Cluster categories from Calabi-Yau algebras

Norihiro Hanihara (Nagoya University)

Subject: Cluster category

A differential graded (dg) algebra Λ over a field k is n-Calabi-Yau (CY) if

- Λ is homologically smooth, that is, $\Lambda \in \text{per } \Lambda^e$ where $\Lambda^e = \Lambda^{op} \otimes_k \Lambda$.
- There is an isomorphism $\operatorname{RHom}_{\Lambda^e}(\Lambda,\Lambda^e)[n] \simeq \Lambda$ in $\mathcal{D}(\Lambda^e)$.

Theorem-Definition (Amiot, [1])

Let Λ be a (d+1)-CY dg algebra concentrated in (cohomological) degree ≤ 0 such that $H^0\Lambda$ is finite dimensional, and set

 $\mathcal{C}(\Lambda) := \operatorname{per} \Lambda / \mathcal{D}^b(\Lambda).$

Then this category is *d*-CY, and $\Lambda \in \mathcal{C}(\Lambda)$ is a *d*-cluster tilting object. We call $\mathcal{C}(\Lambda)$ the cluster cateory of Λ .

Note:

- per Λ =perfect derived category of Λ.
- $\mathcal{D}^{b}(\Lambda) = \{ dg \Lambda \text{-modules of finite dimensional total cohomology} \}$.
- $\mathcal{D}^{b}(\Lambda) \subset \text{per } \Lambda$ by smoothness of Λ .

Popular examples (Keller, [3])

- The Calabi-Yau completion (or the derived preprojective algebra) $\Pi_{d+1}(A)$ is (d+1)-CY. attatched to a (au_d -finite, finite dimensional) algebra A.
 - The associated cluster category $C(\Pi_{d+1}(A)) =: C_d(A)$ is the *d*-cluster category of *A*; *d*-CY with a *d*-cluster tilting object. There is an embedding $\mathcal{D}^b(\text{mod } A)/\nu_d \hookrightarrow C_d(A)$ for $\nu_d = -\bigotimes_A^L DA[-d]$.
- The Ginzburg dg algebra $\Gamma(Q, W)$ is 3-CY
- attatched to a (Jacobi-finite) quiver with potential
 - The associated cluster category $C(\Gamma(Q, W)) =: C_{(Q,W)}$ is cluster category for quiver with potential; 2-CY with a 2-cluster titling object.

The definition of general cluster category is somehow abstract.

Aim

Give some descriptions of $\mathcal{C}(\Lambda)$ for some class of CY dg algebras Λ .

Results

We first construct examples of CY dg algebras from ordinary (non-dg) CY algebras. Recall: a graded (non-dg) algebra R is n-CY of a-invariant a if

- *R* is homologically smooth, that is, $R \in \text{per}^{\mathbb{Z}} R^e$.
- There is an isomorphism $\operatorname{RHom}_{R^e}(R, R^e)(a)[n] \simeq R$ in $\mathcal{D}(\operatorname{Mod}^{\mathbb{Z}} R^e)$.

Example (of non-dg Calabi-Yau algebras)

- Polynomial rings.
- Skew group rings
- Preprojective algebras.
- Jacobian algebras

We view a graded algebra R as a dg algebra R^{dg} with 0 differentials.

Proposition

Let R be a graded n-CY algebra of a-invariant a. Then R^{dg} is sign-twisted (n + a)-CY.

Example

Let $R = k[x_0, ..., x_d]$ with deg $x_i = -a_i < 0$.

- As a graded algebra, this is (d + 1)-CY of *a*-invariant $a = \sum_{i=0}^{d} a_i$.
- As a dg algebra R^{dg} , this is (d + a + 1)-CY.

Toward our main result,

Input

A negatively graded algebra

$$R = \bigoplus_{i \leq 0} R_i$$

which is (d + 1)-CY of *a*-invariant *a*, and each R_i is finite dimensional.

An important category associated to a graded algebra R is

 $\operatorname{qgr} R := \operatorname{mod}^{\mathbb{Z}} R / \operatorname{fl}^{\mathbb{Z}} R = \{ \operatorname{finitely generated graded modules} \} / \{ \operatorname{finite length graded modules} \}$

Remark: in terms of finite dimensional algebra A

We can write the orbit category $\mathcal{D}^{b}(\operatorname{qgr} R)/(-1)[1]$ in terms of A.

• Comparison of Serre functors shows

$$\begin{array}{ccc} {}^{(a)[d]} & \nu = - \otimes^L_A DA \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ \end{array} \right) ^{(a)[d]} & \xrightarrow{\nu = - \otimes^L_A DA} \\ & & & & & & \\ & & & & & & \\ \mathcal{D}^b(\operatorname{qgr} R) \xrightarrow{\simeq} \mathcal{D}^b(\operatorname{mod} A) \ . \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ \end{array} \right) ^{(a)[d]} & \xrightarrow{\nu = - \otimes^L_A DA} \\ & & & & & \\ \mathcal{D}^b(\operatorname{qgr} R) \xrightarrow{\simeq} \mathcal{D}^b(\operatorname{mod} A) \ . \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ \end{array} \right) ^{(a)[d]} & \xrightarrow{\nu = - \otimes^L_A DA} \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ \end{array} \right) ^{(a)[d]} & \xrightarrow{\nu = - \otimes^L_A DA} \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ \end{array} \right) ^{(a)[d]} & \xrightarrow{\nu = - \otimes^L_A DA} \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

Therefore we define $\nu_d^{-1/a}$ as the automorphism of $\mathcal{D}^b \pmod{A}$ corresponding to (-1) on $\mathcal{D}^{b}(\operatorname{qgr} R)$, so that $\mathcal{D}^{b}(\operatorname{qgr} R)/(-1)[1] \simeq \mathcal{D}^{b}(\operatorname{mod} A)/\nu_{d}^{-1/a}[1]$.

• We can formally write $\nu_d^{-1/a}[1] = \nu_{d+a}^{-1/a}$, and therefore have an embedding

$$\mathcal{D}^{b}(\operatorname{mod} A)/\nu_{d+a}^{-1/a} \hookrightarrow \mathcal{C}(R^{dg})$$

This shows $\mathcal{C}(R^{dg})$ is a " $\mathbb{Z}/a\mathbb{Z}$ -quotient" of the (d + a)-cluster category $\mathcal{C}_{d+a}(A)$ of A.

Examples

We look at polynomial rings $R = k[x_0, \ldots, x_d]$ with various gradings.

Easiest Example

Let

$$R = k[x, y]$$
 with deg $x = \text{deg } y = -1$,

which is bimodule 2-CY of a-invariant 2.

- By Proposition, R^{dg} is sign-twisted 4-CY.
- The algebra $A = \operatorname{End}_{\operatorname{qgr} R}(T) = \operatorname{End}_{\mathbb{P}^1}(\mathcal{O} \oplus \mathcal{O}(1))$ is the Kronecker quiver

• The 1-Gorenstein algebra $B = A \oplus U$ is presented by

$$\bigvee_{y}^{x} \circ , \quad xuy = yux, \ uxu = uyu = 0.$$

with "commutativity relations" and " $u^2 = 0$ ".

• By Main Theorem ,there exist equivalences of (twisted) 3-CY categories

$$\mathcal{D}^b(\operatorname{coh} \mathbb{P}^1)/(1)[1] = \mathcal{D}^b(\operatorname{qgr} R)/(-1)[1] \simeq \mathcal{C}(R^{dg}) \simeq \mathcal{D}_{sg}(B).$$

In general we have the following descriptions of A and B.

Proposition

Let $R = k[x_0, \ldots, x_d]$ with deg $x_i = -a_i < 0$ so that R is (d + 1)-CY of a-invariant $a = \sum_{i=0}^d a_i$. Suppose that (a_0, \ldots, a_d) is relatively prime and let G be the cyclic subgroup of $SL_{d+1}(k)$ generated by $g = \text{diag}(\zeta^{a_0}, \ldots, \zeta^{a_d})$ for a primitive *a*-th root of unity ζ .

- The finite dimensional algebra A is presented by the quiver which is obtained from the 1 McKay quiver of G by removing the arrows $i \rightarrow j$ with i > j, where i is the vertex corresponding to the representation $g \mapsto \zeta^i$ $(0 \le i \le a - 1)$ of G.
- The d-Gorenstein algebra B is presented by the quiver obtained by adding to the quiver of Athe arrows $u \colon I \to I-1$ for each $1 \leq I \leq a-1$

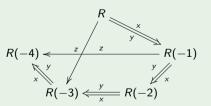
Bigger Example

Let

$$R = k[x, y, z]$$
 with deg $x = -1$, deg $y = -1$, deg $z = -3$,

which is bimodule 3-CY of a-invariant 5.

- By Proposition, the dg algebra R^{dg} is 8-CY.
- The finite dimensional algebra $A = \operatorname{End}_{\operatorname{qgr} R}(R \oplus \cdots \oplus R(-4))$ is presented by the quiver below (with the vertex i in the above Proposition corresponding to the summand R(-i))



with commutativity relations.

Remark

- When R is generated in degree -1, then qgr $R = \operatorname{coh}(\operatorname{Proj} R)$, the category of coherent sheaves over the projective scheme $\operatorname{Proj} R$.
- qgr R is therefore called the non-commutative projective scheme (Artin–Zhang).

Define

 $T = R \oplus \cdots \oplus R(-(a-1))$: tilting bundle on qgr R (see below), : finite dimensional algebra, $A = \operatorname{End}_{\operatorname{qgr} R}(T)$ $U = \operatorname{Hom}_{\operatorname{qgr} R}(T, T(-1))$: (A, A)-bimodule, $B = A \oplus U$: trivial extension algebra.

Notes

- When $R = k[x_0, ..., x_d]$ with deg $x_i = -1$, then qgr $R = \operatorname{coh} \mathbb{P}^d$ and T is Beilinson's tilting bundle $\mathcal{O} \oplus \cdots \oplus \mathcal{O}(d)$ on \mathbb{P}^d . The above T is its non-commutative analogue (Minamoto–Mori, [4]), and we have a triangle equivalence $\mathcal{D}^b(\operatorname{qgr} R) \simeq \mathcal{D}^b(\operatorname{mod} A)$.
- It is easy to see B is d-Gorenstein, i.e. inj. dim $B \le d$ (Minamoto-Yamaura).

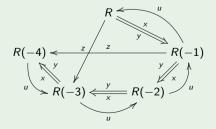
Main Theorem

There exists an embedding and a triangle equivalence

 $\mathcal{D}^{b}(\operatorname{qgr} R)/(-1)[1] \xrightarrow{\simeq} \mathcal{C}(R^{dg}) \xrightarrow{\simeq} \mathcal{D}_{sg}(B)$

Proof: The functor taking total complexes Tot: $\mathcal{D}^b(\mathsf{mod}^{\mathbb{Z}}R) \to \mathsf{per}\, R^{dg}$ induces the first embedding. We use quasi-equivalence of dg orbit categories to show the second equivalence.

- The 2-Gorenstein algebra $B = A \oplus U$ is given by



with commutativity relations and $u^2 = 0$.

• By Main Theorem, there exists an embedding and an equivalence of 7-CY categories

 $\mathcal{D}^{b}(\operatorname{mod} A)/\nu_{7}^{-1/5} = \mathcal{D}^{b}(\operatorname{qgr} R)/(-1)[1] \xrightarrow{\simeq} \mathcal{C}(R^{dg}) \xrightarrow{\simeq} \mathcal{D}_{sg}(B).$

References

- C. Amiot, Cluster categories for algebras of global dimension 2 and quivers with potentional, [1] Ann. Inst. Fourier, Grenoble 59, no.6 (2009) 2525-2590.
- [2] N. Hanihara, Cluster categories of formal DG algebras and singularity categories, arXiv:2003.7858.
- B. Keller, Deformed Calabi-Yau completions, J. Reine Angew. Math. 654 (2011) 125-180. [3]
- H. Minamoto and I. Mori, The structure of AS-Gorenstein algebras, Adv. Math. 226 (2011) [4] 4061-4095