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E -polynomial

Defintion
Let X be a d-dimensional smooth projective variety over C. The
generating polynomial of the Hodge numbers hp,q(X ) of X

E (X ; u, v) :=
∑

0≤p,q≤d
(−1)p+qhp,q(X )upvq

we call E -polynomial (or Hodge polynomial) of X . Its value
E (X ; 1, 1) is the usual Euler number of X .



Hodge-Deligne polynomials

Using the mixed Hodge structure on the cohomology groups with
compact supports Hk

c (X ,C), one can extend by additivity usual
E -polynomials to Hodge-Deligne E -polynomials

E (X ; u, v) :=
∑
p,q

ep,q(X )upvq,

where the coefficients

ep,q(X ) :=
∑
k≥0

(−1)khp,q(Hk
c (X ,C)).

are called Hodge-Deligne numbers of X .



The main motivation for the stringy E -functions

Stringy Hodge numbers of Gorenstein varieties:
One needs stringy Hodge numbers hp,q

str (X ) of singular Gorenstein
projective algebraic varieties X satisfying the equations

hp,q
str (X ) = hp,q(Y ) ∀p, q,

if X admits a crepant desingularization ρ : Y → X (ρ∗KX = KY ).

Topological mirror symmetry test:
X is a d-dimensional Calabi-Yau variety with at worst canonical
Gorenstein singularities. If X ∗ is a Calabi-Yau mirror of X , then

hp,q
str (X ) = hd−p,q

str (X ∗), ∀p, q.



Discrepancies

Let X be a normal irreducible quasi-projective Q-Gorenstein
algebraic variety. Take a resolution of singularities of X

ρ : Y → X

whose the exceptional locus
⋃r

i=1 Di is a union of smooth
irreducible divisors with only normal crossings.
I := {1, . . . , r}

KY = ρ∗KX +
∑
i∈I

ai Di ,

The rational numbers ai ∈ Q (i ∈ I) are called discrepancies of
divisors Di .



Singularities in MMP

We consider the following three classes of singularities of
Q-Gorenstein algebraic varieties X that appear in the minimal
model program:

Definition
Singularities of X are called at worst
I terminal if ai > 0, ∀i ∈ I;
I canonical if ai ≥ 0, ∀i ∈ I;
I log-terminal if ai > −1, ∀i ∈ I.

All Q-Gorenstein algebraic varieties X considered in this talk have
at worst log-terminal singularities.



Stringy E -function I

Definition (first version)
Let ρ : Y → X be a resolution and KY = ρ∗KX +

∑
i∈I ai Di .

Assume that ai > −1 (∀i ∈ I). Define for any subset J ⊆ I :

D∅ := Y , DJ :=
⋂
j∈J

Dj (∅ 6= J ⊆ I).

The stringy E-function of X is the following rational function

Estr(X ; u, v) :=
∑
∅⊆J⊆I

E (DJ ; u, v)
∏
j∈J

( uv − 1
(uv)aj +1 − 1 − 1

)

=
∑
∅⊆J⊆I

(−1)|J|E (DJ ; u, v)
∏
j∈J

(
uv − (uv)aj +1

(uv)aj +1 − 1

)
.

(a product over ∅ is assumed to be 1)



Some properties

Theorem (B., 1998)
The stringy E -function of a projective variety X with at worst
log-terminal singularities has the following properties:
I Estr(X ; u, v) = Estr(X ; v , u) (symmety u ↔ v).
I Estr(X ; u, v) = (uv)d Estr(X ; u−1, v−1) if X is projective and

d = dim X (Poincaré duality).
I Estr(X ; u, v) does not depend on the resolution. In particular,

Estr(X ; u, v) = E (X ; u, v) if X is smooth.
I Estr(X ; u, v) = Estr(Y ; u, v) if ρ : Y → X is crepant, i.e.,
ρ∗KX = KY . In particular, Estr(X ; u, v) = E (Y ; u, v) if
ρ : Y → X is a crepant desingularization.

I Estr(X ; u, v) = Estr(X ′; u, v) if X and X ′ are K -equivalent.



Stringy E -function II

Definition (second version)
Let ρ : Y → X be a resolution and KY = ρ∗KX +

∑
i∈I ai Di .

Assume that ai > −1 (∀i ∈ I). Define for any subset J ⊆ I :

D◦J := DJ \
⋃
j 6∈J

Dj .

The stringy E-function of X is the following rational function

Estr(X ; u, v) :=
∑
∅⊆J⊆I

E (D◦J ; u, v)(uv − 1)|J|
∏
j∈J

1
(uv)aj +1 − 1 .



The combinatorial meaning of the product

∏
j∈J

1
(uv)aj+1 − 1

Using the equation

1
t − 1 = t−1 + t−2 + · · · =

∑
l>0

t−l ,

we obtain ∏
j∈J

1
(uv)aj +1 − 1 =

∑
n∈Z|J|>0

(uv)−α(n),

where α(x) is the linear function
∑

j∈J(aj + 1)xj .



Stringy Hodge numbers

Definition
Let X be a d-dimensional irreducible projective variety with at worst
Gorenstein canonical singularities. Assume that Estr(X ; u, v) is a
polynomial. Then the stringy Hodge numbers hp,q

str (X ) are defined
by the equation:

Estr(X ; u, v) =
∑
p,q

(−1)p+qhp,q
str (X )upvq.

It is more convenient to check the mirror symmetry
hp,q

str (X ) = hd−p,q
str (X ∗), ∀p, q, using the equivalent single equation

Estr(X ; u, v) = (−u)d Estr(X ∗; u−1, v).



Reflexive polytopes in Mirror Symmetry

M ∼= Zd , N := Hom(M,Z), 〈∗, ∗〉 : M × N → Z pairing
MR := M ⊗ R, NR := N ⊗ R are vector spaces over R.

Definition (B. 1994)
A d-dimensional lattice polytope P ⊂ MR containing 0 ∈ M in its
interior is called reflexive if the polar dual polytope

P∗ := {y ∈ NR : 〈x , y〉 ≥ −1, ∀x ∈ P}

is a lattice polytope.



The combinatorial duality

If P ⊂ MR is reflexive, then P∗ ⊂ NR is also reflexive and

(P∗)∗ = P.

There exists a natural 1-to-1 correspondence between k-dimensional
faces Q ≺ P and (d − k − 1)-dimensional dual faces Q∗ ≺ P∗:

Q∗ := {y ∈ P∗ : 〈x , y〉 = −1 ∀x ∈ Q}.



Examples of the combinatorial polar duality:

P := Conv(±e1, . . . ,±ed ) ∈ Rd ,
P∗ := {(x1, . . . , xd ) ∈ Rd : |xi | ≤ 1 (1 ≤ i ≤ d)}.

P P ∗



Mirror Symmetry

The combinatorial duality P ↔ P∗ perfectly agrees with predictions
of mirror symmetry for Calabi-Yau hypersurfaces in Gorenstein toric
Fano varieties.

Theorem (B., Borisov 1996)
Let X ⊂ VP and X ∗ ⊂ VP∗ be general Calabi-Yau hypersurfaces in
Gorenstein toric Fano varieties VP and VP∗ corresponding to a pair
of d-dimensional reflexive polytopes (P,P∗). Then one has

Estr(X ; u, v) = (−u)d−1Estr(X ∗; u−1, v),

i.e.
hp,q

str (X ) = hd−1−p,q
str (X ∗) ∀p, q.



Idea of proof

I Consider general Calabi-Yau hypersurfaces X ⊂ VP in
Gorenstein toric Fano varieties VP as projective
compactifications of non-degenerate affine hypersurfaces
Z ⊂ Td defined by a Laurent polynomial with a reflexive
Newton polytope P.

I Apply the algorithm of Danilov and Khovanskǐi (1986) for
computing the Hodge-Deligne polynomials E (ZQ; u, v) of
affine hypersurfaces ZQ ⊂ Tdim Q for all faces Q � P.

I Derive the combinatorial formula for the stringy E -function

Estr(X ; u, v) =
∑
Q�P

k=dim Q≥1

E (ZQ; u, v)(uv − 1)d−k ∑
n∈σ◦Q

(uv)〈Q,n〉

I Use the duality Q ↔ Q∗ and the equality σQ = R≥0Q∗ for
(d − dim Q)-dimensional cones σQ in the normal fan ΣP of P.



Non-degenerate affine toric hypersurfaces

Definition
A Laurent polynomial

f (t) =
∑
m∈A

amtm ∈ C[M] ∼= C[t±1
1 , . . . , t±1

d ]

with Newton polytope P = conv(A) ⊂ MR := M ⊗ R is called
non-degenerate if for any k-dimensional face Q � P the affine
hypersurface

ZQ := {
∑

m∈A∩Q
amtm = 0} ⊂ Tk .

is either empty, or reduced and smooth. The non-degeneracy of
f (t) is a Zariski open condition on its coefficients {am} ∈ C|A∩M|.



Minimal models

Definition
A normal projective variety X with at worst Q-factorial terminal
singularities is called minimal model if the canonical class KX is a
semi-ample Q-Cartier divisor.

Example
A normal projective variety X with at worst Q-factorial terminal
singularities and trivial canonical class (Calabi-Yau variety) is always
a minimal model.

Remark
If X and X ′ are two birational minimal models, then

Estr(X ; u, v) = Estr(X ′; u, v).



Minimal models of some toric Calabi-Yau hypersurfaces

Let P ⊂ MR be any d-dimensional reflexive polytope, ΣP the
normal fan of P in NR. Consider a maximal simplicial refinement Σ̂
of ΣP coming from triangulations of facets of the dual reflexive
polytope P∗ ⊂ NR such that Σ̂[1] = P∗ ∩ (N \ {0}). Then Σ̂
defines a simplicial projective toric variety with at worst terminal
singularities and crepant morphisms

ρ : V̂ → VP , X̂ := ρ−1(X )→ X ⊂ VP ,

such that X̂ ⊂ V̂ is a minimal Calabi-Yau model of a Gorenstein
Calabi-Yau hypersurface X ⊂ VP .



Our goal and natural questions

We want to extend the combinatorial computing of the stringy
E -function to arbitrary minimal models Ẑ of non-degenerate
hypersurfaces Z ⊂ Td defined by Laurent polynomials f with a
given Newton polytope P.

Questions
I For which d-dimensional lattice polytopes P a minimal model

Ẑ does exist?
I For which P is the minimal model Ẑ a Calabi-Yau variety?
I How to construct a minimal model Ẑ through the Newton

polytope P?
I How to compute the stringy E -function of the minimal model

Ẑ through the Newton polytope P?



Fine interior F (P) of a lattice polytope P

A ⊂ M a finite subset, P := conv(A) ⊂ MR a full-dimensional
lattice polytope. Consider the piecewise linear function
ordP : NR → R:

ordP(y) = min
x∈P
〈x , y〉, y ∈ NR.

Then P = {x ∈ MR : 〈x , ν〉 ≥ ordP(ν) ∀ν ∈ N \ {0}}.

Definition
F (P) := {x ∈ MR : 〈x , ν〉 ≥ ordP(ν)+1 ∀ν ∈ N \ {0}}
is called Fine interior of P.
I Jonathan Fine, Resolution and completion of algebraic

varieties, Ph.D.-Thesis, University of Warwick, June 1983.
(in [Ph.D.-Thesis, §4] F (P) is called heart of P. )



Example: F (P) = Conv(P◦ ∩M) if dim P = 2

F (P )

〈x, ν〉 = ordP (ν)

〈x, ν〉 = ordP (ν) + 1



Theorem of Ishii: Existence of a minimal models

Some results in
I Shihoko Ishii, The minimal model theorem for divisors of toric

varieties, Tohoku Math. J. (1999), 213-226.
can be reformulated in the following way:

Theorem (Ishii, 1999)
A non-degenerate affine hypersurface Z ⊂ Td defined by a Laurent
polynomial f ∈ C[M] with Newton polytope P is birational to a
minimal model Ẑ if and only if the Fine interior of P is not empty.
Moreover, a minimal model Ẑ (if exists) can be obtained as Zariski
closure of Z in some torus embedding Td ↪→ V̂ , in some simplicial
projective toric variety V̂ with at worst terminal singularities.



Constructing a minimal model (Ishii)

Definition
The support of Fine interior F (P) is the finite set

SF (P) := {ν ∈ N : ordF (P)(ν) = ordP(ν) + 1}.

This is the set of essential valuations ν ∈ N that contribute to F (P)
I Find the set SF (P) as the set of lattice generators of

1-dimensional cones in the fan Σ̂.
I Construct the simplicial fan Σ̂ with Σ̂[1] = SF (P) as a normal

fan of some full-dimensional simple polytope �(ε) with given
facet normals SF (P) using ”puffing up” of the rational
polytope F (P).



Calabi-Yau minimal models if P is reflexive (B.1994)

Remark
Let P be a reflexive polytope. Then
I F (P) = {0};
I SF (P) = P∗ ∩ (N \ {0}).

The algorithm
I Take the Zariski closure Z̃ of Z in the Gorenstein toric Fano

variety Ṽ defined by the normal fan of P. We call (Calabi-Yau)
Z̃ canonical model of Z ;

I Take a maximal projective simplicial subdivision Σ̂ of ΣP with
Σ̂[1] = SF (P). The Zariski closure Ẑ of Z in the toric variety
V̂ is a (Calabi-Yau) minimal model of Z .



Example: dim = 2

f (t) := t1 + t2 + 1
t1t2

, Z ⊂ Ṽ := {z3
0 − z1z2z3 = 0}

P ∗, SF (P ){0} = F (P ) ⊂ P



Canonical hull of P if F (P) 6= ∅

Definition
Let P be a lattice polytope with F (P) 6= ∅. We define canonical
hull C(P) of P as

C(P) := {x ∈ MR : 〈x , ν〉 ≥ ordP(ν) ∀ν ∈ SF (P)}.

Remarks
I The canonical hull C(P) is a rational polytope containing P.
I For any 2-dimensional lattice polytope one has P = C(P).
I A d-dimensional lattice polytope P is reflexive if and only if

F (P) = 0 and P = C(P).
I In general, C(P) is larger than P.



Non-reflexive lattice polytope P with F (P) = {0}

Example (B. 2017)
Let P be the d-dimensional lattice simplex with vertices
e1, . . . , ed , e0 = −e1 − · · · − ed−1 − 2ed , where d = 2k + 1 is an
odd integer ≥ 3. Then F (P) = {0}, but P is not reflexive. It
follows from [B., arXiv:2006.15825] that the stringy E -function of a
Calabi-Yau compactification X = Ẑ of the non-degenerate affine
hypersurface

Z : t1 + · · ·+ t2k+1 + 1
t1 · · · t2kt2

2k+1
= 0

is a polynomial and X admits a Calabi-Yau mirror X ∗ ⊂ P(1d , 2)
satisfying the topological mirror symmetry test.



Calabi-Yau minimal models if F (P) = {0}

Theorem (B. 2017)
Let Z ⊂ Td be a non-degenerate affine hypersurface with Newton
polytope P. Then
I Z is birational to a Calabi-Yau minimal models if and only if

F (P) is a single lattice point (in the latter we can assume that
F (P) = {0}).

I If F (P) = {0}, then the Zariski closure Z̃ of Z in the
Q-Gorenstein canonical toric Fano variety Ṽ corresponding to
the normal fan of C(P) is a projective Calabi-Yau variety with
at worst canonical singularities.

I A minimal model Ẑ of Z is the Zariski closure in a toric variety
V̂ corresponding to a simplicial fan Σ̂ with Σ̂[1] = SF (P)
which is a maximal projective crepant partial resolution of Ṽ .



The canonical model in case F (P) 6= ∅

Theorem (B. 2020)
Let P ⊂ MR be a d-dimensional lattice polytope with F (P) 6= ∅.
Consider the d-dimensional rational polytope P̃ := C(P) + F (P).
Then the following statements hold:
I All primitive lattice vectors generating 1-dimensional cones of

the normal fan Σ̃ of the rational polytope P̃ are contained in
SF (P) (i.e. Σ̃[1] ⊆ SF (P)).

I The fan Σ̃ defines a Q-Gorenstein toric variety Ṽ with at worst
canonical singularities.

I The Zariski closure Z̃ of Z in the toric variety Ṽ is a projective
Q-Gorenstein hypersurface with at worst canonical singularities.

We call Z̃ the canonical model of non-degenerate affine
hypersurface Z ⊂ Td .



Minimal models

Theorem (B. 2020)
Let P ⊂ MR be a d-dimensional lattice polytope with F (P) 6= ∅.
Consider the normal fan Σ̃ of the rational polytope
P̃ := C(P) + F (P). Then the following statements hold:
I Any convex maximal simplicial subdivision Σ̂ of Σ̃ with

Σ̂[1] = SF (P) defines a crepant morphism V̂ → Ṽ of the
corresponding toric varieties.

I The corresponding simplicial toric variety V̂ has at worst
terminal singularities.

I The Zariski closure Ẑ of a non-degenerate affine hypersurface
Z in V̂ is a minimal model of Z .



Example: dim P = 2

0

The fan Σ̃ is the coarsest common refinement of the normal fans
ΣP and ΣF (P). One has P̃ = P + F (P) = F (2P).



Example: dim P = 3

(0, 0, 0)

(3, 0, 0)

(1, 3, 0)

(2, 0, 3)

The 3-dimensional lattice simplex P has 1-dimensional Fine interior

F (P) = Conv
(

(4
3 , 1, 1), (5

3 , 1, 1)
)
.



Applications of canonical models

I There exist a unique(!) canonical model Z̃ of any
non-degenerate toric affine hypersurface Z with the Newton
polytope P if F (P) 6= ∅.

I The Kodaira dimension of Ẑ equals κ = min{d − 1, dim F (P)}.
I The Iitaka fibration of Z̃ → VF (P) is induced by the natural

toric morphism Ṽ → VF (P) (canonical toric Fano fibration).
I Generic fibers of the Iitaka fibrations are

(d − 1− κ)-dimensional canonical non-degenerate toric
hypersurfaces of Kodaira dimension 0.



The stringy E -function of minimal models

Theorem (B., 2020)
Let Z ⊂ Td be a non-degenerate affine hypersurface with the
Newton polytope P and F (P) 6= ∅. Then the stringy E -function of
its minimal model Ẑ equals

Estr(Ẑ ; u, v) =
∑
Q�P

k=dim Q≥1

E (ZQ; u, v)
∑

ν∈σ◦Q∩N
(uv − 1)d−k(uv)−α(ν).

where α(ν) := ordF (P)(ν)− ordP(ν), E (ZQ; u, v) ∈ Z[u, v ] is the
Hodge-Deligne polynomial of the non-degenerate
(k − 1)-dimensional affine toric hypersurface ZQ ⊂ Tk , σ◦Q is the
interior of the (d − k)-dimensional dual cone σQ ∈ ΣP .



The stringy E -function of Calabi-Yau hypersurfaces

Corollary (B., 2017)
Let Z ⊂ Td be a non-degenerate affine hypersurface with the
Newton polytope P and F (P) = {0}. Then the stringy E -function
of its Calabi-Yau minimal model Ẑ equals

Estr(Ẑ ; u, v) =
∑
Q�P

k=dim Q≥1

E (ZQ; u, v)(uv − 1)d−k ∑
ν∈σ◦Q∩N

(uv)ordP(ν).

The last formula is the best tool for testing Mirror Symmetry for
non-degenerate Calabi-Yau hypersurfaces in toric varieties.



Thank you !


