

Diversity of the central dark matter densities in the Galactic dwarf spheroidals

Kohei Hayashi (JSPS fellow)

Institute for Cosmic Ray Research, The University of Tokyo

公募研究(18H04359)

Thank you very much for supporting!

- Revisiting the core-cusp problem in the Galactic dwarf spheroidal galaxies Hayashi & Chiba 2020, ApJL, submitted
- The diversity of dark matter density profiles in the Galactic dwarf spheroidals Hayashi, Ishiyama & Chiba 2020, ApJ, to be submitted very soon
- Formation of massive globular clusters with dark matter and its implication on dark matter annihilation
 - Wirth, Bekki & Hayashi 2020, MNRAS Letters, to be submitted very soon
- J-factor estimation of Draco, Sculptor and Ursa Minor dwarf spheroidal galaxies with the member/foreground mixture model Horigome, Hayashi, Ibe et al. 2020, MNRAS, submitted
- Constraining dark matter annihilation with HSC Low Surface Brightness Galaxies Hashimoto, et al. (incl. KH) 2020, JCAP, 01, 059
- Non-sphericity of ultra-light axion dark matter halos in the Galactic dwarf spheroidal galaxies

Hayashi & Obata 2019, MNRAS, 491, 615

• The stellar halo of the Milky Way traced by blue horizontal-branch stars in the Subaru Hyper Suprime-Cam Survey

Fukushima, et al. (incl. **KH**) 2019, PASJ, 71, 72

 Effects of mass models on dynamical mass estimate: the case of ultra diffuse galaxy NGC1052-DF2

Hayashi & Inoue 2018, MNRAS Letters, 481, 59

• Dark halo structure in the Carina dwarf spheroidal galaxy: joint analysis of multiple stellar components

Hayashi, Fabrizio, Lokas, et al. 2018, MNRAS, 481, 250

The core-cusp problem in dwarf spheroidal galaxies

The core-cusp problem: the controversial issue on CDM theory

Moore 1994, de Blok 2000, Gilmore et al. 2007, Oh et al. 2015, Read et al. 2017

Core-cusp problem?

CORE OR CUSP?

CORE

A METHOD FOR MEASURING (SLOPES OF) THE MASS PROFILES OF DWARF SPHEROIDAL GALAXIES

Matthew G. Walker 1,2,3 & Jorge Peñarrubia^2

Dark matter cores and cusps: the case of multiple stellar populations in dwarf spheroidals

N. C. Amorisco* and N. W. Evans*

THE KINEMATIC STATUS AND MASS CONTENT OF THE SCULPTOR DWARF SPHEROIDAL GALAXY G. Battaglia,^{2,3} A. Helmi,³ E. Tolstoy,³ M. Irwin,⁴ V. Hill,⁵ and P. Jablonka⁶

THE DARK MATTER DENSITY PROFILE OF THE FORNAX DWARF John R. Jardel and Karl Gebhardt

The core size of the Fornax dwarf spheroidal

N. C. Amorisco,^{1,2} A. Agnello¹ and N. W. Evans^{1*}

Kinematics of Milky Way satellites in a Lambda cold dark matter universe

CUSP

Louis E. Strigari,^{1*} Carlos S. Frenk² and Simon D. M. White³

MEASURING DARK MATTER PROFILES NON-PARAMETRICALLY IN DWARF SPHEROIDALS: AN APPLICATION TO DRACO

JOHN R. JARDEL¹, KARL GEBHARDT¹, MAXIMILIAN FABRICIUS², NIV DRORY³, AND MICHAEL J. WILLIAMS²

On the Dark Matter profile in Sculptor: Breaking the β degeneracy with Virial Shape Parameters

Thomas Richardson^{*1}, Malcolm Fairbairn^{†1}

Dynamical models for the Sculptor dwarf spheroidal in a Λ CDM universe

Louis E. Strigari¹, Carlos S. Frenk² and Simon D. M. White³

The case for a cold dark matter cusp in Draco

J. I. Read^{1*}, M. G. Walker², P. Steger³

UNCLEAR

Model comparison of the dark matter profiles of Fornax, Sculptor, Carina and Sextans

Maarten A. Breddels and Amina Helmi

Orbit-based dynamical models of the Sculptor dSph galaxy

Maarten A. Breddels,^{1 \star} A. Helmi,¹ R. C. E. van den Bosch,² G. van de Ven² and G. Battaglia³

COMPLEXITY ON DWARF GALAXIES SCALE: A BIMODAL DISTRIBUTION FUNCTION IN SCULPTOR MAARTEN A. BREDDELS AND AMINA HELMI

> Cores in Classical Dwarf Spheroidal Galaxies? A Dispersion-Kurtosis Jeans Analysis Without Restricted Anisotropy

Thomas Richardson^{*1}, Malcolm Fairbairn^{†1}

A UNIVERSAL MASS PROFILE FOR DWARF SPHEROIDAL GALAXIES?*

MATTHEW G. WALKER¹, MARIO MATEO², EDWARD W. OLSZEWSKI³, JORGE PEÑARRUBIA¹, N. WYN EVANS¹, AND GERARD GILMORE¹

5

1. Observed dSphs are **NOT** spherical shape

2. DM models predict **NON-spherical** DM halo

credit: Aquarius project

Non-spherical models

Hayashi & Chiba 2012, 2015b, Hayashi et al. 2016

Dark Matter profiles in the MW dSphs

Dark Matter Density Profiles of the biggest and smallest dSphs

14

Hayashi & Chiba (2020, submitted)

What's the origin of the diversity?

What's the Origin of the diversity?

<u>CDM+baryon can explain the observed central DM</u> <u>density profiles in the classical dSphs.</u>

Future Prospects

- Revisit core/cusp problem using non-spherical mass modeling.
- There is no core-cusp problem in the classical dSphs, but the diversity of the DM inner slopes exists.
- The diversity could be explained by CDM+baryon physics, so far.
- For DM studies in the dSphs, deep and wide spec. survey by Subaru-PFS is absolutely needed.

Kohei Hayashi