Compatibility degree of cluster complexes

Yasuaki Gyoda (Graduate School of Mathematics, Nagoya University) joint work with Changjian Fu (Department of Mathematics, Sichuan University)

Introduction	Motivation
I will introduce a new function on the set of pairs of cluster variables, which we call the compatibility degree (of cluster complexes). The compatibility degree which is dealt in this poster is a generalization of the "classical" compatibility degree introduced by Fomin and Zelevinsky. Our compatibility degree is defined by using the principal coefficients.	How do we define the compatibility degree of cluster complexes in terms of cluster algebra? $\Phi_{\geq -1} \xleftarrow{\text{bijection}} \mathcal{X}(Q)$ cl. compatibility deg. mutation structure
Previous Studies	$\downarrow \qquad \qquad$
Definition	
 Quiver Mutation: Let Q be a quiver without loops and 2-cycles and j be a vertex of Q. The quiver mutation µ_j(Q) at j is obtained from Q as follows: 1) reverse all arrows incident with j. 	Our Result (Fu-G., 2019)
	For any Q , the " <i>compatibility degree</i> " $(\cdot \ \cdot) : \mathcal{X}(Q) \times \mathcal{X}(Q) \to \mathbb{Z}_{\geq 0}$ has the

- 2) for each subquiver $i \longrightarrow j \longrightarrow k$, add new arrow $i \longleftarrow k$.
- 3) remove all 2-cycles.

Seed, Cluster:

- A seed is a pair (Q, \mathbf{x}) of a quiver $Q = (Q_0, Q_1, s, t)$ and a cluster \mathbf{x} , where
- \blacksquare Q is a quiver with n vertices;

• $\mathbf{x} = (x_i)_{i \in Q_0}$ is a free generating sets of the rational function field in n indeterminates. Seed Mutation:

For a vertex j of Q, the seed mutation $\mu_j(Q, \mathbf{x})$ is (Q', \mathbf{x}') , where • $Q' = \mu_j(Q);$

 $\bullet \ x'_i = \begin{cases} x_i & \text{if } i \neq j \\ \prod_{i \to j \in Q} x_i^{b_{ij}} + \prod_{j \to k \in Q} x_k^{b_{jk}} & \text{where } b_{ij} \text{ is the number of arrows from } i \text{ to } j. \end{cases}$

Example:
$$1 \longrightarrow 2 \longrightarrow 3 \xrightarrow{\mu_2} 1 \xleftarrow{2} 3$$

 $(x_1, x_2, x_3) \longrightarrow (x_1, \frac{x_1 + x_3}{x_2}, x_3)$

Definition

Let $\mathcal{X}(Q)$ be a set of all cluster variables, which are elements in clusters, obtained by mutations starting from (Q, \mathbf{x}) . A *cluster complex* $\Delta(Q)$ is the simplicial complex whose ground set is $\mathcal{X}(Q)$ and whose simplices are some elements in a cluster. For $x, x' \in \mathcal{X}(Q)$,

following property:

- for any cluster variables x, x', we have $(x \parallel x') = (x' \parallel x)$,
- for cluster variables x, x', there exists a cluster x such that both x and x' is in **x** if and only if $(x \parallel x') = (x' \parallel x) = 0$,
- if Q is a bipartite Dynkin quiver, then $(\cdot \parallel \cdot)$ corresponds with the classical compatibility degree through the canonical bijection between $\mathcal{X}(Q)$ and $\Phi_{>-1}$.

There are more properties of the compatibility degree which classical one has. In the rest of this poster, we introduce the construction of the compatibility degree.

Definition

- For (Q, \mathbf{x}) , we define $(Q, \overline{\mathbf{x}})$ as follows:
 - $\blacksquare \overline{Q}$ is a quiver whose vertex set is the union of all vertices $\{1, \ldots, n\}$ of Q and their copies $\{1^*, \ldots, n^*\}$ and whose arrow set is the union of all arrows of Qand each one arrow from i^* to i for any $i \in \{1, \ldots, n\}$.
 - **•** $\overline{\mathbf{x}}$ is a 2*n*-tuple $(x_1, \ldots, x_n, y_1, \ldots, y_n)$ of the rational function field in *n* indeterminates.

We define seeds with the *principal coefficient* at (Q, \mathbf{x}) as seeds which is given by mutating at elements in $\{1, \ldots, n\}$ repeatedly starting from $(Q, \overline{\mathbf{x}})$ (when we mutate $(Q, \overline{\mathbf{x}})$, we regard y_i as x_{i^*}).

Definition

Example: $Q = 1 \longrightarrow 2$, $\mathbf{x} = (x_1, x_2)$, Φ : A_2 type, $\Gamma_{\Phi} = 1 \longrightarrow 2$ $(x_1, x_2) \stackrel{1}{\mapsto} (\frac{x_2+1}{x_1}, x_2) \stackrel{2}{\mapsto} (\frac{x_2+1}{x_1}, \frac{x_1+x_2+1}{x_1x_2}) \stackrel{1}{\mapsto} (\frac{x_1+1}{x_2}, \frac{x_1+x_2+1}{x_1x_2}) \stackrel{2}{\mapsto} (\frac{x_1+1}{x_2}, x_1) \stackrel{1}{\mapsto} (x_2, x_1) \cdot \cdot,$

(For $\Delta(\Phi)$, see below.)

Definition

Let Φ be a finite root system, $\{\alpha_i\}_{i \in \{1,...,n\}}$ simple roots of Φ , and $\Phi_{\geq -1}$ the union of simple negative roots and positive roots of Φ . We define the (classical) compatibility degree

 $(\cdot \parallel \cdot) \colon \Phi_{>-1} \times \Phi_{>-1} \to \mathbb{Z}_{>0}$

- (1) Take seeds (Q_t, \mathbf{x}_t) containing cluster variable x and (Q_s, \mathbf{x}_s) containing cluster variable x'. We assume $x = x_{i:t}$ and $x' = x_{j:s}$.
- (2) Calculate the expansion of $x' = x_{j;s}$ by $\mathbf{x}_t = \{x_{1;t}, \ldots, x_{n;t}\}$. Here, we take the principal coefficient at (Q_t, \mathbf{x}_t) . We assume

$$x' = \frac{y_1^{f_1} \cdots y_n^{f_n} x_{1;t}^{a_1} \cdots x_{n;t}^{a_n} + \cdots}{x_{1;t}^{d_1} \cdots x_{n;t}^{d_n}}.$$

(3) Define the *compatibility degree* of x and x' as $(x \parallel x') = f_i$.

Example:
$$Q = 1 \longrightarrow 2$$
, $\mathbf{x} = (x_1, x_2)$. How to calculate $\left(\frac{x_2+1}{x_1} \middle| \left| \frac{x_1+1}{x_2} \right| \right)$:

$$1 \longrightarrow 2 \qquad \stackrel{\mu_1}{\mapsto} \qquad 1 \longleftarrow 2 \qquad \stackrel{\mu_2}{\mapsto} \qquad 1 \longrightarrow 2 \qquad \stackrel{\mu_1}{\mapsto} \qquad 1 \longleftarrow 2 \\ (x_1, x_2) \qquad \mapsto \qquad \left(\frac{x_2+1}{x_1}, x_2\right) \qquad \mapsto \qquad \left(\frac{x_2+1}{x_1}, \frac{x_1+x_2+1}{x_1x_2}\right) \qquad \mapsto \qquad \left(\frac{x_1+1}{x_2}, \frac{x_1+x_2+1}{x_1x_2}\right)$$

$$\xrightarrow{\mu_1} 2 \xrightarrow{\mu_1} 1 \xleftarrow{2} 2 \xrightarrow{\mu_2} 1 \xrightarrow{\mu_2} 1 \xrightarrow{\mu_2} 1 \xrightarrow{\mu_1} 1 \xleftarrow{2} 1 \xrightarrow{\mu_1} 1 \xleftarrow{2} 1 \xrightarrow{\mu_2} 1 \xrightarrow{\mu_1} 1 \xrightarrow{\mu_2} 2 \xrightarrow{\mu_2} \xrightarrow{\mu_2}$$

 $(x'_1, x'_2) \longrightarrow (x'_1, \frac{y_2 + x'_1}{x'_2}) \longrightarrow (\frac{y_1 y_2 x'_2 + y_2 + x_1}{x'_1 x'_2}, \frac{y_2 + x'_1}{x'_2})$ Therefore, we have $\left(\frac{x_2+1}{x_1} \Big| \Big| \frac{x_1+1}{x_2}\right) = 1$. On the other hand, the classical one of

as the following condition: $(-\alpha_i \parallel \beta) = (\beta \parallel -\alpha_i) = \max([\beta : \alpha_i], 0),$ • $(\alpha \parallel \beta) = (s_{\pm}(\alpha) \parallel s_{\pm}(\beta))$ (except for the above case) where $[\beta: \alpha_i]$ is the coefficient integer of α_i in the expansion of β , s_+, s_- are compositions of reflections of all simple roots that are not adjacent to each other. In particular, when $(\alpha \parallel \beta) = 0$, we say that α and β are *compatible*. • We define a *generalized associated associated* of Φ as a simplicial complex. whose simplices are sets of mutually compatible roots in $\Phi_{>-1}$.

Theorem (Fomin-Zelevinsky, 2003)

If Q is bipartite quiver and the Dynkin graph $\Gamma(\Phi)$ of Φ is a graph of Q, then $\Phi_{\geq -1} \to \mathcal{X}(Q)$, $\sum d_i \alpha_i \mapsto \frac{f(x_1, \dots, x_n)}{\prod x_i^{d_i}}$ is a bijection, and it induces $\Delta(\Phi) \simeq \Delta(Q).$

corresponding roots is

$(\alpha_1 \parallel \alpha_2) = (s_1(-\alpha_1) \parallel s_1(\alpha_1 + \alpha_2)) = (-\alpha_1 \parallel \alpha_1 + \alpha_2) = 1.$

Therefore, the compatibility degree corresponds with classical one.

Remark

In [FG19], cluster algebras of *skew-symmetrizable* type are also dealt, and the compatibility degree of cluster complexes of skew-symmetrize type is also given like as in the same way as of quiver type.

References

[FZ] Fomin, S., Zelevinsky, A., *Cluster algebras II: Finite type classification*. Invent. math. 154, 63–121 (2003) [FG19] Fu, C., Gyoda, Y., Compatibility degree of cluster complexes. arXiv:1911.07193.