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The core-cusp problem 
in dwarf spheroidal galaxies
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The core-cusp problem: the controversial issue on CDM theory
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Core-cusp problem?
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Sculptor

q’=b/a=0.68

Ursa Minor

q’=0.44

1. Observed dSphs are  
NOT spherical shape

2. DM models predict  
NON-spherical DM halo

3. 1D spatial information
credit: Aquarius project

Major systematic uncertainty: spherical symmetry
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Non-spherical dynamical mass models

Spherical Non-Spherical

Contours of line-of-sight velocity dispersion 
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Hayashi & Chiba (2012)



Non-spherical models
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Non-spherical dark matter density profile
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Dark Matter profiles 
in the MW dSphs
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Dark Matter Density Profiles of the biggest and smallest dSphs

Draco
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Hayashi & Chiba (2020, submitted)



14

cuspy

Major axis [kpc]

D
ar

k 
m

at
te

r d
en

si
ty

 [M
su

n/
kp

c3
]

cuspy cuspy cuspy

cuspycuspy

γ = 1.03+0.14
−0.15

γ = 1.16+0.44
−0.66

γ = 0.45+0.41
−0.31

γ = 0.77+0.23
−0.27 γ = 0.73+0.44

−0.45

γ = 1.35+0.32
−0.61

γ = 0.99+0.38
−0.48 γ = 0.44+0.40

−0.29

less cuspy less cuspy

The diversity of DM density profiles of dSphs

Hayashi & Chiba (2020, submitted)



What’s the origin of 
the diversity?
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What’s the Origin of the diversity?

CDM+baryon can explain the observed central DM 
density profiles in the classical dSphs.

Hayashi & Chiba (2020, submitted)
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Future Prospects

CDM+baryon can explain the observed central DM 
density profiles in the classical dSphs.

Hayashi & Chiba (2020, submitted)
To ensure our conclusion: 
1. Determine the DM profiles 
in the UFDs 

2. Pin down the DM inner 
slopes in the classical 
dSphs 

The wide-field spec. survey 
with Subaru-PFS is 
absolutely essential. 

Subaru Prime Focus Spectrograph
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Summary

• Revisit core/cusp problem using non-spherical mass modeling. 

• There is no core-cusp problem in the classical dSphs, but the 
diversity of the DM inner slopes exists. 

• The diversity could be explained by CDM+baryon physics, so far. 

• For DM studies in the dSphs, deep and wide spec. survey by 
Subaru-PFS is absolutely needed. 

Kohei Hayashi


