Victor Batyrev

Eberhard Karls Universitat Tibingen

31 July 2020

KAVLI INSTITUTE FOR THE PHYSICS AND MATHEMATICS OF THE UNIVERSE

The McKay correspondence, mutation and related topics

Q>



E-polynomial

Defintion
Let X be a d-dimensional smooth projective variety over C. The
generating polynomial of the Hodge numbers hP9(X) of X

E(X;u,v) = Z (=1)PTIpP9(X)uP VI
0<p,q<d

we call E-polynomial (or Hodge polynomial) of X. Its value
E(X;1,1) is the usual Euler number of X.



Hodge-Deligne polynomials

Using the mixed Hodge structure on the cohomology groups with
compact supports H5(X, C), one can extend by additivity usual
E-polynomials to Hodge-Deligne E-polynomials

E(X;u,v):= Z ePI(X)uPvi,
P.q

where the coefficients

ePI(X) ==Y (~1)kmP9(HE(X, C)).
k>0

are called Hodge-Deligne numbers of X.



The main motivation for the stringy E-functions

Stringy Hodge numbers of Gorenstein varieties:

One needs stringy Hodge numbers hE;7(X) of singular Gorenstein

projective algebraic varieties X satisfying the equations
hEI(X) = hP9(Y) Vp, q,

str

if X admits a crepant desingularization p : Y — X (p*Kx = Ky).

Topological mirror symmetry test:

X is a d-dimensional Calabi-Yau variety with at worst canonical
Gorenstein singularities. If X* is a Calabi-Yau mirror of X, then

hE3(X) = K5, P9(X7), Vp.q.

str str



Discrepancies

Let X be a normal irreducible quasi-projective QQ-Gorenstein
algebraic variety. Take a resolution of singularities of X

p:Y—=>X

whose the exceptional locus [Ji_; D; is a union of smooth
irreducible divisors with only normal crossings.
I={1,...,r}
Ky = p*Kx + Z a;D;,
i€l
The rational numbers a; € Q (i € /) are called discrepancies of
divisors D;.



Singularities in MMP

We consider the following three classes of singularities of
Q-Gorenstein algebraic varieties X that appear in the minimal
model program:
Definition
Singularities of X are called at worst

» terminal if a; > 0, Vi € [;

» canonical if a; > 0, Vi € [;

» log-terminal if a; > —1, Vi € I.

All Q-Gorenstein algebraic varieties X considered in this talk have
at worst log-terminal singularities.



Stringy E-function |

Definition (first version)

Let p : Y — X be a resolution and Ky = p*Kx + > aiD;
Assume that a; > —1 (Vi € ). Define for any subset J C [ :

Dy:=Y, Dyj:=(\D; (0#JCI).
jed

The stringy E-function of X is the following rational function

uv —1
Estr(XUV ZEDJUVH((UV)«?J‘F]-_]__].>

pcJCl jeJ
_ aj—i—l
— IJ\E (Dy; u, v) (uv(uv))
=2 U=

(a product over () is assumed to be 1)



Some properties

Theorem (B., 1998)

The stringy E-function of a projective variety X with at worst
log-terminal singularities has the following properties:

>
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>

Esr(X; u, v) = Esx(X; v, u) (symmety u <> v).

Estr(X; u,v) = (uv)9Eg(X; u™1, v71) if X is projective and
d = dim X (Poincaré duality).

Esr(X; u, v) does not depend on the resolution. In particular,
Eqtr(X; u,v) = E(X; u, v) if X is smooth.

Esr(X;u,v) = Esee (Y u,v) if p - Y — X is crepant, i.e.,
p*Kx = Ky. In particular, Eg,(X; u,v) = E(Y; u,v) if

p Y — X is a crepant desingularization.

Esr(X; u,v) = Esr(X/; u,v) if X and X’ are K-equivalent.



Stringy E-function Il

Definition (second version)

Let p : Y — X be a resolution and Ky = p*Kx + > a;iD;
Assume that a; > —1 (Vi € I). Define for any subset J C [ :

DS := Dy \ | D;.
j¢J

The stringy E-function of X is the following rational function

J
Estr(XUV Z EDJUV) ||Hm
pCJCl



Using the equation

we obtain

H (uv)aﬂrl = > (w0,

ez}
where a(x) is the linear function >~ ;(aj + 1)x;
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Stringy Hodge numbers

Definition

Let X be a d-dimensional irreducible projective variety with at worst
Gorenstein canonical singularities. Assume that Eg,(X; u, v) is a
polynomial. Then the stringy Hodge numbers hE;7(X) are defined
by the equation:

Esr(X; u,v) =Y (=1)PTIREI(X)uPve.
X

It is more convenient to check the mirror symmetry
K9 (X) = hAP9(X*), Vp,q, using the equivalent single equation

str str

Eer(X; u,v) = (—u)dEStr(X*; u_l, v).



Reflexive polytopes in Mirror Symmetry

M =79 N :=Hom(M,Z), (x,%) : M x N — Z pairing
Mg :=M®R, Ng:=NQ®R are vector spaces over R.

Definition (B. 1994)

A d-dimensional lattice polytope P C Mg containing 0 € M in its
interior is called reflexive if the polar dual polytope

P*:={yeNr : (x,y)>—1, VxeP}

is a lattice polytope.



The combinatorial duality

If P C Mg is reflexive, then P* C Ny is also reflexive and

(P*)" = P.

There exists a natural 1-to-1 correspondence between k-dimensional
faces Q < P and (d — k — 1)-dimensional dual faces Q* < P*:

QF:={yeP : (x,y)=-1VxeQ}



Examples of the combinatorial polar duality:

P := Conv(tey,..., +ey) € RY,
P i={(x,....xa) ER? ¢ x| <1(1<i<d)}




Mirror Symmetry

The combinatorial duality P <+ P* perfectly agrees with predictions
of mirror symmetry for Calabi-Yau hypersurfaces in Gorenstein toric
Fano varieties.

Theorem (B., Borisov 1996)

Let X C Vp and X* C Vp+ be general Calabi-Yau hypersurfaces in
Gorenstein toric Fano varieties Vp and Vp« corresponding to a pair
of d-dimensional reflexive polytopes (P, P*). Then one has

Estr(X; u, V) = (_u)d_lEstr(X*; U_1> V)a

hE3(X) = K5 P9(X7) Yp,q.

str



|dea of proof

» Consider general Calabi-Yau hypersurfaces X C Vp in
Gorenstein toric Fano varieties Vp as projective
compactifications of non-degenerate affine hypersurfaces
Z C T4 defined by a Laurent polynomial with a reflexive
Newton polytope P.

» Apply the algorithm of Danilov and Khovanskii (1986) for
computing the Hodge-Deligne polynomials E(Zg; u, v) of
affine hypersurfaces Zg C Tgim @ for all faces Q < P.

» Derive the combinatorial formula for the stringy E-function

Esr(X;u,v) = Z E(Zg; u,v)(uv —1)47k Z (uv)(@m

Q=P neo?
k=dim @>1 Q

» Use the duality Q <+ Q" and the equality cg = R>oQ" for
(d — dim Q)-dimensional cones o in the normal fan ¥p of P.



Non-degenerate affine toric hypersurfaces

Definition
A Laurent polynomial

f(t) =Y amt™ € CIM] = C[,..., t7"]
meA

with Newton polytope P = conv(A) C Mg := M ® R is called
non-degenerate if for any k-dimensional face @ < P the affine
hypersurface
Zg = { Z amt™ =0} C Ty.
meANQ
is either empty, or reduced and smooth. The non-degeneracy of
f(t) is a Zariski open condition on its coefficients {a,,} € CAMI,



Minimal models

Definition

A normal projective variety X with at worst Q-factorial terminal
singularities is called minimal model if the canonical class Kx is a
semi-ample Q-Cartier divisor.

Example

A normal projective variety X with at worst Q-factorial terminal
singularities and trivial canonical class (Calabi-Yau variety) is always
a minimal model.

Remark
If X and X’ are two birational minimal models, then

Estr(X; u, V) = Estr(X/; u, V)-



Minimal models of some toric Calabi-Yau hypersurfaces

Let P C Mg be any d-dimensional reflexive polytope, ¥ p the
normal fan of P in Ng. Consider a maximal simplicial refinement )N
of ¥ p coming from triangulations of facets of the dual reflexive
polytope P* C Ny such that £[1] = P* N (N'\ {0}). Then £
defines a simplicial projective toric variety with at worst terminal
singularities and crepant morphisms

p: V= Ve X:=pYX)=XCVp,

such that X C V is a minimal Calabi-Yau model of a Gorenstein
Calabi-Yau hypersurface X C Vp.



Our goal and natural questions

We want to extend the combinatorial computing of the stringy
E-function to arbitrary minimal models Z of non-degenerate
hypersurfaces Z C Ty defined by Laurent polynomials f with a
given Newton polytope P.

Questions

» For which d-dimensional lattice polytopes P a minimal model
Z does exist?

> For which P is the minimal model Z a Calabi-Yau variety?

» How to construct a minimal model Z through the Newton
polytope P?

» How to compute the stringy E-function of the minimal model
Z through the Newton polytope P?



Fine interior F(P) of a lattice polytope P

A C M a finite subset, P := conv(A) C Mg a full-dimensional
lattice polytope. Consider the piecewise linear function
ordp : Np — R:

OrdP()/) = rnei’g<xay>v y € N]R‘
Then P={x € Mg : (x,v) >ordp(rv) Vv e N\ {0}}.

Definition
F(P):={x e Mg : (x,v) >ordp(v)+1 Vve N\{0}}
is called Fine interior of P.

» Jonathan Fine, Resolution and completion of algebraic
varieties, Ph.D.-Thesis, University of Warwick, June 1983.
(in [Ph.D.-Thesis, §4] F(P) is called heart of P. )



—~1 |
\i\
(D
1
\
(z,lv)y =ordp(v)+ 1
(z,lv) = ordp (v)
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Theorem of Ishii: Existence of a minimal models

Some results in

» Shihoko Ishii, The minimal model theorem for divisors of toric
varieties, Tohoku Math. J. (1999), 213-226.

can be reformulated in the following way:

Theorem (Ishii, 1999)

A non-degenerate affine hypersurface Z C T4 defined by a Laurent
polynomial f € C[M] with Newton polytope P is birational to a
minimal model Z if and only if the Fine interior of P is not empty.
Moreover, a minimal model Z (if exists) can be obtained as Zariski
closure of Z in some torus embedding Ty — V, in some simplicial
projective toric variety V with at worst terminal singularities.



Constructing a minimal model (Ishii)

Definition
The support of Fine interior F(P) is the finite set

Se(P) :=={v e N : ordg(p)(v) = ordp(v) + 1}.

This is the set of essential valuations v € N that contribute to F(P)

» Find the set Sp(P) as the set of lattice generators of
1-dimensional cones in the fan ¥.

> Construct the simplicial fan & with ¥[1] = S¢(P) as a normal
fan of some full-dimensional simple polytope [J(¢) with given
facet normals Sg(P) using "puffing up” of the rational
polytope F(P).



Calabi-Yau minimal models if P is reflexive (B.1994)

Remark
Let P be a reflexive polytope. Then
> F(P)={0}

> Se(P) = P (N {0}).

The algorithm
> Take the Zariski closure Z of Z in the Gorenstein toric Fano
variety V' defined by the normal fan of P. We call (Calabi-Yau)
Z canonical model of Z:;
> Take a maximal projective simplicial subdivision Y of > p with
X[1] = Sp(P). The Zariski closure Z of Z in the toric variety
V is a (Calabi-Yau) minimal model of Z.



ft) =t +t+ sl ZCV:={z} - 212023 = 0}
1t2

{0} =F(P)C P

P*, Sp(P)
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Canonical hull of P if F(P) # 0

Definition
Let P be a lattice polytope with F(P) # (). We define canonical
hull C(P) of P as

C(P) :={xe Mr : (x,v) >ordp(v) Vv € Sg(P)}.

Remarks
» The canonical hull C(P) is a rational polytope containing P.
» For any 2-dimensional lattice polytope one has P = C(P).
» A d-dimensional lattice polytope P is reflexive if and only if
F(P)=0and P = C(P).
» In general, C(P) is larger than P.



Non-reflexive lattice polytope P with F(P) = {0}

Example (B. 2017)

Let P be the d-dimensional lattice simplex with vertices
€1,...,64,60 = —€1 — -+ — €4_1 — 264, Where d = 2k + 1 is an
odd integer > 3. Then F(P) = {0}, but P is not reflexive. It
follows from [B., arXiv:2006.15825l that the stringy E-function of a
Calabi-Yau compactification X = Z of the non-degenerate affine
hypersurface

1

2 =0
tre e toktyy

Z i tp+ -+ toggr +

is a polynomial and X admits a Calabi-Yau mirror X* C P(19,2)
satisfying the topological mirror symmetry test.



Calabi-Yau minimal models if F(P) = {0}

Theorem (B. 2017)
Let Z C Ty be a non-degenerate affine hypersurface with Newton
polytope P. Then
» Z is birational to a Calabi-Yau minimal models if and only if
F(P) is a single lattice point (in the latter we can assume that
F(P) = {0}). )
> If F(P) = {0}, then the Zariski closure Z of Z in the
Q-Gorenstein canonical toric Fano variety V' corresponding to
the normal fan of C(P) is a projective Calabi-Yau variety with
at worst canonical singularities.
> A minimal model Z of Z is the Zariski closure in a toric variety
V' corresponding to a simplicial fan X with X[1] = S¢(P)
which is a maximal projective crepant partial resolution of V.



The canonical model in case F(P) # ()

Theorem (B. 2020)

Let P C Mg be a d-dimensional lattice polytope with F(P) # (.
Consider the d-dimensional rational polytope P := C(P) + F(P).
Then the following statements hold:

» All primitive lattice vectors generating 1-dimensional cones of
the normal fan ¥ of the rational polytope P are contained in
Se(P) (i.e. X[1] C Sk(P)).

> The fan ¥ defines a Q-Gorenstein toric variety V with at worst
canonical singularities.

> The Zariski closure Z of Z in the toric variety Vis a projective
Q-Gorenstein hypersurface with at worst canonical singularities.

We call Z the canonical model of non-degenerate affine
hypersurface Z C Ty4.



Minimal models

Theorem (B. 2020)

Let P C Mg be a d-dimensional lattice polytope with F(P) # ().
Consider the normal fan ¥ of the rational polytope
P := C(P) + F(P). Then the following statements hold:
» Any convex maximal simplicial subdivision ¥ of ¥ with
$[1] = Se(P) defines a crepant morphism V — V of the
corresponding toric varieties.

» The corresponding simplicial toric variety V has at worst
terminal singularities.

» The Zariski closure Z of a non-degenerate affine hypersurface
Z in V is a minimal model of Z.



Example: dimP =2

The fan ¥ is the coarsest common refinement of the normal fans
Yp and Zf(p). One has P = P + F(P) = F(2P).



(1,3,0)
00,04

3,00

The 3-dimensional lattice simplex P has 1-dimensional Fine interior

F(P) = Conv ((‘-; 1,1), (g, 1, 1)) .

«O>» «Fr «=»
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Applications of canonical models

> There exist a unique(!) canonical model Z of any
non-degenerate toric affine hypersurface Z with the Newton
polytope P if F(P) # ().

> The Kodaira dimension of Z equals = = min{d — 1, dim F(P)}.

» The litaka fibration of Z — VE(p) is induced by the natural
toric morphism V' — V(py (canonical toric Fano fibration).

» Generic fibers of the litaka fibrations are
(d — 1 — k)-dimensional canonical non-degenerate toric
hypersurfaces of Kodaira dimension 0.



The stringy E-function of minimal models

Theorem (B., 2020)

Let Z C Ty be a non-degenerate affine hypersurface with the
Newton polytope P and F(P) # (. Then the stringy E-function of
its minimal model Z equals

Esr(Z;u,v) = Z E(Zg; u,v) Z (uv — 1)K (uv) W),
kjﬁﬂ?gy veayNN
where a(v) := ordg(p)(v) — ordp(v), E(Zq; u,v) € Z[u, v] is the
Hodge-Deligne polynomial of the non-degenerate
(k — 1)-dimensional affine toric hypersurface Zg C Ty, o is the
interior of the (d — k)-dimensional dual cone og € Xp.



The stringy E-function of Calabi-Yau hypersurfaces

Corollary (B., 2017)

Let Z C Ty be a non-degenerate affine hypersurface with the
Newton polytope P and F(P) = {0}. Then the stringy E-function
of its Calabi-Yau minimal model Z equals

~

Esr(Z;u,v) = Z E(Zg; u,v)(uv — 1)""" Z (uv)ordp(u).

Q=P VEUZ)DN
k=dim Q>1

The last formula is the best tool for testing Mirror Symmetry for
non-degenerate Calabi-Yau hypersurfaces in toric varieties.



Thank you !



