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Gamma x large-scale structure

All the gamma-ray sources 
must trace large-scale 
structure in the Universe
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FIG. 1. Top: Mollweide projection of the all-sky intensity
map for photon energies in the (1.7–2.8) GeV interval, after
the application of the mask built for this specific energy bin.
Bottom: Mollweide projection of the UGRB map between
(1.7–2.8) GeV. Masked pixels are set to 0; Maps have been
downgraded to order 7 for display purposes and smoothed
with a Gaussian beam with � = 0.5� and � = 1� respectively.

III. ANGULAR POWER SPECTRUM ANALYSIS

The APS of intensity fluctuation is defined as: Cij
` =

1
2`+1 h

P
m ai`maj⇤`mi, where the brackets indicate the av-

erage on the modes m, the indexes i and j label the ith

and the jth energy bins. When i = j, we refer to autocor-
relation, to cross-correlation otherwise. The coe�cients
a`m are given by the expansion in spherical harmonics
of the intensity fluctuations, �Ig(~n) =

P
`m a`mY`m(~n),

with �Ig(~n) ⌘ Ig(~n) � hIgi and ~n identifies the direc-
tion in the sky.The APS hence quantifies the ampli-
tude of the anisotropy associated with each multipole
`, which roughly corresponds to a pattern “spot” size of
� ' (180�/`).
We compute the APS with PolSpice [35, 36], a Fortran90
software tool which is based on the fast Spherical Har-
monic Transform. PolSpice estimates the covariance ma-
trix of the di↵erent multipoles taking into account the
correlation e↵ect induced by the mask with the algorithm
described in [37, 38]. Prior to the measurement, we ex-
ploited the standard HEALPix routine to removed the
monopole and the dipole terms from the intensity maps

in order to eliminate possible spectral leakage (owing to
the masking) of these large-scale fluctuations (which have
large amplitudes) on the small scales we are interested in.
The resolution of the maps and the e↵ect of the PSF are
accounted for respectively by the pixel window function,
W pix(`), and the beam window function, W beam(E, `),
whose computation is described in the SOM. Any random
noise would contribute to the signal when the autocorre-
lation in the ith energy bin, C` ⌘ Cii

` , is performed, hence
it must be subtracted from the raw APS. We know that a
Poissonian white noise would have a flat APS which can

be estimated as in Fornasa et al.: CN =
hni

�,pix/(✏
i
pix)

2i
⌦pix

,

ni
�,pix being the photon counts in the ith pixel, ✏ipix the

exposure, ⌦pix the pixel solid angle, and the average is
on the unmasked pixels. Considering this as the only
noise term, any other random component not following
a Poisson distribution would not be taken into account.
Moreover, the above equation for ĈN represents only an
estimator of the true CN . Indeed, we found evidence of
an underestimation of the noise term above a few GeV,
and devised a method to determine the autocorrelation
APS without relying on the estimate of CN . We exploit
cross-correlations between di↵erent but closely adjacent
micro energy bins: these are not a↵ected by the noise
term, since any kind of noise would not correlate between
independent data samples. Also, we do not expect any
e↵ect due to the energy resolution of the instrument since
the width of the micro bins is larger than the energy reso-
lution, except for bins below 1 GeV (the first macro bin)
whose result is anyway compatible with the one obtained
by the standard autocorrelation method which is valid at
those energies. As explained in the previous section, our
macro energy bins are composed of a number Nb of micro
energy bins. The APS computed in the macro bin can be
seen as the sum of all the auto and cross APS computed
for all the micro energy bins:

C` =
NbX

↵=1

C↵↵
`,micro + 2

X

↵,�
↵>�

C↵�
`,micro (1)

where ↵,� = 1, ..., Nb.
Under the reasonable assumption that the contributing
sources have a broad and smooth energy spectrum, the
APS for each macro energy bin can be obtained as:

C` =
Nb

Nb � 1

X

↵,�
↵ 6=�

C↵�,Pol
`,micro

WE↵(`)WE� (`)
(2)

where WE↵(`) = W beam
E↵

(`)W pix
E↵

(`) and Nb is the number
of micro bins in each macro energy bin4. In this way, we

4 Note that Eq. 2 returns a better approximation if the width
of the micro bins decreases, and/or Nb increases, and/or the

Fermi-LAT, Phys. Rev. Lett.121, 241101 (2018)

There has to be positive 
cross correlation



Cross correlation as efficient dark matter probe

• Cross correlating with LSS proven to be efficient probe of particle DM

• Utilize all available information (energy, spatial and redshift info) with efficient kernel

• Astrophysical components are relatively suppressed

• Interpretation is however limited by understanding of substructure
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FIG. 2. Predicted angular cross-power spectra of gamma-
ray emission in 5–10 GeV and the distribution of galaxies
measured by the 2MASS Redshift Survey. The dashed, dot-
dashed, and dotted lines show the contributions from dark
matter annihilation, blazars, and star-forming galaxies, re-
spectively. The solid line shows the sum, while the points
with the boxes show the errors expected after five-year obser-
vations of Fermi-LAT. The particle physics model is the same
as in Fig. 1.

where P`(cos ✓) is the Legendre polynomials. Each mul-
tipole roughly corresponds to an angular size of ✓ ⇡ ⇡/`.
We compute Cdm,g

` as

Cdm,g
` =

Z
d�

�2
Wdm(�)Wg(�)P�2,g

✓
k =

`

�
,�

◆
, (6)

where Wg is the galaxy window function, normalized to
unity after integration over �. The angular cross-power
spectrum is determined by the three-dimensional cross-
power spectrum of �2 and galaxies, P�2,g(k). We model
this power spectrum as P�2,g(k) = bgP�2,�(k), where bg
is the so-called galaxy bias factor. We use bg = 1.4 for
galaxies in the 2MASS catalog [36].

To compute P�2,�(k), we extend the formalism given
in Ref. [17] to the cross correlation and obtain P�2,� =
P 1h
�2,� + P 2h

�2,�, where

P 1h
�2,� =

✓
1

⌦m⇢c

◆3 Z
dM

dn

dM
ũ(k|M)ṽ(k|M)M

⇥ [1 + bsh(M)]

Z
dV ⇢2host(r|M), (7)

P 2h
�2,� =

✓
1

⌦m⇢c

◆2 ⇢Z
dM

dn

dM
ũ(k|M)b1(M, z)

⇥[1 + bsh(M)]

Z
dV ⇢2host(r|M)

�

⇥
Z

dM
dn

dM
Mṽ(k|M)b1(M, z)

�
Plin(k, z),(8)

FIG. 3. Predicted cross-correlation coe�cients,
C�,g

` /
p

C�
` C

g
` , between gamma rays from dark matter

(solid), blazars (dashed), or star-forming galaxies (dotted),
and the 2MASS Redshift Survey galaxies.

where Plin(k, z) is the linear matter power spectrum,
b1(M, z) is the linear halo bias, and ũ(k|M) and ṽ(k|M)
are the Fourier transform of gamma-ray emissivity and
density profiles, respectively, which are both normalized
to unity after integration over volume.
For the cross correlation of the astrophysical sources

with 2MASS galaxies, we use Eq. (6) with a proper re-
placement of Wdm with the astrophysical window func-
tion [Eq. (4)]. We also replace the power spectrum P�2,g

with PX,g, and we approximate it as PX,g ⇡ bXbgP�,
where P� is the matter power spectrum. For both blazars
and star-forming galaxies, we assume bX = 1.4 for their
bias parameters.
The angular power spectrum defined by Eq. (6) has

units of intensity times solid angle, and it is propor-
tional to h�vi. In Fig. 2, we show the predicted Cdm,g

`
with the 2MASS Redshift Survey [22], assuming h�vi =
3 ⇥ 10�26 cm3 s�1 in the energy range of 5–10 GeV,
for 100-GeV dark matter annihilating into bb̄. We also
show the predicted cross spectra with the 2MASS Red-
shift Survey for blazars and star-forming galaxies, respec-
tively. Remarkably, we find that the dark matter-galaxy
correlation dominates over the other astrophysical con-
tributions. This is because the low-redshift (z . 0.1)
2MASS galaxies are less correlated with the astrophysical
gamma-ray sources than with dark matter annihilation.
The galactic emission due to cosmic ray interactions is
much more concentrated at the halo center than dark
matter annihilation; thus, while the former is easier to
be identified with nearby individual sources, the latter
yields the larger luminosity density in a local volume.1

It is therefore important to use a local galaxy catalog

1 For example, several star-forming galaxies in the local volume

Figure 12. The 68% and 95% containment intervals of the 95% credible sensitivity to the annihilation
cross section, from cross correlation with 2MRS and for both the boost models [24, 26]. The dashed
curves are the median of the distribution, while the solid curves are the same as shown in Fig. 10.

one could further use this information to disentangle dark matter from other astrophysical
sources. Taking such a tomographic approach, we divided the 2MASS catalogs into more
than one (up to ten) redshift bins. We found that we could already improve the sensitivities
to the annihilation cross section by a factor of a few to several, if we divided the catalogs
into two or three redshift slices. Beyond four slices, the improvement is possible but modest.
If the dark matter halos contain a large number of substructure yielding a large boost of
the annihilation signals (e.g., [24]), then the canonical annihilation cross section would be
probed for the dark matter less massive than ⇠700 GeV. For a more modest scenario with
less substructure boost (e.g., [26]), the sensitivity reaches around ⇠10�25 cm3 s�1 for dark
matter with masses of tens to a few hundreds of GeV.

For these estimates, we developed theory and included the shot-noise term in the cross-
correlation power spectrum, which comes from the fact that descrete point sources in the
galaxy catalogs contribute partly to the gamma-ray background. The cross-power spectrum
between density squared and galaxy distribution as well as the galaxy power spectrum were
computed with the updated halo model adopting the halo occupation distribution (see also
Ref. [22]), and we found considerable di↵erences in relevant angular scales.

We based our sensitivity estimate on the Bayesian statistics and Markov-Chain Monte
Carlo simulations. This enables us to adopt priors of theoretical parameters, excluding
unphysical values (such as negative annihilation cross section) from the beginning. This
turned out to be a major improvement compared with the simplistic estimates based on the
Fisher matrix adopted in Ref. [21] as shown in Fig. 10. We also found that the statistical
fluctuation of data would yield uncertainty band of one order of magnitude for the sensitivity
estimates (Fig. 12).
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Fermi-LAT x DES

• Cross correlation between 108 month Fermi-LAT data and 
DES shear measurements (Y1)


• Energies: 0.6-1000 GeV; Redshifts: 0.2-1.3
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FIG. 1: DES Y1 (solid, used in this work) and final (dashed) sky coverage superimposed on the Fermi-LAT �-ray map for
photons in the 1-10 GeV energy range. The Galactic plane and point-source emissions are clearly visible. The plot is in
McBryde-Thomas flat polar quartic projection.

A method to discriminate between non-thermal �-ray emission due to astrophysical sources and possible dark matter
annihilation/decay in the UGRB has been proposed in Ref. [2]. This method relies on cross-correlations of UGRB
maps with maps of other tracers of the underlying structure on cosmological scales, such as the weak gravitational
lensing e↵ect, or the clustering of galaxies and galaxy clusters (see also refs. [3, 4]) and CMB lensing [5, 6]. These
are direct gravitational probes of matter, most of which is thought to be dark matter. The energy, redshift and scale
dependence of the aforementioned cross-correlations have the potential to disentangle signatures due to astrophysics
from dark matter (see also Ref. [7]). More generally, the method can provide valuable information on the redshift
distribution and on the clustering properties of the unresolved �-ray source populations, including blazars, AGNs and
star-forming galaxies.

Since cross-correlations of the UGRB with gravitational lensing have been proposed as a probe, several observational
attempts have followed [8–11], but none so far has detected the signal. Here, we report the first detection of such a
cross-correlation. We used 108-month �-ray data from Fermi -LAT and first year (Y1) shear measurements from the
Dark Energy Survey (DES). In the following, we describe details of the analysis and discuss the results.

ANALYSIS AND RESULTS

The observable we probe is the cross-correlation between the unresolved component of the �-ray emission and
gravitational shear. To this aim, the Fermi -LAT data have been pre-processed to produce the relevant energy-
dependent response functions of the detector and full-sky maps of photon intensities in several energy bins. Resolved
�-ray sources and the bright Galactic plane emission have been masked with energy- and flux-dependent masks, in
order to minimise the sky fraction removal. Furthermore, we have subtracted a model of the Galactic plane emission.
Galactic foreground emission does not lead to false detection of a cross-correlation, since it does not correlate with
the large-scale structure measured by gravitational shear, but it increases the variance of the measurements (see
Supplemental Material and, e.g., Refs. [8, 9, 11–13]). The weak lensing information is extracted by measuring the
mean tangential ellipticity of source galaxies in the DES footprint around pixels weighted by their UGRB flux. The
shear catalogue is divided in redshift bins in order to perform a tomographic analysis. As an illustration of the
overlapping area bewteen DES and Fermi -LAT, Fig. 1 shows the DES footprint and the Fermi -LAT map for photon
energies in the 1-10 GeV interval.

We measure the cross-correlation between the UGRB and gravitational shear through its 2-point angular correlation
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• Excess at < 0.3 deg


• Phenomenological model 

• PSF-like: Same sources 
contributing to both gamma-
ray emission and shear


• 2halo-like: Large-scale-
structure distribution


• Signal-to-noise ratio = 5.3

Fermi-LAT x DES
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Bin number
1 2 3 4 5 6 7 8 9

Emin [GeV] 0.631 1.202 2.290 4.786 9.120 17.38 36.31 69.18 131.8
Emax [GeV] 1.202 2.290 4.786 9.120 17.38 36.31 69.18 131.8 1000.0

✓cont 68% [deg] 0.50 0.58 0.36 0.22 0.15 0.12 0.11 0.10 0.10
✓cont 95% [deg] 1.03 1.06 0.62 0.39 0.28 0.22 0.20 0.18 0.16
Photon counts 345230 444559 286209 102821 41148 16932 5250 1728 722

TABLE I: Energy bins over which the analysis is performed, 68% and 95% containment angles ✓cont of the Fermi-LAT PSF,
and photon counts in the unmasked Fermi area in each energy bin

.

function. Specifically, we adopt the following estimator (see also Ref. [14]):

⌅ar(✓) = ⌅signal
�✓h,�Ea,�zr

� ⌅random
�✓h,�Ea,�zr =

P
i,j e

r
ij,t I

a
j

R
P

i,j I
a
j

�
P

i,j e
r
ij,t I

a
j,random

R
P

i,j I
a
j,random

, (1)

where ⌅signal
�✓h,�Ea,�zr

is the correlation function in configuration space of the two observables measured in di↵erent
angular (�✓h), �-ray energy (�Ea) and lensing source-galaxy redshift (�zr) bins. The correlation is obtained by
summing the products of tangential ellipticity of source galaxies i relative to a pixel j, erij,t, multiplied by the Fermi-
LAT photon intensity flux in the a-th energy bin and in pixel j, Iaj . The sum runs over all unmasked pixels j and
all sources i in the redshift bin of the shear catalogue, and it is performed in each of the di↵erent photon energy bins
(labelled by a) and source galaxies redshift bins (labelled by r). Lastly, R is the mean response of ellipticity to shear
for sources in the redshift bin, determined by the metacalibration algorithm [15, 16] to be between 0.54 and 0.73
for the source-galaxy redshift bins used here.

From the correlation function, we remove ⌅random
�✓h,�Ea,�zr

, the measurement of tangential shear around random lines
of sight. This is done by setting I

a
j,random = 1 anywhere within the sky region used for �-ray measurements in that

energy bin and 0 elsewhere. This reduces additive shear systematic e↵ects, random very-large-scale structures, or
chance shear alignments relative to the mask. The random subtraction, while not a↵ecting the expected signal, lowers
the variance at large angular separations (see also Refs. [14, 17]).

We analyse the data in 12 logarithmically-spaced angular bins with radii between 5 and 600 arcmin, 9 photon energy
bins between 0.631 and 103 GeV, and 4 redshift bins defined by 0.20 < hzi < 0.43, 0.43 < hzi < 0.63, 0.63 < hzi < 0.90
and 0.90 < hzi < 1.30, where hzi is the estimated expectation value of galaxy redshift from DES. The energy bins used
in the analysis and the corresponding 68% and 95% containment angles of the Fermi-LAT PSF are shown in Tab. I.
These sum up to a total of 432 bins for the cross-correlation measurement. The analysis is performed blindly, i.e. on
multiple variants of the measurements including artificial versions, in order to avoid experimental bias in measurement
and interpretation of the signal. See the Supplemental Material for details.

The result of the measured cross-correlations, averaged over all energy and redshift bins, is shown in Fig. 2 in
terms of the estimator ⌅(✓) defined in Eq. (1). Note that the data points reported on both panels are the same,
although confronted with di↵erent models. A clear positive cross-correlation is observed, especially at small angular
separations.

In order to determine the statistical significance of the signal, we test the deviation of the measurement from
a null signal (null hypothesis of pure noise) by means of a phenomenological model, which aims at capturing the
general expected features of the cross-correlation signal without resorting to any specific, detailed modelling of its
physical origin (in the next Section, we will instead adopt a physical model to provide insights on the origin of the
cross-correlation). In the halo-model approach, all mass in the large-scale structure of the Universe is associated with
virialised dark matter halos, and the correlation function can thus be decomposed into the so-called 1-halo and a
2-halo terms (‘1h’ and ‘2h’, in formulae hereafter). The former refers to the correlation between two points in the
same physical halo; the latter to the case in which the two points belong to two di↵erent halos. Point-like sources
contribute at small angular scales with a 1-halo term, while at large scales they produce a 2-halo term resembling the
large-scale structure matter distribution. In our case, we use the fact that the spatial extent of the 1-halo term is
smaller than the beam window function of the Fermi -LAT. Then a phenomenological model can be constructed as:

⌅ar
phe(✓) hIai = A1 ⇥ E

�↵1
a ⇥ (1 + zr)

�1 ⇥ ⌅̂a
PSF-like(✓) +A2 ⇥ E

�↵2+2.2
a ⇥ (1 + zr)

�2 ⇥ ⌅̂ar
2h-like(✓) (2)

where Ea and zr are the central values of the energy (measured in GeV) and redshift bins, and hIai is the measured
photon flux. ⌅̂a

PSF-like(✓) is the Legendre transform of the beam window function (or point-spread function, PSF)

5

10�1 100 101

� [deg]

10�8

10�7

10�6

10�5

10�4

10�3

�
(�

)

total

PSF-like

2halo-like

FIG. 2: Measurement and model of the cross-correlation between �-ray photons and gravitational shear. The points in both
panels show the measured cross-correlation, averaged over all redshift and energy bins, while the fits is done across all dimensions.
The lines refer the best fit results for the phenomenological model (left) and for the physical model (right), averaged the same
way.

integrated in the ath energy bin (in arbitrary units, being merely a template for the 1-halo term due to point-like �-ray
sources) and ⌅̂ar

2h-like(✓) is the Legendre transform of a generic 2-halo (i.e. large-scale) contribution, also convolved
with the Fermi -LAT beam window function. Correlation functions with a hat have flux units, while those without a
hat are normalised to the �-ray flux as in Eq. (1), and therefore dimensionless. The two normalisations A1 and A2,
spectral indices ↵1 and ↵2, and redshift evolution indices �1 and �2 are free parameters of the model 1. Gamma-ray
sources typically have energy spectra that can be well approximated by a power-law, and so it is assumed in Eq. (2).
For simplicity, we also assume a power-law scaling in redshift. Best fits and confidence intervals of the parameters
are found in a Markov Chain Monte Carlo likelihood analysis.

The first statistical method adopted to quantify the presence of a signal, and its significance, against the null
hypothesis relies on the ��

2 test statistics, with the chi-squared defined in the usual way, i.e. :

�
2(Pmod) = [⌅data � ⌅th(Pmod)]

T��1[⌅data � ⌅th(Pmod)] (3)

where ⌅data is the data vector, ⌅th is the theoretical cross-correlation for the models outlined above, described by
the parameter set Pmod, and � is the data covariance matrix, detailed in the Appendix. (All angular, energy, and
redshift bin indexes have been omitted for simplicity of notation.) The ��

2 is defined as ��
2
mod = �

2
null � �

2(P ?
mod),

with �
2(P ?

mod) computed at the model parameter values P ?
mod that best fit the data, and �

2
null referring to no signal,

i.e. ⌅th = 0. The second estimator is the matched filter signal-to-noise ratio (see e.g. Ref. [18]),

SNR(Pmod) =
⌅T

data�
�1⌅th(Pmod)q

⌅T
th(Pmod)��1⌅th(Pmod)

; (4)

in analogy to ��
2
mod, we shall later refer to SNRmod ⌘ SNR(P ?

mod).
In Table II we present the results on detection significance. The phenomenological model results for the full data

set show a clear evidence for the presence of a cross-correlation signal, at the level of SNRmod = 5.3. Since the
matched filter based on the phenomenological model captures the generic features of the cross-correlation signal,
without committing to any specific physical description, this best assesses that indeed a cross-correlation between
gravitational shear and unresolved �-rays emission has been observed. In order to investigate the features of the signal

1 For blazars, we expect an average spectral index of 2.2, which is the reason for the term added to ↵2.

1 − 10 GeV

Ammazzalorso et al. Phys. Rev. Lett. [arXiv:1907.13484 [astro-ph.CO]]



5

10�1 100 101

� [deg]

10�8

10�7

10�6

10�5

10�4

10�3

�
(�

)

total

annDM

BLZ,1h

BLZ,2h

FIG. 2: Measurement and model of the cross-correlation between �-ray photons and gravitational shear. The points in both
panels show the measured cross-correlation, averaged over all redshift and energy bins, while the fits is done across all dimensions.
The lines refer the best fit results for the phenomenological model (left) and for the physical model (right), averaged the same
way.

integrated in the ath energy bin (in arbitrary units, being merely a template for the 1-halo term due to point-like �-ray
sources) and ⌅̂ar

2h-like(✓) is the Legendre transform of a generic 2-halo (i.e. large-scale) contribution, also convolved
with the Fermi -LAT beam window function. Correlation functions with a hat have flux units, while those without a
hat are normalised to the �-ray flux as in Eq. (1), and therefore dimensionless. The two normalisations A1 and A2,
spectral indices ↵1 and ↵2, and redshift evolution indices �1 and �2 are free parameters of the model 1. Gamma-ray
sources typically have energy spectra that can be well approximated by a power-law, and so it is assumed in Eq. (2).
For simplicity, we also assume a power-law scaling in redshift. Best fits and confidence intervals of the parameters
are found in a Markov Chain Monte Carlo likelihood analysis.

The first statistical method adopted to quantify the presence of a signal, and its significance, against the null
hypothesis relies on the ��

2 test statistics, with the chi-squared defined in the usual way, i.e. :

�
2(Pmod) = [⌅data � ⌅th(Pmod)]

T��1[⌅data � ⌅th(Pmod)] (3)

where ⌅data is the data vector, ⌅th is the theoretical cross-correlation for the models outlined above, described by
the parameter set Pmod, and � is the data covariance matrix, detailed in the Appendix. (All angular, energy, and
redshift bin indexes have been omitted for simplicity of notation.) The ��

2 is defined as ��
2
mod = �

2
null � �

2(P ?
mod),

with �
2(P ?

mod) computed at the model parameter values P ?
mod that best fit the data, and �

2
null referring to no signal,

i.e. ⌅th = 0. The second estimator is the matched filter signal-to-noise ratio (see e.g. Ref. [18]),

SNR(Pmod) =
⌅T

data�
�1⌅th(Pmod)q

⌅T
th(Pmod)��1⌅th(Pmod)

; (4)

in analogy to ��
2
mod, we shall later refer to SNRmod ⌘ SNR(P ?

mod).
In Table II we present the results on detection significance. The phenomenological model results for the full data

set show a clear evidence for the presence of a cross-correlation signal, at the level of SNRmod = 5.3. Since the
matched filter based on the phenomenological model captures the generic features of the cross-correlation signal,
without committing to any specific physical description, this best assesses that indeed a cross-correlation between
gravitational shear and unresolved �-rays emission has been observed. In order to investigate the features of the signal

1 For blazars, we expect an average spectral index of 2.2, which is the reason for the term added to ↵2.

• Excess at < 0.3 deg


• Physical model 

• Astrophysical components 
(BLZ, mAGN, SFG)


• Dark matter annihilation


• Signal-to-noise ratio = 5.2

Fermi-LAT x DES

4

Bin number
1 2 3 4 5 6 7 8 9

Emin [GeV] 0.631 1.202 2.290 4.786 9.120 17.38 36.31 69.18 131.8
Emax [GeV] 1.202 2.290 4.786 9.120 17.38 36.31 69.18 131.8 1000.0

✓cont 68% [deg] 0.50 0.58 0.36 0.22 0.15 0.12 0.11 0.10 0.10
✓cont 95% [deg] 1.03 1.06 0.62 0.39 0.28 0.22 0.20 0.18 0.16
Photon counts 345230 444559 286209 102821 41148 16932 5250 1728 722

TABLE I: Energy bins over which the analysis is performed, 68% and 95% containment angles ✓cont of the Fermi-LAT PSF,
and photon counts in the unmasked Fermi area in each energy bin

.

function. Specifically, we adopt the following estimator (see also Ref. [14]):

⌅ar(✓) = ⌅signal
�✓h,�Ea,�zr

� ⌅random
�✓h,�Ea,�zr =

P
i,j e

r
ij,t I

a
j

R
P

i,j I
a
j

�
P

i,j e
r
ij,t I

a
j,random

R
P

i,j I
a
j,random

, (1)

where ⌅signal
�✓h,�Ea,�zr

is the correlation function in configuration space of the two observables measured in di↵erent
angular (�✓h), �-ray energy (�Ea) and lensing source-galaxy redshift (�zr) bins. The correlation is obtained by
summing the products of tangential ellipticity of source galaxies i relative to a pixel j, erij,t, multiplied by the Fermi-
LAT photon intensity flux in the a-th energy bin and in pixel j, Iaj . The sum runs over all unmasked pixels j and
all sources i in the redshift bin of the shear catalogue, and it is performed in each of the di↵erent photon energy bins
(labelled by a) and source galaxies redshift bins (labelled by r). Lastly, R is the mean response of ellipticity to shear
for sources in the redshift bin, determined by the metacalibration algorithm [15, 16] to be between 0.54 and 0.73
for the source-galaxy redshift bins used here.

From the correlation function, we remove ⌅random
�✓h,�Ea,�zr

, the measurement of tangential shear around random lines
of sight. This is done by setting I

a
j,random = 1 anywhere within the sky region used for �-ray measurements in that

energy bin and 0 elsewhere. This reduces additive shear systematic e↵ects, random very-large-scale structures, or
chance shear alignments relative to the mask. The random subtraction, while not a↵ecting the expected signal, lowers
the variance at large angular separations (see also Refs. [14, 17]).

We analyse the data in 12 logarithmically-spaced angular bins with radii between 5 and 600 arcmin, 9 photon energy
bins between 0.631 and 103 GeV, and 4 redshift bins defined by 0.20 < hzi < 0.43, 0.43 < hzi < 0.63, 0.63 < hzi < 0.90
and 0.90 < hzi < 1.30, where hzi is the estimated expectation value of galaxy redshift from DES. The energy bins used
in the analysis and the corresponding 68% and 95% containment angles of the Fermi-LAT PSF are shown in Tab. I.
These sum up to a total of 432 bins for the cross-correlation measurement. The analysis is performed blindly, i.e. on
multiple variants of the measurements including artificial versions, in order to avoid experimental bias in measurement
and interpretation of the signal. See the Supplemental Material for details.

The result of the measured cross-correlations, averaged over all energy and redshift bins, is shown in Fig. 2 in
terms of the estimator ⌅(✓) defined in Eq. (1). Note that the data points reported on both panels are the same,
although confronted with di↵erent models. A clear positive cross-correlation is observed, especially at small angular
separations.

In order to determine the statistical significance of the signal, we test the deviation of the measurement from
a null signal (null hypothesis of pure noise) by means of a phenomenological model, which aims at capturing the
general expected features of the cross-correlation signal without resorting to any specific, detailed modelling of its
physical origin (in the next Section, we will instead adopt a physical model to provide insights on the origin of the
cross-correlation). In the halo-model approach, all mass in the large-scale structure of the Universe is associated with
virialised dark matter halos, and the correlation function can thus be decomposed into the so-called 1-halo and a
2-halo terms (‘1h’ and ‘2h’, in formulae hereafter). The former refers to the correlation between two points in the
same physical halo; the latter to the case in which the two points belong to two di↵erent halos. Point-like sources
contribute at small angular scales with a 1-halo term, while at large scales they produce a 2-halo term resembling the
large-scale structure matter distribution. In our case, we use the fact that the spatial extent of the 1-halo term is
smaller than the beam window function of the Fermi -LAT. Then a phenomenological model can be constructed as:

⌅ar
phe(✓) hIai = A1 ⇥ E

�↵1
a ⇥ (1 + zr)

�1 ⇥ ⌅̂a
PSF-like(✓) +A2 ⇥ E

�↵2+2.2
a ⇥ (1 + zr)

�2 ⇥ ⌅̂ar
2h-like(✓) (2)

where Ea and zr are the central values of the energy (measured in GeV) and redshift bins, and hIai is the measured
photon flux. ⌅̂a

PSF-like(✓) is the Legendre transform of the beam window function (or point-spread function, PSF)

1 − 10 GeV

Ammazzalorso et al. Phys. Rev. Lett. [arXiv:1907.13484 [astro-ph.CO]]
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FIG. 3: Left: Constraints on the normalisation and spectral index parameters of the phenomenological model (the redshift
dependence parameters are unconstrained and not shown in the plot). Right: Constraints on the parameters of the dark matter
and blazar models described in Eq. 5. The blazar model assumes a single population matching the properties of Fermi resolved
sources. The dark matter model assumes annihilation in the ⌧+⌧� channel. In both panels, 2D contours refer to the 68% and
95% C.L. regions. The dashed and solid vertical lines in the 1D subplots denote the the 68% and 95% C.L. constraints of the
1D profile likelihood distributions.

The model parameters are: free normalisations for the astrophysical sources, A1h
BLZ, A

2h
BLZ, AmAGN, and ASFG; the

mass of the dark matter particle, mDM; its velocity-averaged annihilation rate, h�annvi, expressed in terms of the
“thermal” cross-section h�annvith = 3 ⇥ 10�26 cm3 s�1 through the normalisation ADM ⌘ h�annvi/h�annvith. Note
that for blazars, which represent the astrophysical component expected to dominate the correlation signal at the
current level of unresolved �-ray emission, we allow the 1-halo and the 2-halo terms to be separately adjusted in the
fit against the data. As for the phenomenological model, all terms depend on both energy and redshift, labelled by
indices a and r, respectively.

The results are shown in Table II, where the overall significance of the presence of a signal, the preference for
an origin at high energies and small angular scales are all confirmed. However, since in this case we have specific
behaviours for the correlation functions as dictated by a physical model (di↵erent for each component, contrarily
to the average generic case of the phenomenological model), we notice that a mild hint of large scale correlation is
present—namely, in the Large-✓ case. We note that both the physical and phenomenological models provide a good
fit to the data according to their �2 (see the Supplemental Material).

More details of the analysis are shown in Fig. 3, where the triangular plot of the profile likelihood distributions
of the model parameters is reported. The likelihood exhibits a preference for a large 1-halo term of blazars with
normalisation A

1h
BLZ = 102+56

�57, while the normalisations of the blazar 2-halo term shows only a (weak) upper bound.
The latter picture is shared also by the other astrophysical sources (SFG and mAGN) which are shown only in the
Appendix for brevity.

The blazar-shear cross-correlation on small scales depends on the relation between the blazar �-ray luminosity and
the host-halo mass, a quantity which is rather uncertain. For our reference model this relation has been taken from
[7], where it was derived by associating the �-ray luminosity of blazars to the mass of the supermassive black hole
powering the AGN and then relating the mass of the black hole to the mass of the dark matter halo. This procedure

gives M(L) = 2 ⇥ 1013M�
⇥
L/(1047 erg s�1)

⇤0.23
(1 + z)�0.9, where L is the rest-frame luminosity of blazars in the

energy range 0.1 to 100GeV. We can therefore translate a value of A1h
BLZ di↵erent from unity to a deviation from the

reference M(L) relation. The value we found implies that the average mass of a halo hosting an unresolved blazar
is larger than the one adopted in Ref. [7], and most likely above 1014M�. The cross-correlation signal with weak
lensing seems therefore to be dominated by blazars residing in cluster-size halos.

The right panel of Fig. 2 shows that the cross-correlation at small angular scales requires a sizeable blazar 1-halo

Ammazzalorso et al. Phys. Rev. Lett. 
[arXiv:1907.13484 [astro-ph.CO]]

• Slight preference toward DM


• But required cross section is one 
order of magnitude larger, for recent 
subhalo models by Hiroshima et al. 
(2018); Ando et al. (2019)

Significance
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How uncertain is the boost? 

• Very uncertain, of which we don’t even 
have good sense


• No way that it can be solved with 
numerical simulations
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Figure 1. Surface brightness profiles from dark matter annihilation for var-
ious components of the Ph-A-1 simulation of a rich galaxy cluster. Sur-
face brightness is given in units of annihilation photons per cm2 per second
per steradian for fiducial values of 100Gev for mp, the dark matter parti-
cle mass, and 3× 10−26cm3s−1 for ⟨σv⟩, the thermally averaged velocity-
weighted annihilation cross-section, assuming Nγ = 1 photons per annihila-
tion. This surface brightness scales as Nγ⟨σv⟩/m2

p. Projected radius is given
in units of kpc. The red line shows radiation from the smoothly distributed
dark matter within the main component of the cluster. The ragged blue dot-
ted lines show radiation from resolved dark matter subhaloes with masses
exceeding 5×107, 5×108, 5×109 and 5×1010 M⊙ (from top to bottom).
Extrapolating to mass limits of 10−6 and 10−12 M⊙ as discussed in the text
gives rise to the smooth blue curves. The purple dashed lines show the re-
sults of summing smooth and subhalo contributions.

rection of 1.5) as the haloes in a representative volume of the Uni-
verse. Thus, we can use analytic predictions for the abundance and
concentration of field haloes (Sheth & Tormen 2002; Neto et al.
2007) to extrapolate our simulation results to much lower sub-
halo masses. The upper blue curves in Figure 1 show the resulting
predictions for minimum subhalo masses of 10−6 and 10−12 M⊙,
respectively. The most uncertain part of this extrapolation is the
assumption that halo concentration continues to increase towards
lower masses in the same way as measured over the mass range
simulated so far. This assumption has not yet tested explicitly, and
has a very large effect on the results. For example, if all (sub)haloes
less massive than 105 M⊙ are assumed to have similar concentra-
tion, then the total predicted emission from subhaloes would be
more than two orders of magnitude below that plotted in Figure 1
for an assumed cut-off mass of 10−6 M⊙.

With our adopted concentration scaling, subhaloes dominate
the surface brightness beyond projected radii of a few kiloparsecs,
as may be seen in Fig. 1. Surface brightness is almost constant be-
tween 10 and 300kpc, dropping by a factor of two only at 460kpc.
At the virial radius of the cluster (r200 = 1936 kpc), the surface
brightness of the subhalo component is a factor of 14 below its
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Figure 2. Annihilation luminosity (in arbitrary units) from subhaloes lying
within r200 per decade in subhalo mass and per unit halo mass (M200) for
the Phoenix and Aquarius simulations. The level-1 simulations are shown
by the black (Phoenix) and red (Aquarius) lines and the medians of the nine
Phoenix and six Aquarius level-2 simulations by the thick blue and orange
lines respectively. The full scatter in each set of simulations is indicated by
the shaded areas. The dashed magenta line gives the predicted annihilation
luminosity density per decade in halo mass from the cosmic population of
dark matter haloes.

central value. Within this radius the luminosity from resolved sub-
haloes in Ph-A-1 is more than twice that from the smooth halo,
even though these subhaloes account only for 8% of the mass. Ex-
trapolating to minimum subhalo masses of 10−6 and 10−12 M⊙

the subhalo excess becomes 718 and 16089 respectively. These
boost factors substantially exceed the equivalent factors predicted
for the galaxy haloes of the Aquarius Project. This is because of
the additional high-mass subhaloes which contribute in the cluster
case (see Figure 2) together with the lower concentration of cluster
haloes relative to galaxy haloes, which reduces the emission from
the smooth component. Note, the boost factor for the Aq-A-1 ob-
tained with the extrapolation we use here is smaller by a factor of
2.4 than the value quoted in Springel et al. (2008a).

For the resolved component, there is significant variation
amongst the nine Phoenix haloes, but the median value of the total
boost factor (for a cutoff mass of 10−6M⊙) is 1125, which, for the
reasons just given, is about twelve times the median boost factor we
obtain by applying the same method to the Aquarius haloes. Com-
paring these results suggests that the ratio of subhalo to smooth
main halo luminosity within r200 (subhalo “boost factor”) varies
with halo mass approximately as

b(M200) = Lsub/Lmain = 1.6×10−3(M200/M⊙)
0.39. (1)

The total luminosity of a halo is therefore Ltot = (1 + b)Lmain,
where Lmain is the emission of the smooth halo. In addition, the
projected luminosity profile of the subhalo component can be well
approximated by

Ssub(r) =
16b(M200)Lmain

π ln(17)
1

r2
200 +16r2 . (2)

These formulae will be used to estimate dark matter annihilation lu-
minosities and surface brightness profiles for haloes with different
masses in subsequent sections.

Gao et al., Mon. Not. R. Astron. Soc. 419, 1721 (2012)

Resolved

Extrapolated

12 A. Moliné et al.

where in the last step we have assumed an NFW profile and
for halos, we use the parametrization for the concentration
parameter from Prada et al. (2012) using the fit obtained in
Sánchez-Conde & Prada (2014).

With this at hand, the luminosity of a subhalo of mass m
at a distance Rsub from the center of the host halo, L(m,xsub),
is defined as

L(m,xsub) = [1 +B(m,xsub)]Lsmooth(m,xsub) . (12)

where now Lsmooth(m,xsub) is the luminosity for the smooth
distribution of the given subhalo and B(m,xsub) is the boost
factor due to the next level of substructure. The luminosity
of a subhalo (sub-subhalo) is given by the same functional
form as that of a field halo, but including the dependence of
the concentration parameter on the position of the subhalo
(sub-subhalo) inside the host halo (subhalo).

In addition to the mentioned dependences, we note that
subhalos are not homogeneously distributed within the host
halo (Springel et al. 2008; Hellwing et al. 2015; Rodŕıguez-
Puebla et al. 2016). However, we have checked that the precise
spatial distribution of subhalos inside halos has only a small
impact on our results (below 10%). Therefore, for the sake
of comparison with previous works, we do not include this
dependence here and postpone its discussion to future work.
By assuming that the subhalo mass function does not change
within the halo, we can write the boost factor as

B(M) =
3

Lsmooth(M)

Z M

Mmin

dN(m)
dm

dm

Z 1

0

dxsub

[1 +B(m)] L(m,xsub)x
2
sub , (13)

where dN(m)/dm is the subhalo mass function for a halo of
mass M , dN(m)/dm = A/M (m/M)�↵. The normalization
factor is equal to A = 0.012 for a slope of the subhalo mass
function ↵ = 2 and to A = 0.03 for ↵ = 1.9 (Sánchez-Conde
& Prada 2014), and was chosen so that the mass in the re-
solved substructure amounts to about 10% of the total mass
of the halo,11 as found in recent simulations (Diemand et al.
2007b; Springel et al. 2008). Note that, as done in most of
previous works,12 we have not subtracted the subhalo mass
fraction from the smooth halo contribution, so in principle,
this leads to a slight overestimate of the smooth halo luminos-
ity, and hence, to a slight underestimate of the boost factor.
This is expected to be a small correction, though, since it ap-
plies mainly to the outer regions of the halo where the subhalos
represent a larger mass fraction and the smooth contribution
is much smaller and subdominant with respect to the contri-
bution from substructure (Palomares-Ruiz & Siegal-Gaskins
2010; Sánchez-Conde et al. 2011).

In the case of an NFW profile, as the one we are using,
the luminosity from the smooth DM distribution of a field
halo can also be expressed in terms of the maximum circular
velocity, V h

max, (Diemand et al. 2008)

Lsmooth(V
h
max) '

✓
2.163

f(2.163)

◆2 2.163H0

12⇡G2

r
c
h
V(V

h
max)

2
(V h

max)
3
, (14)

11 Extrapolating the subhalo mass function down to m/M =
10�18, those normalizations correspond to ⇠ 50% (⇠ 30%) of the
total mass of the halo for ↵ = 2 (↵ = 1.9).
12 See, e.g., Pieri et al. (2011) for one of the few exceptions.
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Figure 6. Halo substructure boost to the DM annihilation signal as
a function of the host halo mass. We have used our c200(m200, xsub)
parametrization in Eq. (6) and adopted Mmin = 10�6 M�. We
present results for two values of the slope of the subhalo mass
function, ↵ = 1.9 (lower, light red lines) and ↵ = 2 (black lines).
We also show the boost obtained with the DM profile-independent
definition of cV (green line), for which we have used our fit for
cV(Vmax, xsub) in Eq. (7), and (Vmax)min = 10�3.5 km/s. Notably,
the cV result lies within the results found for c200 and the two slopes
of the subhalo mass function considered. Thin lines correspond to
results obtained assuming subhalos and sub-subhalos are not trun-
cated by tidal forces, while thick lines represent the more realistic
case, in which subhalos and sub-subhalos have been tidally-stripped
(see text). The dashed lines correspond to the results obtained in
Sánchez-Conde & Prada (2014) when assuming that both halos and
subhalos of the same mass have the same concentration values.

and, in a similar way, by including the radial dependence of
the concentration of subhalos, one can obtain the subhalo lu-
minosity function, L(Vmax, xsub).

In this case, the boost factor for a field halo with maxi-
mum circular velocity V

h
max (analogously to Eq. (13)), can be

written as

B(V h
max) =

3
Lsmooth(V h

max)

Z V h
max

(Vmax)min

dN(Vmax)
dVmax

dVmax

Z 1

0

dxsub [1 +B(Vmax)] L(Vmax, xsub)x
2
sub ,

(15)

where (Vmax)min is the value of Vmax which corresponds to
Mmin. In order to compute the luminosity in terms of V

h
max

we need the subhalo mass function in terms of Vmax, and we
use the result of Diemand et al. (2008), dN(Vmax)/dVmax =
(0.108/V h

max) (V
h
max/Vmax)

4.
The results for the boost factor defined in Eqs. (13)

and (15) are shown in Fig. 6, where we use the parametriza-
tions for c200(m200, xsub), cV(Vmax, xsub), c

h
V(V

h
max) and

c� 2016 RAS, MNRAS 000, 1–??

Moliné et al., Mon. Not. R. Astron. Soc. 466, 4974 (2017)

dN/dm ∝ m−2

dN/dm ∝ m−1.9
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Fig. 7.— Model predictions for the distribution of accretion redshifts for subhalos with ma/M0 = 0.1 (solid lines), 0.03 (dotted lines),
0.01 (dashed lines), 0.003 (long dashed lines) and 0.001 (dot-dashed lines) respectively. Results are shown for host halos of different masses
as indicated in the panels. These results assume a ΛCDM universe and are compared with the results obtained from the 300 h−1Mpc box
N-body simulations with the same cosmology (open circles). For comparison, results obtained from the 100 h−1Mpc box simulations are
also shown (as filled triangles) for cases where statistics are sufficiently good.

tively, where the error-bars have been obtained using 200
bootstrap resamples. The various lines show the predic-
tions based on Model III, and overall match the simu-
lation results remarkably well. Note that the accretion
rate depends strongly on the mass of the host halo. For
the same mass ratio, subhalos in more massive hosts are
accreted later, reflecting the hierarchical nature of struc-
ture formation in the ΛCDM cosmology.

4.4. Un-evolved subhalo mass functions

Finally, let us look at the un-evolved subhalo mass
functions. By integrating Eq. (3) over a given redshift
range, we can obtain the un-evolved mass function of
the subhalos accreted in that redshift range. In Fig. 8
we show the un-evolved mass functions of subhalos ac-
creted in the redshift ranges [0, 1], [1, 2], [2, 3], [3, 4]
and [4, 5], respectively. Results are shown for host ha-
los of different masses, as indicated in each panel. Here

again, symbols indicate the results from our simulation
boxes, while lines show the predictions of Model III.
Clearly, our model is in excellent agreement with the
simulation results at all redshifts and for all host masses.
Upon close inspection, it is clear that the un-evolved sub-
halo mass function for a given redshift range depends on
host halo mass, especially at high redshift: in terms of
the scaled mass, ma/M0, the subhalo mass function at
high z is significantly higher for lower-mass host halos.
Moreover, the normalization of the un-evolved subhalo
mass function at a given redshift for halos of different
masses seem to be roughly proportional to the assem-
bly history of the host halos shown in Fig. 1. To test
this, we show in Fig. 9 the un-evolved subhalo mass
functions for different host halos at the time when the
host halos have assembled a fixed fraction of their fi-
nal masses, i.e. for subhalos accreted in a given range
of log[Ma/M0] range. Results are shown for five dif-

Infall distribution of subhalos: 

Extended Press-Schechter formalism

Yang et al., Astrophys. J. 741, 13, (2011)
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B. Numerical simulations

We have also calculated the tidal stripping of subhalos
using N -body simulations. To cover a wide range of halo
mass, we used five large cosmological N -body simula-
tions. Table I summarizes the detail of these simulations.
The ⌫2GC-S, ⌫2GC-H2 [38], and Phi-1 simulations cover
halos with large mass (⇠1011M�). The Phi-2 simulation
is for intermediate mass halos (⇠107M�). To analyze the
smallest scale (⇠10�6M�), the A N8192L800 simulation
is used. The cosmological parameters of these simula-
tions are ⌦m = 0.31, �0 = 0.69, h = 0.68, ns = 0.96,
and �8 = 0.83, which are consistent with an observa-
tion of the cosmic microwave background obtained by the
Planck satellite [2, 39] and those adopted in the other sec-
tions of the present paper. The matter power spectrum
in the A N8192L800 simulation contained the cuto↵ im-
posed by the free motion of dark matter particles with a
mass of 100 GeV [9, 26]. Further details of these simula-
tions are presented in Reference. [38] and Ishiyama et al.
(in preparation).

All simulations were conducted by a massively paral-
lel TreePM code, GreeM [40, 41].1 Halos and subha-
los were identified by ROCKSTAR phase space halo and
subhalo finder [42]. Merger trees are constructed by con-
sistent tree codes [43]. The halo and subhalo catalogs
and merger trees of the ⌫2GC-S, ⌫2GC-H2, and Phi-1
simulations are publicly available at http://hpc.imit.
chiba-u.jp/~ishiymtm/db.html.

C. Comparison

We calculate the mass-loss rate of the subhalos for vari-
ous redshift z and the host mass Mhost (defined as M200).
First, we choose the subhalo mass at accretion macc uni-
formly in a logarithmic scale between the smallest mass
10�6M� and the maximum mass 0.1M(zacc). For each
set of macc and zacc (as well as z and Mhost), we calcu-
late the mass-loss rate ṁ following the prescription given
in Sec. III A, by taking a Monte Carlo appraoch; i.e., by
drawing the concentration of the host halos, subhalo con-
centration, circularity ⌘, and radius of the circular orbit
Rc of subhalos following the distributions of each of these
parameters.

In Figure. 1, we show results of our Monte Carlo sim-
ulations. We find that for a large dynamic range of sub-
halo mass m (over 19 orders of magnitude as shown in
the insets) down to very small masses such as 10�6M�, a
single power-law function [Eq. (1)] gives a very good fit,
which confirms the physical origin of this relation, not
just being a simple phenomenological fit.

We compare the results of the Monte Carlo calcula-
tions to those of the N -body simulations as described in

1 http://hpc.imit.chiba-u.jp/~ishiymtm/greem/

FIG. 1. Mass-loss rate of subhalos as a function of orbit-
averaged subhalo mass m in units of the host mass Mhost

for Mhost = 1013M� and z = 0 (top), Mhost = 107M� and
z = 5 (middle), and Mhost = 10�2M� and z = 32 (bottom).
Cyan points show the Monte Carlo simulation results. Blue
squares with error bars show the results obtained by N -body
simulations. Thick error bars correspond to the 50% of the
simulated halos around the median, while thin ones to the
90%. We also show the results of the Monte Carlo simulations
of wider mass range in inserted panels, which also include the
fitting results with Eq. (1), as overwritten solid lines on the
Monte Carlo points.

Sec. III B, which is also shown in Figure. 1 for m/Mhost &
10�5 (m is the orbit-averaged mass of the subhalos), re-
solved in the N -body simulations. At relatively small
redshifts for both Mhost = 1013M� and 107M�, we find
very good agreement between the two prescriptions. We
also check the applicability of the analytical approach by
comparing the results with those of N -body simulations
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condition of tidal disruption as follows:

dNsh

dm
=

X

i

wi�(m�m0,i)

⇥

Z
dcvir,accP (cvir,acc|macc,i, zacc,i)

⇥⇥[rt,i(z0|cvir,acc)� 0.77rs,i(z0|cvir,acc)],

(28)

where �(x) and ⇥(x) are the Dirac delta function and
Heaviside step function, respectively.

The subhalo mass function has been studied most com-
monly through N -body simulations in the literature. We
show m2dNsh/dm obtained by the numerical simulations
and by our analytical model [Eq. (28)] in Fig. 2. In
the top panel of Fig. 2, we compare the subahalo mass
function for host masses Mhost = 1.8 ⇥ 1012M� and
5.9⇥1014M� at z = 0 with the fitting functions to the re-
sults of Refs. [20] and [44], respectively. In both cases, the
simulations and analytical models show reasonable agree-
ment, while our model predicts fewer subhalos. In the
middle panel of Fig. 2, we compare the mass function at
z = 2 and z = 4 compared with results of Ref. [45], for the
host that has the mass ofMhost = 1013M� at z = 0. This
again shows very good agreement between the two ap-
proaches, where the subhalos are resolved in the numer-
ical simulations. Our model can also be applied to cases
of even smaller hosts. In the bottom panel of Fig. 2, we
compare the subhalo mass function for Mhost = 106M�
and 107M� at z = 5 with the results of the Phi-2 simu-
lations in Sec. III B. Down to the resolution limit of the
simulations that are around 500–1000M�, both the cal-
culations agree well. Hence, the subhalo mass functions
from our analytical model is well calibrated to the re-
sults of the numerical simulations at high masses, and
since it is physically motivated, the behavior at low-mass
end down to very small masses can also be regarded as
reliable.

In Fig. 3, we show the slope of the subhalo mass func-
tion

� ↵ =
d ln(dNsh/dm)

d lnm
, (29)

(i.e., dNsh/dm / m�↵) for the same models as in Fig. 2.
We find that the slope lies in a range between �2 and
�1.8 for a large range of m except for lower and higher
edges where the mass function features cuto↵s. This is
consistent with one of the findings from the numerical
simulations, again confirming validity of our analytical
model.

Fig. 4 shows the mass fraction of the host mass that is
contained in the form of the subhalos:

fsh =
1

Mhost

Z 0.1Mhost

10�6M�

dm m
dNsh

dm
. (30)

At z = 0, this fraction is smaller than ⇠10% level up
to cluster-size halos. We also find that fsh is larger for
higher redshifts, as the e↵ect of tidal mass loss is sup-
pressed compared with the case of z = 0.

FIG. 2. Mass function of subhalos and comparison with the
results of numerical simulations. Top: Comparison at z = 0.
Thick (blue) lines correspond to the case of Mhost = 1.8 ⇥
1012M� while thin (red) lines to 5.9 ⇥ 1014M�. Solid lines
show the mass function obtained in our analytical modelings
and dashed lines show those obtained by N-body simulations
in Tab.I. We also add fitting fnctions in [20] for Mhost =
1.8⇥1012M� and in [44] for 5.9⇥1014M�. Middle: Cases of
Mhost = 2.3⇥1012M� at z = 2 (solid, blue lines) and Mhost =
4.7 ⇥ 1011M� at z = 4 (thin, red lines). We compare our
results with those of Mhost = 1013M� at z = 0 in [45] evolved
back to z = 2 and z = 4, respectively. Bottom: Comparison
at z = 5. We show cases of Mhost = 106M� (solid, blue
lines) and 107M� (thin, red lines). For details of our N-
body simulations, see Sec. III B). Note that some of the lines
corresponds to our N-body simulations extends higher than
those of the host mass because we stacked halos in mass bins
when deriving mass functions.

Subhalo mass function: 
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from our analytical model is well calibrated to the re-
sults of the numerical simulations at high masses, and
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We find that the slope lies in a range between �2 and
�1.8 for a large range of m except for lower and higher
edges where the mass function features cuto↵s. This is
consistent with one of the findings from the numerical
simulations, again confirming validity of our analytical
model.
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contained in the form of the subhalos:
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At z = 0, this fraction is smaller than ⇠10% level up
to cluster-size halos. We also find that fsh is larger for
higher redshifts, as the e↵ect of tidal mass loss is sup-
pressed compared with the case of z = 0.

FIG. 2. Mass function of subhalos and comparison with the
results of numerical simulations. Top: Comparison at z = 0.
Thick (blue) lines correspond to the case of Mhost = 1.8 ⇥
1012M� while thin (red) lines to 5.9 ⇥ 1014M�. Solid lines
show the mass function obtained in our analytical modelings
and dashed lines show those obtained by N-body simulations
in Tab.I. We also add fitting fnctions in [20] for Mhost =
1.8⇥1012M� and in [44] for 5.9⇥1014M�. Middle: Cases of
Mhost = 2.3⇥1012M� at z = 2 (solid, blue lines) and Mhost =
4.7 ⇥ 1011M� at z = 4 (thin, red lines). We compare our
results with those of Mhost = 1013M� at z = 0 in [45] evolved
back to z = 2 and z = 4, respectively. Bottom: Comparison
at z = 5. We show cases of Mhost = 106M� (solid, blue
lines) and 107M� (thin, red lines). For details of our N-
body simulations, see Sec. III B). Note that some of the lines
corresponds to our N-body simulations extends higher than
those of the host mass because we stacked halos in mass bins
when deriving mass functions.
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• Boost can be as large as ~1 (3) for 
galaxies (clusters)


• Boost factors are higher at larger 
redshifts, but saturates after z = 1


• For one combination of host mass and 
redshifts (M, z), the code takes only 
~O(1) min to calculate the boost on a 
laptop computer

Annihilation boost
Hiroshima, Ando, Ishiyama, Phys. Rev. D 97, 123002 (2018)

Ando, Ishiyama, Hiroshima, Galaxies 7, 68 (2019)

w/ up to sub3-subhalos
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.10% for the hosts with Mhost � 1013
M�. The bottom left panel of Figure 5 shows the luminosity

ratio Ltotal/Lhost,0 = 1 � f
2
sh + Bsh (Equation 15) as a function of the host masses for various values

of the redshifts. The bottom right panel of Figure 5 shows comparison with the results of the other
work [41,44,48]. We note that the analytic models do not rely on the subhalo mass function prepared
separately, as the models can provide them in a self-consistent manner. The resulting boost factors are,
however, found to be more modest than the previous results. This is mainly because the subhalo mass
function adopted in the literature is larger than the predictions of the analytic models. However, they
might be larger because of halo-to-halo variance. See discrepancy between predictions of the subhalo
mass function for the 1.8 ⇥ 1012

M� halo by Hiroshima et al. [50] and the result of Springel et al. [37]
shown in the top left panel of Figure 4.

Figure 5. The subhalo boost factor Bsh as a function of the host mass M200 for various values of redshift
z (top left) based on the analytic models by Hiroshima et al. [50]. The effect of subn-subhalos, up to
n = 3, is shown in the right panel in the case of z = 0. Note that the three curves except for n = 0
overlap with each other. The bottom left panel shows the ratio between the total luminosity including
the subhalo boost and the luminosity in absence of subhalos, Ltotal/Lhost,0 = 1 � f

2
sh + Bsh. The bottom

right panel shows comparison of Bsh between several models at z = 0: G12 [41], SC14 [44] and M17 [48]
are based on N-body calculations while H18 [50] is on analytic calculations. The subhalo mass function
for the N-body results is assumed to be dNsh/dm µ m

�a.

Finally, for convenience of the reader who might be interested in using the results without going
into details of the formalism, we provide fitting functions for both the subhalo mass functions and the
annihilation boost factors. They are summarized in Appendix A.
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Finally, for convenience of the reader who might be interested in using the results without going
into details of the formalism, we provide fitting functions for both the subhalo mass functions and the
annihilation boost factors. They are summarized in Appendix A.
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Dwarf J factors

• Estimates of density profiles and hence J factors of dwarf 
galaxies are based on stellar kinematics data


• J factors of promising dwarfs are ~1019 GeV2/cm5 or larger


• But ultrafaint dwarfs do not host many stars
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J = ∫ dΩ∫ dℓρ2(r(ℓ, Ω))
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Dwarf J factors
12 K. Hayashi et al.

Figure 5. Comparison of J0.5 (top) and D0.5 (bottom) calculated from axisymmetric and spherical models. The red symbols denote the
results of this work. the blue, green, yellow and black ones are estimated by Geringer-Sameth et al. (2015b), Bonnivard et al. (2015b),
Ackermann et al. (2015) and Simon et al. (2015), respectively.

c� 2016 RAS, MNRAS 000, 1–17

Hayashi et al., Mon. Not. R. Astron. Soc. 461, 2914 (2016)



Estimates of density profiles
• Estimates of rs and ρs usually rely on Bayesian statistics:


• If data are not constraining, the posterior depends on prior 
choices


• Usually log-uniform priors are chosen for both rs and ρs 

• Doing frequentist way is very challenging, which is done only 
for classical dwarfs (Chiappo et al. 2016, 2018)

P(rs, ρs |d) ∝ P(rs, ρs)ℒ(d |rs, ρs)



Impact of satellite prior
• Having small data only does not 

break the degeneracy between rs 
and ρs

• Black: Likelihood contours
• Green: log [J/(GeV2/cm5)]
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• Cosmological arguments have been 
adopted to chop off upper regions 
of the parameter space (e.g., 
Geringer-Sameth et al. 2015)

• Satellite prior does this job naturally 
as well as breaks the degeneracy

• This is hard to achieve with 
simulations as they are limited by 
statistics of finding dwarf 
candidates
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Impact of satellite prior

• Using satellite priors will 
systematically shift the J 
distribution toward lower values


• But this depends on satellite 
formation models

Ando, Geringer-Sameth, Hiroshima, Hoof, Trotta, Walker, in preparation
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Cross section constraints
• Adopting satellite priors 

weaken the cross section 
constraints by a factor of 2-7 

• The effect is relatively 
insensitive to condition of 
satellite formation: robust 
prediction 

• Thermal cross section can be 
excluded only up to 20-50 GeV


• Also very relevant for wino 
dark matter targeted by CTA
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Conclusions
• Correlation between gamma-ray (Fermi-LAT) and weak-

lensing (DES) data has been detected 


• Dark matter interpretation is only slightly preferred over 
purely astrophysical scenario, but required cross section is 
very high and also depends how to model subhalos


• We developed analytic models which yielded relatively 
modest annihilation boost ~O(1) for galaxies


• Applying the same models weakens the dwarf constraints 
on the annihilation cross section by a factor of 2-7



Backup



Comparison with VL-II simulations

Ando, Geringer-Sameth, Hiroshima, 
Hoof, Trotta, Walker, in preparation


