

SUSY model for dark matter and muon g-2

Norimi Yokozaki (Tohoku Univ.)

2019/2/18, Kavli IPMU

Evidences for physics beyond SM

Despite the phenomenological success, the Standard Model (SM) of particle physics has unsettled issues

- No dark matter candidate
- Hierarchy problem (stability of the Higgs potential)
- Unification of the fundamental forces
- Muon g-2 anomaly

etc …

Anomalous magnetic moment (g-2)

Fermion feels potential in the external magnetic field

$$H = -\vec{\mu}_l \cdot \vec{B} \qquad l = e, \mu, \tau$$

Magnetic moment $\vec{\mu}_l$ is proportional to the spin

 a_{μ} is very precisely measured at the E821 experiment (BNL) Fermilab is expected to release the new result within this year!

(similar to the size of W boson contribution)

Muon g-2 anomaly

Muon g-2 anomaly indicates the existence of new particles of O(100) GeV, within the reach of LHC and future collider experiments

Supersymmetry

Introducing sparticles with half-spin differences to SM particles

[CERN & IES de SAR]

Minimal supersymmetric standard model (MSSM)

Supersymmetry

Introducing sparticles with half-spin differences to SM particles

[CERN & IES de SAR]

Minimal supersymmetric standard model (MSSM)

Muon g-2 anomaly in MSSM

(bino: superpartner of U(1)_Y gauge boson)

Muon g-2 anomaly suggests smuons and bino of O(100)GeV within the reach of LHC

[Lopez, Nanopoulos and Wang, 1994; Chattopadhyay and Nath, 1996; Moroi, 1996]

However, the LHC data excludes squarks and gluino lighter than ~3000 GeV, suggesting heavy SUSY particles

How can we explain the muon g-2 anomaly?

Mass hierarchy in SM

Standard model particles have a broad mass spectrum due to Yukawa couplings

Mass hierarchy in MSSM

SUSY particles can also have hierarchical masses rather than common mass, due to the Yukawa couplings

SUSY breaking

It determines the masses of SUSY particles

- Higgs doublets obtain large tachyonic SUSY breaking masses
- Squarks and sleptons are massless at the tree-level, avoiding the SUSY flavor problem
- Higgs loop effects induce the mass hierarchy of SUSY particles
 -> Higgs mediation

[Yin, NY, 2016] [Cox, Han, Yanagida, NY, 2018]

3rd gen. >> 1st/2nd gen.

One-loop diagrams induce large positive squared masses for the third generation squarks and sleptons

Third generation sfermions are as heavy as ~10TeV

Consistent with the Higgs boson mass of 125 GeV Avoiding the instability of the stau-Higgs potential

3rd gen. >> 1st/2nd gen.

Two-loop diagrams induce positive smuon/selecton squared masses of O((100 GeV)²)

Consistent with the muon g-2 experiment

3rd gen. >> 1st/2nd gen.

With this mass spectrum, we can explain the muon g-2 anomaly while avoiding all the existing constraints

Dark matter in MSSM

SUSY dark matter is searched in various experiments such as LUX, PandaX and XENON

The fact excludes a conventional SUSY dark matter scenario

Dark matter in MSSM

Because of the severe constraints, we consider the bino dark matter

[Dan Hooper, 2019]

How can we obtain the correct relic abundance?

Coannihilation

In early universe, transition between bino and wino or slepton is rapid (wino: superpartner of SU(2)L gauge boson)

In order to have a large enough transition rate when the bino freezes out,

the masses of bino and wino or slepton should be nearly degenerated

Coannihilation

The relic abundance of bino dark matter is efficiently reduced

Whole viable regions are consistent with dark matter and LHC constraints

Summary

We are led to Higgs mediation

Summary

Higgs mediation predicts a unique SUSY mass spectrum Smuons and selectrons can be checked at the LHC Bino dark matter is a perfect dark matter candidate with the help of coannihilation

Backup slides

Non-universal gaugino masses from product group unification

- In SUSY GUT models, there exists a serious fine-tuning problem: doublet-triplet splitting problem
- SU(5)xSU(3)HxU(1)H model solves this problem elegantly [Yanagida, 1995; Hotta, Izawa, Yanagida, 1996]
- Non-universal gaugino masses naturally arise in this GUT model
- Gauge couplings (approximately) unify for large hidden gauge couplings

The corrections can be small

For the gaugino masses, the relevant Lagrangian is