

Nicoletta Krachmalnicoff <u> mkrach@sissa.it</u>

Cosmic Acceleration Workshop Kavli IPMU, Kashiwa, Japan February 17th, 2020

Current status and future challenges for CMB experiments

Cosmic History

Electron

WALLANDA .

m

380.

Last scattering surface ~ 3000K z~1100

103

Second

Planck satellite

- → 3rd CMB satellite, in operation from 2009 to 2013
- ➡ **Two instruments** (on the same focal plane) with different detector teconlogies (radiometers at low freqs vs. bolometers ath high freqs)
- → 9 frequencies (**30-897 GHz**), 7 polarized

★ 2013: HFI and LFI total intensity data from 15.5 months and polarization (48 month) ★ 2018 (Legacy): Full datasets from HFI and LFI

Credits: Planck Collaboration & ESA

★ 2015: HFI temperature and small scale polarization (29 months) + LFI temperature

3 6 1 2018, V and X -3 Colaboration eba from Planck Adapted

Planck ACDM parameters

Ω	h^2
)

 $\Omega_c h^2$

 100θ

 $\ln(10^{10}A_{c})$

τ

*N*_S

Barion density

Dark-matter density

Acoustic scale

Optical depth to reionization

Scalar perturbation aplitude

Scalar spectral index

Planck Collaboration 2018, VI

Planck ACDM parameters

 $\Omega_{h}h^{2}$

 $\Omega_c h^2$

 100θ

 $\ln(10^{10}A_{c})$

 \mathcal{T}

*N*_S

Barion density

Dark-matter density

Acoustic scale

Optical depth to reionization

Scalar perturbation aplitude

Scalar spectral index

Planck Collaboration 2018, VI

Optical depth to reionization

- In total intensity the effect is to dump the fluctuations inside the horizon degerate with As
- ➡ Bump at low-ell in polarization
- Measure at low-ell is making difficult by systematics and foreground!

 $\sigma(\tau)_{CV} \simeq 0.002$

 $\int_{0}^{2} \frac{10^{3}}{10^{1}}$ 10^{1} 10^{-1} 10^{-3} 10^{-5}

Planck large scale maps (2015)

2015

2015

-2

High dipole residual due to $I \rightarrow P$ leakage

100

 $d(t) = K \left[I(\hat{n}) + \cos\left(2\alpha(t)\right) Q(\hat{n}) + \sin\left(2\alpha(t)\right) U(\hat{n}) \right] + n(t)$

credits: Planck Collaboration and L. Pagano

Planck large scale maps (2018)

Sroll1

Sroll1

-2

-2

143

100

$\tau = 0.0544^{+0.007}_{-0.008}$

credits: Planck collaboration and L. Pagano

SRoll2 large scale maps (2019)

143

Better foreground modeling

$\tau = 0.0566^{+0.005}_{-0.006}$

Pagano et al. 2019

Current and future CMB observations

4000

Current constraint on r: (amplitude of primordial B-modes) r < 0.06 (95 % C.L.)

from BICEP2/Keck + WMAP/Planck Bicep2/Keck array collaboration 2018

Current and future CMB observations

Current and future CMB observations

➡ From ground: Simons Observatory (2022)

* 3 SAT (0.5m), 1 LAT (6m) * frequency coverage: 27-280 (6 bands) * sky coverage: 10-40% $*\ell \gtrsim 30$ * baseline on r: $\sigma(r) \simeq 0.003$ From space: New cool LB LiteBIRD (2027) logo I cannot show * full sky coverage yet $*\ell \leq 200$ * 15 frequency bands 40-400 * forecast on r: $\sigma(r) \simeq 0.6 \times 10^{-3}$

Snapshot on LiteBIRD

- → LB will be the only experiment having access to the very large scales, fundamental for a relihable reconstruction of the primordial B-mode spectrum
- \Rightarrow With upper limit r < 0.001 Starobinsky-like inflation would be ruled out

 \rightarrow Cosmic variace limited measurment of \mathcal{T} , allowing tight constraint on $\sum m_v$

CMB Polarized Foregrounds

Planck Collaboration X, 2015

FOREGROUND AWERNESS TIMELINE

Current anxiety plateu

... they start to add also low freq channels to monitor SYNCH emission

~2018 Time [yrs]

Foreground contamination to B-modes

Krachmalnicoff et al. 2018

Component separation

bias << statistical residuals

this is what we are looking for

sigma(r=0)<0.00057

of independent patches

Foreground studies

Conclusions

- and evolution of our Universe
- CMB observations have already allowed to constrain with impressive precision cosmological parameter
- → ...but a lot still needs to be unvailed
- → This decade will be fundamental especially to put contraints on inflation thourgh CMB polarizations, with singery of ground based and satellite experiments
- → Challanges are huge (systematics and foregrounds) but we are ready to face them! Stay tuned!

→ CMB is probably the most powerful tool we have to study the history

