety with at worst canonical Gorenstein singularities. If X^* is a Calabi-Yau mirror of X, then

$$h^{p,q}_{\mathrm{str}}(X) = h^{d-p,q}_{\mathrm{str}}(X^*), \ \forall p,q.$$

Let X be a normal irreducible quasi-projective \mathbb{Q} -Gorenstein algebraic variety. Take a resolution of singularities of X

$$\rho : Y \to X$$

whose the exceptional locus $\bigcup_{i=1}^{r} D_i$ is a union of smooth irreducible divisors with only normal crossings. $I := \{1, \dots, r\}$ $K_Y = \rho^* K_X + \sum_i a_i D_i,$

$$\kappa_{Y} = \rho \kappa_{X} + \sum_{i \in I} a_{i} D_{i},$$

The rational numbers $a_i \in \mathbb{Q}$ $(i \in I)$ are called *discrepancies* of divisors D_i .

We consider the following three classes of singularities of \mathbb{Q} -Gorenstein algebraic varieties X that appear in the minimal model program:

Definition

Singularities of X are called at worst

- *terminal* if $a_i > 0$, $\forall i \in I$;
- canonical if $a_i \ge 0$, $\forall i \in I$;
- ▶ log-terminal if $a_i > -1$, $\forall i \in I$.

All \mathbb{Q} -Gorenstein algebraic varieties X considered in this talk have at worst log-terminal singularities.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りへぐ

Stringy E-function I

Definition (first version)

Let ρ : $Y \to X$ be a resolution and $K_Y = \rho^* K_X + \sum_{i \in I} a_i D_i$. Assume that $a_i > -1$ ($\forall i \in I$). Define for any subset $J \subseteq I$:

$$D_{\emptyset} := Y, \quad D_J := \bigcap_{j \in J} D_j \quad (\emptyset \neq J \subseteq I).$$

The stringy *E*-function of X is the following rational function

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りへぐ

(a product over \emptyset is assumed to be 1)

Theorem (B., 1998)

The stringy E-function of a projective variety X with at worst log-terminal singularities has the following properties:

►
$$E_{\text{str}}(X; u, v) = E_{\text{str}}(X; v, u)$$
 (symmetry $u \leftrightarrow v$).

- ► E_{str}(X; u, v) = (uv)^d E_{str}(X; u⁻¹, v⁻¹) if X is projective and d = dim X (Poincaré duality).
- ► $E_{\text{str}}(X; u, v)$ does not depend on the resolution. In particular, $E_{\text{str}}(X; u, v) = E(X; u, v)$ if X is smooth.
- $E_{\text{str}}(X; u, v) = E_{\text{str}}(Y; u, v)$ if $\rho : Y \to X$ is crepant, i.e., $\rho^* K_X = K_Y$. In particular, $E_{\text{str}}(X; u, v) = E(Y; u, v)$ if $\rho : Y \to X$ is a crepant desingularization.
- $E_{str}(X; u, v) = E_{str}(X'; u, v)$ if X and X' are K-equivalent.

Definition (second version)

Let ρ : $Y \to X$ be a resolution and $K_Y = \rho^* K_X + \sum_{i \in I} a_i D_i$. Assume that $a_i > -1$ ($\forall i \in I$). Define for any subset $J \subseteq I$:

$$D_J^\circ := D_J \setminus \bigcup_{j \notin J} D_j.$$

The stringy *E*-function of X is the following rational function

$$\mathcal{E}_{\mathrm{str}}(X;u,v):=\sum_{\emptyset\subseteq J\subseteq I}\mathcal{E}(D_J^\circ;u,v)(uv-1)^{|J|}\prod_{j\in J}rac{1}{(uv)^{a_j+1}-1}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りへぐ

The combinatorial meaning of the product

$$\prod_{j\in J}\frac{1}{(uv)^{a_j+1}-1}$$

Using the equation

$$\frac{1}{t-1} = t^{-1} + t^{-2} + \dots = \sum_{l>0} t^{-l},$$

we obtain

$$\prod_{j\in J} \frac{1}{(uv)^{a_j+1}-1} = \sum_{n\in\mathbb{Z}_{>0}^{|J|}} (uv)^{-\alpha(n)},$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where $\alpha(x)$ is the linear function $\sum_{j \in J} (a_j + 1) x_j$.

Definition

Let X be a *d*-dimensional irreducible projective variety with at worst Gorenstein canonical singularities. Assume that $E_{\text{str}}(X; u, v)$ is a polynomial. Then the *stringy Hodge numbers* $h_{\text{str}}^{p,q}(X)$ are defined by the equation:

$$E_{\mathrm{str}}(X; u, v) = \sum_{p,q} (-1)^{p+q} h_{\mathrm{str}}^{p,q}(X) u^p v^q.$$

It is more convenient to check the mirror symmetry $h_{\text{str}}^{p,q}(X) = h_{\text{str}}^{d-p,q}(X^*), \ \forall p,q$, using the equivalent single equation

$$E_{
m str}(X; u, v) = (-u)^d E_{
m str}(X^*; u^{-1}, v).$$

 $M \cong \mathbb{Z}^d$, $N := \operatorname{Hom}(M, \mathbb{Z})$, $\langle *, * \rangle : M \times N \to \mathbb{Z}$ pairing $M_{\mathbb{R}} := M \otimes \mathbb{R}$, $N_{\mathbb{R}} := N \otimes \mathbb{R}$ are vector spaces over \mathbb{R} .

Definition (B. 1994)

A *d*-dimensional lattice polytope $P \subset M_{\mathbb{R}}$ containing $0 \in M$ in its interior is called *reflexive* if the *polar dual* polytope

$$P^* := \{y \in N_{\mathbb{R}} : \langle x, y \rangle \ge -1, \ \forall x \in P\}$$

is a lattice polytope.

If $P \subset M_{\mathbb{R}}$ is reflexive, then $P^* \subset N_{\mathbb{R}}$ is also reflexive and

$$(P^*)^* = P.$$

There exists a natural 1-to-1 correspondence between k-dimensional faces $Q \prec P$ and (d - k - 1)-dimensional dual faces $Q^* \prec P^*$:

$$Q^* := \{y \in P^* : \langle x, y \rangle = -1 \ \forall x \in Q\}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りへぐ

Examples of the combinatorial polar duality:

$$\begin{aligned} P &:= \operatorname{Conv}(\pm e_1, \dots, \pm e_d) \in \mathbb{R}^d, \\ P^* &:= \{ (x_1, \dots, x_d) \in \mathbb{R}^d \ : \ |x_i| \leq 1 \ (1 \leq i \leq d) \}. \end{aligned}$$

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > 三 三

The combinatorial duality $P \leftrightarrow P^*$ perfectly agrees with predictions of mirror symmetry for Calabi-Yau hypersurfaces in Gorenstein toric Fano varieties.

Theorem (B., Borisov 1996)

Let $X \subset V_P$ and $X^* \subset V_{P^*}$ be general Calabi-Yau hypersurfaces in Gorenstein toric Fano varieties V_P and V_{P^*} corresponding to a pair of *d*-dimensional reflexive polytopes (P, P^*) . Then one has

$$E_{\rm str}(X; u, v) = (-u)^{d-1} E_{\rm str}(X^*; u^{-1}, v),$$

i.e.

$$h^{p,q}_{\mathrm{str}}(X) = h^{d-1-p,q}_{\mathrm{str}}(X^*) \quad \forall p,q.$$

Idea of proof

- Consider general Calabi-Yau hypersurfaces X ⊂ V_P in Gorenstein toric Fano varieties V_P as projective compactifications of non-degenerate affine hypersurfaces Z ⊂ T_d defined by a Laurent polynomial with a reflexive Newton polytope P.
- Apply the algorithm of Danilov and Khovanskii (1986) for computing the Hodge-Deligne polynomials E(Z_Q; u, v) of affine hypersurfaces Z_Q ⊂ T_{dim Q} for all faces Q ≤ P.
- Derive the combinatorial formula for the stringy E-function

$$\mathsf{E}_{\mathrm{str}}(X; u, v) = \sum_{\substack{Q \leq P \\ k = \dim Q \geq 1}} \mathsf{E}(Z_Q; u, v)(uv - 1)^{d-k} \sum_{n \in \sigma_Q^\circ} (uv)^{\langle Q, n \rangle}$$

• Use the duality $Q \leftrightarrow Q^*$ and the equality $\sigma_Q = \mathbb{R}_{\geq 0}Q^*$ for $(d - \dim Q)$ -dimensional cones σ_Q in the normal fan Σ_P of P.

Definition

A Laurent polynomial

$$f(\mathbf{t}) = \sum_{m \in A} a_m \mathbf{t}^m \in \mathbb{C}[M] \cong \mathbb{C}[t_1^{\pm 1}, \dots, t_d^{\pm 1}]$$

with Newton polytope $P = \operatorname{conv}(A) \subset M_{\mathbb{R}} := M \otimes \mathbb{R}$ is called *non-degenerate* if for any *k*-dimensional face $Q \leq P$ the affine hypersurface

$$Z_Q := \{\sum_{m \in A \cap Q} a_m \mathbf{t}^m = 0\} \subset \mathbb{T}_k.$$

is either empty, or reduced and smooth. The non-degeneracy of $f(\mathbf{t})$ is a Zariski open condition on its coefficients $\{a_m\} \in \mathbb{C}^{|A \cap M|}$.

・ロト・日本・日本・日本・日本

Definition

A normal projective variety X with at worst \mathbb{Q} -factorial terminal singularities is called *minimal model* if the canonical class K_X is a semi-ample \mathbb{Q} -Cartier divisor.

Example

A normal projective variety X with at worst \mathbb{Q} -factorial terminal singularities and trivial canonical class (Calabi-Yau variety) is always a minimal model.

Remark

If X and X' are two birational minimal models, then

$$E_{\rm str}(X; u, v) = E_{\rm str}(X'; u, v).$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りへぐ

Let $P \subset M_{\mathbb{R}}$ be any *d*-dimensional reflexive polytope, Σ_P the normal fan of P in $N_{\mathbb{R}}$. Consider a maximal simplicial refinement $\widehat{\Sigma}$ of Σ_P coming from triangulations of facets of the dual reflexive polytope $P^* \subset N_{\mathbb{R}}$ such that $\widehat{\Sigma}[1] = P^* \cap (N \setminus \{0\})$. Then $\widehat{\Sigma}$ defines a simplicial projective toric variety with at worst terminal singularities and crepant morphisms

$$ho : \widehat{V} o V_P, \ \widehat{X} :=
ho^{-1}(X) o X \subset V_P,$$

such that $\hat{X} \subset \hat{V}$ is a minimal Calabi-Yau model of a Gorenstein Calabi-Yau hypersurface $X \subset V_P$.

We want to extend the combinatorial computing of the stringy *E*-function to arbitrary minimal models \widehat{Z} of non-degenerate hypersurfaces $Z \subset \mathbb{T}_d$ defined by Laurent polynomials f with a given Newton polytope P.

Questions

- For which *d*-dimensional lattice polytopes *P* a minimal model \hat{Z} does exist?
- For which P is the minimal model \hat{Z} a Calabi-Yau variety?
- How to construct a minimal model \hat{Z} through the Newton polytope *P*?
- How to compute the stringy *E*-function of the minimal model \hat{Z} through the Newton polytope *P*?

Fine interior F(P) of a lattice polytope P

 $A \subset M$ a finite subset, $P := \operatorname{conv}(A) \subset M_{\mathbb{R}}$ a full-dimensional lattice polytope. Consider the piecewise linear function $\operatorname{ord}_{P} : N_{\mathbb{R}} \to \mathbb{R}$:

$$\operatorname{ord}_{P}(y) = \min_{x \in P} \langle x, y \rangle, \ y \in N_{\mathbb{R}}.$$

Then $P = \{ x \in M_{\mathbb{R}} : \langle x, \nu \rangle \ge \operatorname{ord}_{P}(\nu) \quad \forall \nu \in N \setminus \{0\} \}.$

Definition

 $F(P) := \{ x \in M_{\mathbb{R}} : \langle x, \nu \rangle \ge \operatorname{ord}_{P}(\nu) + 1 \quad \forall \nu \in N \setminus \{0\} \}$ is called Fine interior of *P*.

 Jonathan Fine, Resolution and completion of algebraic varieties, Ph.D.-Thesis, University of Warwick, June 1983. (in [Ph.D.-Thesis, §4] F(P) is called heart of P.)

Example: $F(P) = \operatorname{Conv}(P^{\circ} \cap M)$ if dim P = 2

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Some results in

Shihoko Ishii, The minimal model theorem for divisors of toric varieties, Tohoku Math. J. (1999), 213-226.

can be reformulated in the following way:

Theorem (Ishii, 1999)

A non-degenerate affine hypersurface $Z \subset \mathbb{T}_d$ defined by a Laurent polynomial $f \in \mathbb{C}[M]$ with Newton polytope P is birational to a minimal model \hat{Z} if and only if the Fine interior of P is not empty. Moreover, a minimal model \hat{Z} (if exists) can be obtained as Zariski closure of Z in some torus embedding $\mathbb{T}_d \hookrightarrow \hat{V}$, in some simplicial projective toric variety \hat{V} with at worst terminal singularities.

Definition

The support of Fine interior F(P) is the finite set

$$S_F(P) := \{ \nu \in \mathbb{N} : \operatorname{ord}_{F(P)}(\nu) = \operatorname{ord}_P(\nu) + 1 \}.$$

This is the set of *essential valuations* $\nu \in N$ that contribute to F(P)

- Find the set S_F(P) as the set of lattice generators of 1-dimensional cones in the fan Σ.
- Construct the simplicial fan ∑ with ∑[1] = S_F(P) as a normal fan of some full-dimensional simple polytope □(ε) with given facet normals S_F(P) using "puffing up" of the rational polytope F(P).

Calabi-Yau minimal models if P is reflexive (B.1994)

Remark

Let P be a reflexive polytope. Then

The algorithm

- Take the Zariski closure Z̃ of Z in the Gorenstein toric Fano variety Ṽ defined by the normal fan of P. We call (Calabi-Yau) Z̃ canonical model of Z;
- Take a maximal projective simplicial subdivision $\hat{\Sigma}$ of Σ_P with $\hat{\Sigma}[1] = S_F(P)$. The Zariski closure \hat{Z} of Z in the toric variety \hat{V} is a (Calabi-Yau) *minimal model of* Z.

Example: dim = 2

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Definition

Let *P* be a lattice polytope with $F(P) \neq \emptyset$. We define *canonical* hull C(P) of *P* as

$$C(P) := \{ x \in M_{\mathbb{R}} : \langle x, \nu \rangle \geq \operatorname{ord}_{P}(\nu) \ \forall \nu \in S_{F}(P) \}.$$

Remarks

- ▶ The canonical hull *C*(*P*) is a rational polytope containing *P*.
- For any 2-dimensional lattice polytope one has P = C(P).
- A d-dimensional lattice polytope P is reflexive if and only if
 F(P) = 0 and P = C(P).
- ln general, C(P) is larger than P.

Example (B. 2017)

Let P be the d-dimensional lattice simplex with vertices

 $e_1, \ldots, e_d, e_0 = -e_1 - \cdots - e_{d-1} - 2e_d$, where d = 2k + 1 is an odd integer ≥ 3 . Then $F(P) = \{0\}$, but P is not reflexive. It follows from [B., arXiv:2006.15825] that the stringy *E*-function of a Calabi-Yau compactification $X = \hat{Z}$ of the non-degenerate affine hypersurface

$$Z : t_1 + \dots + t_{2k+1} + \frac{1}{t_1 \cdots t_{2k} t_{2k+1}^2} = 0$$

is a polynomial and X admits a Calabi-Yau mirror $X^* \subset \mathbb{P}(1^d, 2)$ satisfying the topological mirror symmetry test.

Theorem (B. 2017)

Let $Z \subset \mathbb{T}_d$ be a non-degenerate affine hypersurface with Newton polytope P. Then

- Z is birational to a Calabi-Yau minimal models if and only if F(P) is a single lattice point (in the latter we can assume that F(P) = {0}).
- If F(P) = {0}, then the Zariski closure Z̃ of Z in the Q-Gorenstein canonical toric Fano variety Ṽ corresponding to the normal fan of C(P) is a projective Calabi-Yau variety with at worst canonical singularities.
- A minimal model \widehat{Z} of Z is the Zariski closure in a toric variety \widehat{V} corresponding to a simplicial fan $\widehat{\Sigma}$ with $\widehat{\Sigma}[1] = S_F(P)$ which is a maximal projective crepant partial resolution of \widetilde{V} .

Theorem (B. 2020)

Let $P \subset M_{\mathbb{R}}$ be a *d*-dimensional lattice polytope with $F(P) \neq \emptyset$. Consider the *d*-dimensional rational polytope $\tilde{P} := C(P) + F(P)$. Then the following statements hold:

- All primitive lattice vectors generating 1-dimensional cones of the normal fan Σ̃ of the rational polytope P̃ are contained in S_F(P) (i.e. Σ̃[1] ⊆ S_F(P)).
- The fan $\widetilde{\Sigma}$ defines a Q-Gorenstein toric variety \widetilde{V} with at worst canonical singularities.
- The Zariski closure Z̃ of Z in the toric variety Ṽ is a projective Q-Gorenstein hypersurface with at worst canonical singularities.

We call \widetilde{Z} the *canonical model* of non-degenerate affine hypersurface $Z \subset \mathbb{T}_d$.

Theorem (B. 2020)

Let $P \subset M_{\mathbb{R}}$ be a *d*-dimensional lattice polytope with $F(P) \neq \emptyset$. Consider the normal fan $\widetilde{\Sigma}$ of the rational polytope $\widetilde{P} := C(P) + F(P)$. Then the following statements hold:

- Any convex maximal simplicial subdivision $\widehat{\Sigma}$ of $\widetilde{\Sigma}$ with $\widehat{\Sigma}[1] = S_F(P)$ defines a crepant morphism $\widehat{V} \to \widetilde{V}$ of the corresponding toric varieties.
- The corresponding simplicial toric variety \hat{V} has at worst terminal singularities.
- The Zariski closure Z of a non-degenerate affine hypersurface Z in V is a minimal model of Z.

Example: dim P = 2

The fan $\widetilde{\Sigma}$ is the coarsest common refinement of the normal fans Σ_P and $\Sigma_{F(P)}$. One has $\widetilde{P} = P + F(P) = F(2P)$.

Example: dim P = 3

The 3-dimensional lattice simplex P has 1-dimensional Fine interior

$$F(P) = \operatorname{Conv}\left(\left(\frac{4}{3}, 1, 1\right), \left(\frac{5}{3}, 1, 1\right)\right).$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

- There exist a unique(!) canonical model Z̃ of any non-degenerate toric affine hypersurface Z with the Newton polytope P if F(P) ≠ Ø.
- The Kodaira dimension of \widehat{Z} equals $\kappa = \min\{d 1, \dim F(P)\}$.

- ▶ The *litaka fibration* of $\tilde{Z} \to V_{F(P)}$ is induced by the natural toric morphism $\tilde{V} \to V_{F(P)}$ (canonical toric Fano fibration).
- ► Generic *fibers of the litaka fibrations* are (d − 1 − κ)-dimensional canonical non-degenerate toric hypersurfaces of Kodaira dimension 0.

Theorem (B., 2020)

Let $Z \subset \mathbb{T}_d$ be a non-degenerate affine hypersurface with the Newton polytope P and $F(P) \neq \emptyset$. Then the stringy *E*-function of its minimal model \hat{Z} equals

$$E_{\mathrm{str}}(\widehat{Z}; u, v) = \sum_{\substack{Q \leq P \\ k = \dim Q \geq 1}} E(Z_Q; u, v) \sum_{\nu \in \sigma_Q^\circ \cap N} (uv - 1)^{d-k} (uv)^{-\alpha(\nu)}.$$

where $\alpha(\nu) := \operatorname{ord}_{F(P)}(\nu) - \operatorname{ord}_{P}(\nu)$, $E(Z_Q; u, v) \in \mathbb{Z}[u, v]$ is the Hodge-Deligne polynomial of the non-degenerate (k-1)-dimensional affine toric hypersurface $Z_Q \subset \mathbb{T}_k$, σ_Q° is the interior of the (d-k)-dimensional dual cone $\sigma_Q \in \Sigma_P$.

Corollary (B., 2017)

Let $Z \subset \mathbb{T}_d$ be a non-degenerate affine hypersurface with the Newton polytope P and $F(P) = \{0\}$. Then the stringy *E*-function of its Calabi-Yau minimal model \hat{Z} equals

$$E_{\mathrm{str}}(\widehat{Z}; u, v) = \sum_{\substack{Q \leq P \\ k = \dim Q \geq 1}} E(Z_Q; u, v)(uv - 1)^{d-k} \sum_{\nu \in \sigma_Q^\circ \cap N} (uv)^{\mathrm{ord}_P(\nu)}.$$

The last formula is the best tool for testing Mirror Symmetry for non-degenerate Calabi-Yau hypersurfaces in toric varieties.

Thank you !

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで