Dense g-vector fans for tame algebras

Toshiya Yurikusa (Tohoku University)

This poster is based on the preprint [PY] that is joint work with Pierre-Guy Plamondon (Université Paris-Saclay).

g-vector fan

- Λ : a finite dimensional algebra over an algebraic closed field *k*.
- *K^b*(proj Λ): the homotopy category of bounded complexes of finitely generated projective Λ-modules with shift functor Σ.
- *K*^[-1,0](proj Λ) : the full subcategory of *K^b*(proj Λ) whose objects are complexes concentrated in degrees −1 and 0, i.e. *P*⁻¹ → *P*⁰.

An object $P \in K^{[-1,0]}(\text{proj }\Lambda)$ is presilting if $\text{Hom}_{K^b(\text{proj }\Lambda)}(P, \Sigma P) = 0$. It is silting if, moreover, it generates $K^b(\text{proj }\Lambda)$. We denote by 2-silt Λ the set of isomorphism classes of basic silting objects in $K^{[-1,0]}(\text{proj }\Lambda)$

- $K_0(\text{proj }\Lambda)$: the Grothendieck group of $K^b(\text{proj }\Lambda)$
- [X]: the image of an object X in $K_0(\text{proj }\Lambda)$

It is well-known that $K_0(\operatorname{proj} \Lambda)$ is a free abelian group, i.e. $K_0(\operatorname{proj} \Lambda) \simeq \mathbb{Z}^n$.

The **g**-vector of $P \in K^{[-1,0]}(\operatorname{proj} \Lambda)$ is $[P] \in K_0(\operatorname{proj} \Lambda) \simeq \mathbb{Z}^n$.

Theorem ([AIR])

There is a simplicial polyhedral fan $\mathcal{F}^{g}(\Lambda)$, called **g**-vector fan of Λ , whose

- ray is spanned by the g-vector of an indecomposable presilting object of K^[-1,0](proj Λ);
- maximal cone is a positive cone spanned by $[S_1], \ldots, [S_n]$ for $\bigoplus_{i=1}^n S_i \in 2$ -silt Λ .

The fan $\mathcal{F}^{\mathbf{g}}(\Lambda)$ is identified with its geometric realization, i.e. $\mathcal{F}^{\mathbf{g}}(\Lambda) \subseteq \mathbb{R}^{n}$.

Example (g-vector fans)

Let $m \in \mathbb{Z}_{\geq 1}$ and K_m be an *m*-Kronecker quiver, i.e.

$$K_m := [1 \underbrace{\vdots}_{i=1}^m 2].$$

In particular, K_1 is of type A_2 and K_2 is a Kronecker quiver. The **g**-vector fan $\mathcal{F}^{\mathbf{g}}(kK_m)$ of the path algebra kK_m is well known as follows:

For $m \ge 2$, $\mathcal{F}^{\mathbf{g}}(k\mathcal{K}_m)$ contains infinitely many rays converging to the rays r_{\pm} . If m = 2, then $r_+ = r_-$. If $m \ge 3$, then $r_+ \ne r_-$ and the interior of the cone spanned by r_+ and r_- is the complement of the closure $\overline{\mathcal{F}^{\mathbf{g}}(k\mathcal{K}_m)}$.

A complete list of indecomposable presilting objects in $K^{[-1,0]}(\text{proj }kK_2)$ is given by

$$\Sigma P_1, \ \Sigma P_2, \ P_1, \ H^m_{\pm} = (P_1^{m \pm 1} \rightarrow P_2^m) \ (m \in \mathbb{Z}_{\geq 1})$$

whose **g**-vectors are (-1, 0), (0, -1), (1, 0), $(-m \mp 1, m)$, respectively. A maximal cone spanned by two adjacent **g**-vectors corresponds to a silting object, and their adjacent cones (or the corresponding silting objects) are related by a "mutation".

Sketch of the proof

Main tool

For $U, X \in K^{b}(\text{proj }\Lambda)$, we choose a basis (f_1, \ldots, f_d) of the space $\text{Hom}_{K^{b}(\text{proj }\Lambda)}(U, X)$ and a triangle

$$\Sigma^{-1}X^d \to \operatorname{Cyl}_X U \to U \xrightarrow{t} X^d$$
, where $f = [f_1 \cdots f_d]^{\mathrm{T}}$.

The object $\operatorname{Cyl}_X U$ is the cylinder of U with respect to X.

Example (Idea of the proof)

We consider the path algebra kK_2 of a Kronecker quiver K_2 . The half line r_+ is not in $\mathcal{F}^{\mathbf{g}}(kK_2)$. But we can show that it's in $\overline{\mathcal{F}^{\mathbf{g}}(kK_2)}$ as follows: We only need to prove $(-1, 1) \subset \overline{\mathcal{F}^{\mathbf{g}}(kK_2)}$. There is a non-presilting object $H = (P_1 \rightarrow P_2)$ with [H] = (-1, 1). Then it is easy to get $\operatorname{Cyl}_{\Sigma H}^m(\Sigma P_1) = H_+^m$. Since $\operatorname{Cyl}_{\Sigma H}^m(\Sigma P_1)$ is presilting and $[\operatorname{Cyl}_{\Sigma H}^m(\Sigma P_1)] = (-m - 1, m)$,

Let Λ be a tame algebra. We need to show that any $\mathbf{g} \in \mathcal{K}_0(\text{proj }\Lambda)$ is contained in $\overline{\mathcal{F}^{\mathbf{g}}(\Lambda)}$. In this case, \mathbf{g} has a decomposition [GLS]

$$\mathbf{g} = \mathbf{g}' + a_1 \mathbf{h}_1 + \ldots + a_r \mathbf{h}_r,$$

where $a_i \in \mathbb{Z}_{>0}$, $\mathbf{h}_i \neq \mathbf{h}_i$ and

- (1) there is a presilting object *G* in $\mathcal{K}^{[-1,0]}(\operatorname{proj} \Lambda)$ with $[G] = \mathbf{g'}$;
- (2) there is a non-presilting object H_i in $\mathcal{K}^{[-1,0]}(\operatorname{proj} \Lambda)$ with $[H_i] = \mathbf{h}_i$ satisfying some properties (e.g. $H^0(H_i)$ is a brick);
- (3) Hom_{$K^b(\text{proj }\Lambda)$} $(X, \Sigma Y) = 0$ for X, Y = G or H_i .
- Let G' be the *Bongartz co-completion* of G, defined by the triangle

$$\Lambda \xrightarrow{f} G'' \to G' \to \Sigma \Lambda,$$

where *f* is a left (add *G*)-approximation of Λ . Then $G \oplus G' \in 2$ -silt Λ .

Lemma

For $d, m_1, \ldots, m_s \in \mathbb{Z}_{>0}$, the object $G'' = G^d \oplus \operatorname{Cyl}_{\Sigma H_s}^{m_s} \cdots \operatorname{Cyl}_{\Sigma H_1}^{m_1} G'$ is presilting in $K^{[-1,0]}(\operatorname{proj} \Lambda)$ with $[G''] = d[G] + [G'] + \sum_{i=1}^s m_i d_i[H_i]$, where $d_i = \dim \operatorname{Hom}_{K^b(\operatorname{proj} \Lambda)}(G', \Sigma H_i)$.

Taking $d = md_1 \cdots d_s$ and $m_i = a_i d/d_i$ for any $m \in \mathbb{Z}_{>0}$, Lemma gives a presilting object G'' with $[G''] = md\mathbf{g} + [G']$. On the other hand,

$$\mathbf{q} \in \overline{\left| \begin{array}{c} \mathbf{R} \right|} \mathbb{R} \circ (md\mathbf{q} + [G'])$$

,

It was proved by [A, DIJ] that the following are equivalent: (1) $\mathcal{F}^{\mathbf{g}}(\Lambda) = \mathbb{R}^{n}$; (2) #2-silt $\Lambda < \infty$.

This naturally leads to study the algebras Λ satisfying $\mathcal{F}^{g}(\Lambda) = \mathbb{R}^{n}$.

Main result

- The algebra Λ is tame if for any dimension vector **d**, there are k[t]- Λ -bimodules $M_1, \ldots, M_{m(d)}$ such that
- (1) each M_i is free of finite rank as a k[t]-module;
- (2) all but finitely many indecomposable Λ -modules of dimension vector **d** have the form $k[t]/(t \lambda) \otimes_{k[t]} M_i$ with $i \in \{1, ..., m(\mathbf{d})\}$ and $\lambda \in k$.

Main theorem

Tame algebras Λ satisfy $\mathcal{F}^{g}(\Lambda) = \mathbb{R}^{n}$.

Remark that there is a non-tame algebra Λ satisfying $\overline{\mathcal{F}^{g}(\Lambda)} = \mathbb{R}^{n}$.

$$\mathbf{g} \in \bigcup_{m \ge 1} \mathbb{R}_{\ge 0}(m \mathbf{g} + [\mathbf{G}]).$$

Therefore, $\mathbf{g} \in \subseteq \mathcal{F}^{\mathbf{g}}(\Lambda)$. This finishes the proof of the main theorem.

References

- [AIR] T. Adachi, O. Iyama and I. Reiten, *τ*-*tilting theory*, Compos. Math. Vol. 150, 3 (2014) 415–452.
- [A] S. Asai, *The wall-chamber structures of the real Grothendieck groups*, preprint arXiv:1905.02180.
- [DIJ] L. Demonet, O. Iyama and G. Jasso, *τ*-*tilting finite algebras, bricks, and g-vectors*, Int. Math. Res. Not. IMRN 2019, No. 3 (2019) 852–892.
- [GLS] C. Geiss, D. Labardini-Fragoso and J. Schröer, *Schemes of modules over gentle algebras and laminations of surfaces*, preprint arXiv:2005.01073.
- [PY] P. Plamondon and T. Yurikusa, with an appendix by B. Keller, *Tame algebras have dense g-vector fans*, preprint arXiv:2007.04215.