Simple-minded systems in cluster categories and singularity categories

Haibo Jin Nagoya University d16002n@math.nagoya-u.ac.jp

Simple-minded systems in cluster categories

In this poster, we study a class of simple-like objects called simple-minded systems in cluster categories and singularity categories.

Simple-like objects

Derived categories

Simple-minded collections

Cluster categories

Simple-minded systems

k: algebraically closed field. A : finite dimensional k-algebra.

In derived category $\mathcal{D}^{b}(A)$, the set S_{A} of simple A-modules satisfies:

d-self-injective differential graded (dg) algebras

Recall that for a finite dimensional self-injective algebra, **Proposition** shows that simple modules forms a 1-SMS in singularity category. We introduce *d*-self-injective dg algebra to generalize it.

Let A be a dg k-algebra and $d \ge 1$. $DA := \operatorname{Hom}_k(A, k)$.

• A: *d*-self-injective $\stackrel{\text{Def.}}{\iff} A^{>0} = 0$, dimH[•](A) < ∞ and $A \cong DA[d-1]$ in $\mathcal{D}(A)$. • The singularity category $\mathcal{D}_{sg}(A)$ is defined as $\mathcal{D}^{b}(A)/\operatorname{per}(A)$.

Example

 $A = k[X]/(X^{n+1}), n \ge 1$: dg k-algebra with deg $X = -d \le 0$ and 0 differential \implies

• (Schur's lemma) $\dim_k \operatorname{Hom}_{\mathcal{D}^{b}(A)}(X, Y) = \delta_{X,Y}, \forall X, Y \in S_A.$ • (negative extension vanishing) $\operatorname{Hom}_{\mathcal{D}^{b}(A)}(X, Y[-i]) = 0, \forall X, Y \in S_{A} \text{ and } i \geq 1.$ • (generating condition) $\mathcal{D}^{b}(A) = \operatorname{Filt}(S_{A}[-j] \mid j \in \mathbb{Z}).$

A set S in $\mathcal{D}^{b}(A)$ satisfies the conditions above is called a simple-minded collection (or SMC).

The notion of simple-minded system is analogous to SMC. It has been study by Riedtmann, Koenig-Liu, Dugas, Coelho Simões-Pauksztello,

 \mathcal{T} : a k-linear triangulated category. d: be a positive integer.

A set $S \subset \text{indec}\mathcal{T}$ is called a *d*-simple-minded system (or *d*-SMS) $\stackrel{\text{Def.}}{\iff}$ • dim_k Hom_{\mathcal{T}} $(X, Y) = \delta_{X,Y}, \forall X, Y \in S.$ • Hom_{\mathcal{T}} $(X, Y[-i]) = 0, \forall X, Y \in S \text{ and } d-1 \ge i \ge 1.$ • $\mathcal{T} = \mathsf{Filt}(S[-j] \mid 0 \le j \le d-1).$

Proposition [Riedtmann]

A: finite-dimensional self-injective k-algebra \implies

• {simple A-modules} is a 1-SMS in the singularity category $\mathcal{D}_{sg}(A)$.

Remark. *d*-SMSs often appear naturally in (-d)-Calabi-Yau (CY) triangulated categories.

• The (-d)-cluster category $\mathcal{C}_{-d}(kQ)$ of kQ is defined as the orbit category $\mathcal{D}^{b}(kQ)/\nu[d]$ for a Dynkin quiver Q, where ν is the Serre functor.

• $C_{-d}(kQ)$ is a (-d)-CY triangulated category by Keller [K].

```
• A is (nd + 1)-self-injective.
```

The natural morphism $A \to H^0(A)$ of dg algebras induces a fully faithful functor mod $H^0(A) \to$ $\mathcal{D}^{b}(A)$. We define simple dg A-modules as the image of simple $\mathrm{H}^{0}(A)$ -modules (concentrated in degree 0).

Theorem B [J1]

A: d-self-injective dg k-algebra \Longrightarrow

• {simple dg A-modules} is a d-SMS in $\mathcal{D}_{sg}(A)$.

Let A be a d-self-injective dg k-algebra with $A \cong DA[d-1]$ in $\mathcal{D}(A \otimes_k A^{\mathrm{op}})$. Then $\mathcal{D}_{\mathrm{sg}}(A)$ is (-d)-CY and this category is often equivalent to a cluster category.

Cluster categories and singularity categories

Q : Dynkin quiver. $A = kQ \oplus D(kQ)[d-1], d \ge 1$: trivial extension dg k-algebra with 0 differential \Rightarrow

• $\mathcal{D}_{sg}(A) \simeq \mathcal{C}_{-d}(kQ)$ by Keller [K].

Our main theorem gives a converse of Theorem B in the following sense.

Main Theorem [J1]

C: d-SMS in $\mathcal{C}_{-d}(kQ) \Longrightarrow$

• \exists a *d*-self-injective dg *k*-algebra *A* and a triangle equivalence $F : \mathcal{D}_{sg}(A) \xrightarrow{\simeq} \mathcal{C}_{-d}(kQ)$ such that $\{\text{simple dg } A \text{-modules}\} = C.$

In the proof of Main Theorem, we need the following reduction process introduced in [J2].

Simple-minded reductions of triangulated categories

Example

Let $Q := 1 \rightarrow 2 \rightarrow 3$.

• The Auslander-Reiten (AR) quiver of $\mathcal{D}^{b}(kQ)$ is $\mathbb{Z}Q$.

• The AR quiver of $C_{-1}(kQ)$ is the residue quiver $\mathbb{Z}Q/\nu[1]$. And there are five 1-SMSs in $\mathcal{C}_{-1}(kQ)$:

Theorem A [IJ]

 $C_d^+(W)$

The number of d-SMSs in $C_{-d}(kQ)$ is the positive Fuss-Catalan number:

280

$$C_d^+(W) := \prod_{i=1}^n \frac{dh + e_i - 1}{e_i + 1},$$

where n is the rank of W, h is its Coxeter number, and e_1, \ldots, e_n are its exponents. The following tables give the specific formula of $C_d^+(W)$.

 \mathcal{T} : Krull-Schmidt triangulated category. R : pre-SMC (SMC without generating condition) of \mathcal{T} . The SMC reduction of \mathcal{T} w.r.t R is the Verdier quotient $\mathcal{U} = \mathcal{T} / \operatorname{thick}(R)$.

Example

- $Q := 1 \rightarrow 2 \rightarrow 3. A := kQ \oplus D(kQ)[d] \Longrightarrow$
- $\{S_1\}$ is a pre-SMC of $\mathcal{D}^{b}(A)$.
- $\mathcal{U} = \mathcal{D}^{b}(A)/\operatorname{thick}(S_{1})$ is triangle equivalent to $\mathcal{D}^{b}(A')$, where $A' = kQ' \oplus \mathcal{D}(kQ')[d]$ with $Q' = 2 \rightarrow 3.$

Basic property of SMC reduction [J2]

Under mild conditions, there is a bijection

{SMCs in \mathcal{T} contain R} $\stackrel{1:1}{\longleftrightarrow}$ {SMCs in \mathcal{U} }.

• Coelho Simões and Pauksztello introduced SMS reduction in negative CY triangulated category.

• SMS reduction is the shadow of SMC reduction.

 $A = kQ \oplus D(kQ)[d]$ for a Dynkin quiver A. R : simple dg A-module \Longrightarrow There exists an idempotent $e \in A$ such that the following maps commute.

This diagram plays an important role in the proof of Main Theorem.

Q	A_n	D_n		E_6
$C_d^+(W$	$V) \left \frac{1}{n+1} \binom{(d+1)n+d-1}{n} \right $	$\frac{(2d+1)n-2d-2}{n} \Big(\begin{pmatrix} n \\ n \end{pmatrix} \Big) = \frac{(2d+1)n-2d-2}{n} \Big(\begin{pmatrix} n \\ n \end{pmatrix} \Big) = \frac{(2d+1)n-2d-2}{n} \Big(\begin{pmatrix} n \\ n \end{pmatrix} \Big) = \frac{(2d+1)n-2d-2}{n} \Big(\begin{pmatrix} n \\ n \end{pmatrix} \Big) = \frac{(2d+1)n-2d-2}{n} \Big(\begin{pmatrix} n \\ n \end{pmatrix} \Big) = \frac{(2d+1)n-2d-2}{n} \Big(\begin{pmatrix} n \\ n \end{pmatrix} \Big) = \frac{(2d+1)n-2d-2}{n} \Big(\begin{pmatrix} n \\ n \end{pmatrix} \Big) = \frac{(2d+1)n-2d-2}{n} \Big(\begin{pmatrix} n \\ n \end{pmatrix} \Big) = \frac{(2d+1)n-2d-2}{n} \Big(\begin{pmatrix} n \\ n \end{pmatrix} \Big) = \frac{(2d+1)n-2d-2}{n} \Big(\begin{pmatrix} n \\ n \end{pmatrix} \Big) = \frac{(2d+1)n-2d-2}{n} \Big(\begin{pmatrix} n \\ n \end{pmatrix} \Big) = \frac{(2d+1)n-2d-2}{n} \Big(\begin{pmatrix} n \\ n \end{pmatrix} \Big) = \frac{(2d+1)n-2d-2}{n} \Big(\begin{pmatrix} n \\ n \end{pmatrix} \Big) = \frac{(2d+1)n-2d-2}{n} \Big(\begin{pmatrix} n \\ n \end{pmatrix} \Big) = \frac{(2d+1)n-2d-2}{n} \Big(\begin{pmatrix} n \\ n \end{pmatrix} \Big) = \frac{(2d+1)n-2d-2}{n} \Big(\begin{pmatrix} n \\ n \end{pmatrix} \Big) = \frac{(2d+1)n-2d-2}{n} \Big(\begin{pmatrix} n \\ n \end{pmatrix} \Big) = \frac{(2d+1)n-2d-2}{n} \Big(\begin{pmatrix} n \\ n \end{pmatrix} \Big) = \frac{(2d+1)n-2d-2}{n} \Big(\begin{pmatrix} n \\ n \end{pmatrix} \Big) = \frac{(2d+1)n-2d-2}{n} \Big(\begin{pmatrix} n \\ n \end{pmatrix} \Big) = \frac{(2d+1)n-2d-2}{n} \Big(\begin{pmatrix} n \\ n \end{pmatrix} \Big) = \frac{(2d+1)n-2d-2}{n} \Big(\begin{pmatrix} n \\ n \end{pmatrix} \Big) = \frac{(2d+1)n-2d-2}{n} \Big(\begin{pmatrix} n \\ n \end{pmatrix} \Big) = \frac{(2d+1)n-2d-2}{n} \Big(\begin{pmatrix} n \\ n \end{pmatrix} \Big) = \frac{(2d+1)n-2d-2}{n} \Big(\begin{pmatrix} n \\ n \end{pmatrix} \Big) = \frac{(2d+1)n-2d-2}{n} \Big(\begin{pmatrix} n \\ n \end{pmatrix} \Big) = \frac{(2d+1)n-2d-2}{n} \Big(\begin{pmatrix} n \\ n \end{pmatrix} \Big) = \frac{(2d+1)n-2d-2}{n} \Big(\begin{pmatrix} n \\ n \end{pmatrix} \Big) = \frac{(2d+1)n-2d-2}{n} \Big(\begin{pmatrix} n \\ n \end{pmatrix} \Big) = \frac{(2d+1)n-2d-2}{n} \Big(\begin{pmatrix} n \\ n \end{pmatrix} \Big) = \frac{(2d+1)n-2d-2}{n} \Big(\begin{pmatrix} n \\ n \end{pmatrix} \Big) = \frac{(2d+1)n-2d-2}{n} \Big(\begin{pmatrix} n \\ n \end{pmatrix} \Big) = \frac{(2d+1)n-2d-2}{n} \Big(\begin{pmatrix} n \\ n \end{pmatrix} \Big) = \frac{(2d+1)n-2d-2}{n} \Big(\begin{pmatrix} n \\ n \end{pmatrix} \Big) = \frac{(2d+1)n-2d-2}{n} \Big(\begin{pmatrix} n \\ n \end{pmatrix} \Big) = \frac{(2d+1)n-2d-2}{n} \Big(\begin{pmatrix} n \\ n \end{pmatrix} \Big) = \frac{(2d+1)n-2d-2}{n} \Big(\begin{pmatrix} n \\ n \end{pmatrix} \Big) = \frac{(2d+1)n-2d-2}{n} \Big(\begin{pmatrix} n \\ n \end{pmatrix} \Big) = \frac{(2d+1)n-2d-2}{n} \Big(\begin{pmatrix} n \\ n \end{pmatrix} \Big) = \frac{(2d+1)n-2d-2}{n} \Big(\begin{pmatrix} n \\ n \end{pmatrix} \Big) = \frac{(2d+1)n-2d-2}{n} \Big(\begin{pmatrix} n \\ n \end{pmatrix} \Big) = \frac{(2d+1)n-2d-2}{n} \Big(\begin{pmatrix} n \\ n \end{pmatrix} \Big) = \frac{(2d+1)n-2d-2}{n} \Big(\begin{pmatrix} n \\ n \end{pmatrix} \Big) = \frac{(2d+1)n-2d-2}{n} \Big(\begin{pmatrix} n \\ n \end{pmatrix} \Big) = \frac{(2d+1)n-2d-2}{n} \Big(\begin{pmatrix} n \\ n \end{pmatrix} \Big) = \frac{(2d+1)n-2d-2}{n} \Big(\begin{pmatrix} n \\ n \end{pmatrix} \Big) = \frac{(2d+1)n-2d-2}{n} \Big(\begin{pmatrix} n \\ n \end{pmatrix} \Big) = \frac{(2d+1)n-2d-2}{n} \Big(\begin{pmatrix} n \\ n \end{pmatrix} \Big) = \frac{(2d+1)n-2d-2}{n} \Big(\begin{pmatrix} n \\ n \end{pmatrix} \Big) = \frac{(2d+1)n-2d-2}{n} \Big(\begin{pmatrix} n \\ n \end{pmatrix} \Big) = \frac{(2d+1)n-2d-2}{n} \Big(\begin{pmatrix} n \\ n \end{pmatrix} \Big) = \frac{(2d+1)n-2d-2}{n} \Big(\begin{pmatrix} n \\ n \end{pmatrix} \Big) = \frac{(2d+1)n-2d-2}{n} \Big(\begin{pmatrix} n \\ n \end{pmatrix} \Big) = \frac{(2d+1)n-2d-2}{n} \Big(\begin{pmatrix} n \\ n \end{pmatrix} \Big) = \frac{(2d+1)n-2d-2}{n} \Big(\begin{pmatrix} n \\ n \end{pmatrix} \Big) = (2d+1)n$	$\binom{n-1}{n-1}\binom{d+1}{-1}$	$\boxed{\frac{d(2d+1)(3d+1)(4d+1)(6d+5)(12d+7)}{30}}$
Q	E_7		E_8	
$O^{+}(\mathbf{W})$	d(3d+1)(3d+2)(9d+2)(9d+4)(9d+5)(9d+8)		d(3d+1)(5d+1)(5d+2)(5d+3)(15d+8)(15d+11)(15d+14)	

1344

References

[IJ] Osamu Iyama, Haibo Jin, arXiv:2002.09952.

[J1] Haibo Jin, Adv. Math. 374 (2020).

[J2] Haibo Jin, arXiv:1907.05114.

[K] Bernhard Keller, On triangulated orbit categories. Doc. Math. 10 (2005), 551–581.