Cluster categories from Calabi-Yau algebras

Norihiro Hanihara (Nagoya University)

Subject: Cluster category

A differential graded (dg) algebra Λ over a field k is n-Calabi-Yau (CY) if

- Λ is homologically smooth, that is, $\Lambda \in \operatorname{per} \Lambda^{e}$ where $\Lambda^{e}=\Lambda^{o p} \otimes_{k} \Lambda$.
- There is an isomorphism $\operatorname{RHom}_{\Lambda^{e}}\left(\Lambda, \Lambda^{e}\right)[n] \simeq \Lambda$ in $\mathcal{D}\left(\Lambda^{e}\right)$.

Theorem-Definition (Amiot, [1])

Let Λ be a $(d+1)-\mathrm{CY}$ dg algebra concentrated in (cohomological) degree ≤ 0 such that $H^{0} \wedge$ is finite dimensional, and set

$$
\mathcal{C}(\Lambda):=\operatorname{per} \Lambda / \mathcal{D}^{b}(\Lambda)
$$

Then this category is d-CY, and $\Lambda \in \mathcal{C}(\Lambda)$ is a d-cluster tilting object.
We call $\mathcal{C}(\Lambda)$ the cluster cateory of Λ.
Note:

- per $\Lambda=$ perfect derived category of Λ.
- $\mathcal{D}^{b}(\Lambda)=\{\mathrm{dg} \Lambda$-modules of finite dimensional total cohomology $\}$
- $\mathcal{D}^{b}(\Lambda) \subset$ per Λ by smoothness of Λ.

Popular examples (Keller, [3])

- The Calabi-Yau completion (or the derived preprojective algebra) $\Pi_{d+1}(A)$ is $(d+1)$-CY. attatched to a (τ_{d}-finite, finite dimensional) algebra A. The associated cluster category $\mathcal{C}\left(\Pi_{d+1}(A)\right)=: \mathcal{C}_{d}(A)$ is the d-cluster category of $A ; d$-CY with a d-cluster tilting object. There is an embedding $\mathcal{D}^{b}(\bmod A) / \nu_{d} \hookrightarrow \mathcal{C}_{d}(A)$ for $\nu_{d}=-\otimes_{A}^{L} D A[-d]$.
- The Ginzburg dg algebra $\Gamma(Q, W)$ is 3-CY.
attatched to a (Jacobi-finite) quiver with potential
The associated cluster category $\mathcal{C}(\Gamma(Q, W))=: \mathcal{C}_{(Q, W)}$ is cluster category for quiver with potential; 2-CY with a 2-cluster titling object.
The definition of general cluster category is somehow abstract.
Aim
Give some descriptions of $\mathcal{C}(\Lambda)$ for some class of CY dg algebras Λ.

Results

We first construct examples of CY dg algebras from ordinary (non-dg) CY algebras.
Recall: a graded (non-dg) algebra R is n-CY of a-invariant a if

- R is homologically smooth, that is, $R \in \operatorname{per}^{\mathbb{Z}} R^{e}$.
- There is an isomorphism $\operatorname{RHom}_{R^{e}}\left(R, R^{e}\right)(a)[n] \simeq R$ in $\mathcal{D}\left(\operatorname{Mod}^{\mathbb{Z}} R^{e}\right)$

Example (of non-dg Calabi-Yau algebras)

- Polynomial rings
- Skew group rings
- Preprojective algebras
- Jacobian algebras

We view a graded algebra R as a dg algebra $R^{d g}$ with 0 differentials.

Proposition

Let R be a graded n-CY algebra of a-invariant a. Then $R^{d g}$ is sign-twisted $(n+a)-\mathrm{CY}$.

Example

Let $R=k\left[x_{0}, \ldots, x_{d}\right]$ with $\operatorname{deg} x_{i}=-a_{i}<0$.

- As a graded algebra, this is $(d+1)$-CY of a-invariant $a=\sum_{i=0}^{d} a_{i}$.
- As a dg algebra $R^{d g}$, this is $(d+a+1)-\mathrm{CY}$.

Toward our main result,

Input

A negatively graded algebra

$$
R=\bigoplus_{i \leq 0} R_{i}
$$

which is $(d+1)$-CY of a-invariant a, and each R_{i} is finite dimensional
An important category associated to a graded algebra R is
$\mathrm{qgr} R:=\bmod ^{\mathbb{Z}} R / \mathrm{fl}^{\mathbb{Z}} R=\{$ finitely generated graded modules $\} /\{$ finite length graded modules $\}$.
Remark:

- When R is generated in degree -1 , then $\mathrm{qgr} R=\operatorname{coh}(\operatorname{Proj} R)$, the category of coherent sheaves over the projective scheme $\operatorname{Proj} R$.
- qgr R is therefore called the non-commutative projective scheme (Artin-Zhang).

Define

$$
\begin{array}{ll}
T=R \oplus \cdots \oplus R(-(a-1)) & : \text { tilting bundle on qgr } R \text { (see below), } \\
A=\operatorname{End}_{\mathrm{qgr} R}(T) & : \text { finite dimensional algebra, } \\
U=\operatorname{Hom}_{\mathrm{qgr}} R(T, T(-1)) & :(A, A) \text {-bimodule, } \\
B=A \oplus U & : \text { trivial extension algebra. }
\end{array}
$$

Notes:

- When $R=k\left[x_{0}, \ldots, x_{d}\right]$ with $\operatorname{deg} x_{i}=-1$, then $\operatorname{qgr} R=\operatorname{coh} \mathbb{P}^{d}$ and T is Beilinson's tilting bundle $\mathcal{O} \oplus \cdots \oplus \mathcal{O}(d)$ on \mathbb{P}^{d}. The above T is its non-commutative analogue (Minamoto-Mori, [4]), and we have a triangle equivalence $\mathcal{D}^{b}(\operatorname{qgr} R) \simeq \mathcal{D}^{b}(\bmod A)$.
- It is easy to see B is d-Gorenstein, i.e. $\operatorname{inj} . \operatorname{dim} B \leq d$ (Minamoto-Yamaura).

Main Theorem
 There exists an embedding and a triangle equivalence
 $$
\mathcal{D}^{b}(\operatorname{qgr} R) /(-1)[1] C \longrightarrow \mathcal{C}\left(R^{d g}\right) \simeq \mathcal{D}_{s g}(B) .
$$

Proof: The functor taking total complexes Tot: $\mathcal{D}^{b}\left(\bmod ^{\mathbb{Z}} R\right) \rightarrow \operatorname{per} R^{d g}$ induces the first embedding. We use quasi-equivalence of $d g$ orbit categories to show the second equivalence.

Remark: in terms of finite dimensional algebra A
We can write the orbit category $\mathcal{D}^{b}(\mathrm{qgr} R) /(-1)[1]$ in terms of A.

- Comparison of Serre functors shows
$\overbrace{(-1)}^{(a)[d]} \overbrace{D^{b}(\operatorname{qgr} R)}^{\sim} \overbrace{\nu_{d}^{-1 / a}}^{\nu=-\otimes_{A}^{L} D A}$

Therefore we define $\nu_{d}^{-1 / a}$ as the automorphism of $\mathcal{D}^{b}(\bmod A)$ corresponding to (-1) on $\mathcal{D}^{b}(\operatorname{qgr} R)$, so that $\mathcal{D}^{b}(\operatorname{qgr} R) /(-1)[1] \simeq \mathcal{D}^{b}(\bmod A) / \nu_{d}^{-1 / a}[1]$.

- We can formally write $\nu_{d}^{-1 / a}[1]=\nu_{d+a}^{-1 / a}$, and therefore have an embedding

$$
\mathcal{D}^{b}(\bmod A) / \nu_{d+a}^{-1 / a} \hookrightarrow \mathcal{C}\left(R^{d g}\right)
$$

This shows $\mathcal{C}\left(R^{d g}\right)$ is a " $\mathbb{Z} /$ aZ-quotient" of the $(d+a)$-cluster category $\mathcal{C}_{d+a}(A)$ of A.

Examples

We look at polynomial rings $R=k\left[x_{0}, \ldots, x_{d}\right]$ with various gradings.

Easiest Example

Let

$$
R=k[x, y] \text { with } \operatorname{deg} x=\operatorname{deg} y=-1,
$$

which is bimodule 2-CY of a-invariant 2.

- By Proposition, $R^{d g}$ is sign-twisted 4-CY.
- The algebra $A=\operatorname{End}_{\mathrm{qgr}} R(T)=\operatorname{End}_{\mathbb{P}^{1}}(\mathcal{O} \oplus \mathcal{O}(1))$ is the Kronecker quiver

$$
0 \Longrightarrow 0 .
$$

- The 1-Gorenstein algebra $B=A \oplus U$ is presented by

with "commutativity relations" and " $u^{2}=0$ "
- By Main Theorem ,there exist equivalences of (twisted) 3-CY categories

$$
\mathcal{D}^{b}\left(\operatorname{coh} \mathbb{P}^{1}\right) /(1)[1]=\mathcal{D}^{b}(\operatorname{qgr} R) /(-1)[1] \simeq \mathcal{C}\left(R^{d g}\right) \simeq \mathcal{D}_{s g}(B)
$$

In general we have the following descriptions of A and B.

Proposition

Let $R=k\left[x_{0}, \ldots, x_{d}\right]$ with $\operatorname{deg} x_{i}=-a_{i}<0$ so that R is $(d+1)$-CY of a-invariant $a=\sum_{i=0}^{d} a_{i}$. Suppose that $\left(a_{0}, \ldots, a_{d}\right)$ is relatively prime and let G be the cyclic subgroup of $\operatorname{SL}_{d+1}(k)$ generated by $g=\operatorname{diag}\left(\zeta^{a_{0}}, \ldots, \zeta^{a_{d}}\right)$ for a primitive a-th root of unity ζ.
(1) The finite dimensional algebra A is presented by the quiver which is obtained from the McKay quiver of G by removing the arrows $i \rightarrow j$ with $i>j$, where i is the vertex corresponding to the representation $g \mapsto \zeta^{i}(0 \leq i \leq a-1)$ of G.
(2) The d-Gorenstein algebra B is presented by the quiver obtained by adding to the quiver of A the arrows $u: I \rightarrow I-1$ for each $1 \leq I \leq a-1$

Bigger Example

Let

$$
R=k[x, y, z] \text { with } \operatorname{deg} x=-1, \operatorname{deg} y=-1, \operatorname{deg} z=-3
$$

which is bimodule 3-CY of a-invariant 5 .

- By Proposition, the dg algebra $R^{d g}$ is $8-C Y$.
- The finite dimensional algebra $A=\operatorname{End}_{\mathrm{qgr} R}(R \oplus \cdots \oplus R(-4))$ is presented by the quiver below (with the vertex i in the above Proposition corresponding to the summand $R(-i)$)

with commutativity relations.
- The 2-Gorenstein algebra $B=A \oplus U$ is given by

with commutativity relations and $u^{2}=0$.
- By Main Theorem, there exists an embedding and an equivalence of 7-CY categories

$$
\mathcal{D}^{b}(\bmod A) / \nu_{7}^{-1 / 5}=\mathcal{D}^{b}(\operatorname{qgr} R) /(-1)[1] C \mathcal{C}\left(R^{d g}\right) \simeq \mathcal{D}_{s g}(B) .
$$

References
[1] C. Amiot, Cluster categories for algebras of global dimension 2 and quivers with potentional, Ann. Inst. Fourier, Grenoble 59, no. 6 (2009) 2525-2590.
[2] N. Hanihara, Cluster categories of formal DG algebras and singularity categories, arXiv:2003.7858.
[3] B. Keller, Deformed Calabi-Yau completions, J. Reine Angew. Math. 654 (2011) 125-180
[4] H. Minamoto and I. Mori, The structure of AS-Gorenstein algebras, Adv. Math. 226 (2011) 4061-4095.

