
Primordial black holes
with primordial non-Gaussianitity

Shuichiro Yokoyama�KMI, Nagoya Univ.�

����(``koubo kenkyu”, open-solicited researches) 18H04356

����

	�������������������



Brief intro. for PBH

• Primordial Black Hole (PBH)
ü BHs formed in the early Universe (after inflation)

ü direct gravitational collapse of a overdense region

ü mass of formed BH ~ Hubble horizon mass at the formation

Hawking (1971)
Carr and Hawking (1974), …

straints over the full relevant mass range. The code em-
ployed in our calculations is similar to the one used by
Kawasaki et al. [164] in studying the effects of decaying
particles on BBN.

The plan of the paper is as follows. Section II describes
the background equations and defines various quantities
related to PBHs. Section III reviews black hole evaporation
and the effects of quark-gluon emission. Section IV then
discusses the constraints deriving from cosmological nu-
cleosynthesis effects, while Sec. V discusses the ones
associated with the photon background. Section VI com-
bines both constraints in a single !ðMÞ diagram for the
mass range 109– 1017 g and then discusses some other
(mainly less stringent) constraints in this mass range.
Section VII summarizes the most important limits in
mass ranges associated with larger nonevaporating PBHs.
Section VIII collects all the constraints together into a
single ‘‘master’’ !ðMÞ diagram and draws some general
conclusions. It should be stressed that Secs. VI and VII
include quite a lot of review of previous work but it is
useful to bring all the results together and we have eluci-
dated earlier work where appropriate. Throughout most of
this paper we assume that the PBHs have a monochromatic
mass function, but allowing even a small range of masses
around 1015 g would have interesting observational con-
sequences, especially for the EGB limits. However, this
discussion is rather technical, so it is relegated to an
Appendix.

II. DEFINITIONS AND DESCRIPTION OF
BACKGROUND COSMOLOGY

In this section, we present some relevant definitions and
background equations. We assume that the standard
!CDM model applies, with the age of the Universe being
t0 ¼ 13:7 Gyr, the Hubble parameter being h ¼ 0:72 and
the time of photon decoupling being tdec ¼ 380 kyr
[165,166]. Throughout the paper we put c ¼ @ ¼ kB ¼
1. The Friedmann equation in the radiation era is
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where g$ counts the number of relativistic degrees of
freedom. This can be integrated to give
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where g$ and T are normalized to their values at the start of
the BBN epoch. Since we are only considering PBHs
which form during the radiation era (the ones generated
before inflation being diluted to negligible density), the
initial PBH mass M is related to the ‘‘standard’’ particle
horizon massMPH (which is not the actual particle horizon
mass in the inflationary case) by
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Here $ is a numerical factor which depends on the details
of gravitational collapse. A simple analytical calculation
suggests that it is around ð1=

ffiffiffi
3

p
Þ3 % 0:2 during the radia-

tion era [4], although the first hydrodynamical calculations
gave a somewhat smaller value [5]. The favored value has
subsequently fluctuated as people have performed more
sophisticated computations but now seems to have returned
to the original one [167]. However, as mentioned earlier,
the effect of critical phenomena could in principle reduce
the value of $, possibly down to 10& 4 [168], as could a
reduction in the pressure [44– 46]. On the other hand, if the
overdensity from which the PBH forms is ‘‘noncompen-
sated’’ (i.e. not surrounded by a corresponding underden-
sity), subsequent accretion could generate an eventual PBH
mass well above the formation mass, leading to an ‘‘effec-
tive’’ value of $ much larger than 1 [6]. In view of the
uncertainties, we will not specify the value of $ in what
follows.
Throughout this paper we assume that the PBHs have a

monochromatic mass function, in the sense that they all
have the same mass M. This simplifies the analysis con-
siderably and is justified providing we only require limits
on the PBH abundance at particular values ofM. Assuming
adiabatic cosmic expansion after PBH formation, the ratio
of the PBH number density to the entropy density, nPBH=s,
is conserved. Using the relation # ¼ 3sT=4, the fraction of
the Universe’s mass in PBHs at their formation time is then
related to their number density nPBHðtÞ during the radiation
era by
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where the subscript ‘‘i’’ indicates values at the epoch of
PBH formation and we have assumed s ¼ 8:55 '
1085 Gpc& 3 today. g$i is now normalized to the value of
g$ at around 10

& 5 s since it does not increase much before
that in the standard model and that is the period in which
most PBHs are likely to form. The current density parame-
ter for PBHs which have not yet evaporated is given by
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(We focus on the PBH formed in the radiation-dominated era)

(also Zeldovich and Novikov (1967)) 
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Why PBHs?

üa candidate of dark matter

üa "probe” of Hawking radiation

üa source of LIGO events

HSC

EROS

OGLE
Kepler

Femtolensing

NS

WD

Accretion 
(CMB)

Accretion 
(X-ray-II)

Accretion 
(X-ray)

Accretion 
(Radio)

DF

UFDs

Eri-II

Millilensing

WB

Caustic

Accretion disk 
(CMB)

Accretion disk 
(CMB-II)

Figure 11: Upper limit on fPBH = ⌦PBH/⌦DM for various PBH mass (assuming monochro-
matic mass function). Blue curves represent lensing constraints by EROS [119], OGLE [122],
Kepler [125], HSC [126] and Caustic [128] (see 3.1.1). Black curves represent constraints by the
millilensing [135] (3.1.2) and the femtolensing [141] (3.1.3). Orange curves represent dynamical
constraints obtained by requiring that existent compact objects such as white dwarfs (WDs) [144]
(3.2.1) and neutron stars (NSs) [145] (3.2.2) as well as the wide binaries (WBs) [154] (3.2.3) are
not disrupted by PBHs. Green curves represent constraints by the dynamical friction (DF) on
PBHs [155] (3.2.6), the ultra-faint dwarfs (UFDs) [156], and Eridanus II [156] (3.2.5). Red curves
represent constraints by the accretion onto the PBHs such as CMB for the case of the spherical
accretion [169] and the case of the accretion disk [174] with two opposite situations where the
sound speed of the baryonic matter is greater (labeled by CMB) or smaller (labeld by CMB-II)
than the relative baryon-dark matter velocity (3.3.1), radio, and X-rays [176,183] (3.3.2).

42

Sasaki et al. (2018)

©LIGO/VIRGO collaboration

Nakamura et al.(1997),

Sasaki et al. (2016), Bird et al. (2016), …



Current situation (conservative )

PTA

Possible detection

by LIGO/VIRGO ?

(or upper limit)

Dark matter window !!

Detected by OGLE?

Niikura, Takada, SY+ 1901.07120, …

(see Takada-san’s talk)



Picture of PBH formation

• Super-horizon, probability distribution func.

PBH would be formed 
at horizon reentry

PDF

Gaussian

Gaussian with NG
(fNL>0)

A region where                   would be BH.

Formation probability (abundance) is



PBH is rare..

small  beta çè rare object

33

limit arises because PBHs larger than this dominate the total density before they evaporate, in which case the final
cosmological photon-to-baryon ratio is determined by the baryon asymmetry associated with their emission. Recently
Alexander and Mészáros [136] have advocated an extended inflationary scenario in which evaporating PBHs naturally
generate the dark matter, the entropy, and the baryon asymmetry of the Universe. This triple coincidence applies
providing inflation ends at t ∼ 10−23 s, so that the PBHs have an initial mass M ∼ 106 g. This just corresponds to
the upper limit indicated in Eq. (7.14), which explains one of the coincidences. The other coincidence involves the
baryon asymmetry generated in the evaporations. It should be stressed that the limit (7.13) still applies even if there
is no inflationary period but then extends all the way down to the Planck mass.

VIII. CONCLUSIONS

All the limits considered in this paper are brought together in a master β′(M) diagram in Fig. 9. In particular,
the constraints on f(M) discussed in the previous section have been converted into limits on β′(M) using Eq. (7.1).
We also include the relic limit associated with Eq. (7.13)—with the broken line to the left applying if there is no
inflation—and the entropy limit associated with Eq. (6.8). The latter is also shown broken since it is much weaker
than the LSP constraint, albeit more secure. Most of the limits are associated with various caveats, but where
they are reasonably firm, only the dominant one is indicated for each value of M . Nevertheless, we include several
overlapping ones at high masses. Figure 9 covers the entire mass range from 1–1050 g and involves a wide variety of
physical effects. This reflects the fact that PBHs provide a unique probe of the early Universe, gravitational collapse,
high-energy physics, and quantum gravity. In particular, they can probe scales and epochs inaccessible by any other
type of cosmological observation.
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FIG. 9. Master β′(M) constraints diagram for the mass range 1–1050 g, the acronyms being specified in the caption to Fig. 8.

Although none of the effects discussed in this paper provides positive evidence for PBHs, Fig. 9 illustrates that
even the nondetection of PBHs allows one to infer important constraints on the early Universe. In particular, the
limits on β(M) can be used to constrain all the PBH formation mechanisms described in Sec. I. Thus, for example,
they constrain models involving inflation, a dustlike phase, and the collapse of cosmic strings or domain walls. They
also restrict the form of the primordial inhomogeneities (whatever their source) and their possible non-Gaussianity.
Finally, they constrain less conventional models, such as those involving a variable gravitational constant or extra
dimensions. However, it must be emphasized that the form of the β(M) limits may itself change in such models, so
it is not just a matter of applying the form of the limits derived in this paper directly. These issues are too broad to
address here but they provide much scope for future work.
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Sendouda et  al. (2009)



Picture of PBH formation

• Super-horizon, probability distribution function (PDF)

PBH would be formed 
at horizon reentry

PDF

Gaussian

Gaussian with NG
(fNL>0)

A region where                   would be BH.

Formation probability (abundance) is

è non-Gaussian feature of primordial (super-horizon) fluctuations should be important !!



PBH abundance with nG
Yoo, Gong, SY, 1906.06790

Any concrete example ?

Simple local type nG for initial curvature perturbations

(leading order in gradient expansion?) (34)

where a and H are respectively a scale factor and a Hubble parameter and (aH)�1 gives
a comoving Hubble scale. In this expression, e2Rc can be absorbed into the redefinition of
the local scale factor a [12]. We neglect a non-linear term (rRc)2. Due to the spatial
derivative in the right hand side in the above equation, we see that the long wavelength
� modes beyond the horizon scale at the PBH formation should be much suppressed.
This means that two overdense regions at x1 and x2 with |x1 � x2| � R ' (aH)�1 at

the PBH formation can never correlate with each other, that is, ⇠(2)
local(c)(x1,x2) ' 0 with

|x1 � x2| � local.
Therefore, from Eq. (33), we find that the higher order correlation functions of the

density contrast should be required for the clustered PBHs, that is, ⇠PBH(x1,x2) 6= 0
with |x1 � x2| � local. Let us assume that the comoving curvature perturbations has a
so-called local-type non-Gaussianity which is characterized by

Rc(x) = Rc,G(x) +
3

5
fNL

�
Rc,G(x)

2 � hR2

c,Gi
�
, (35)

where Rc,G denotes a linear Gaussian part. For such non-Gaussian curvature perturba-
tions, the density contrast on comoving slices can be written as

�(x) '
✓
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6

5
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◆
�G(x), (36)

with

�G(x) := �4

9
(aH)�2 r2 Rc,G(x). (37)

Here, we are interested in rare and high peaks which would be black holes. Around such
a peak of Rc,G its spatial derivative is expected to vanish, and hence we have assumed
that (rRc,G)2 might be neglected compared to Rc,G �G [18]. However, note that these
two terms (rRc,G)2 and Rc,G �G should be of the same order on the average because of
h�i = 0 [18]. In the following calculation, in order to take into account this assumption
consistently, we assume hRc,G �Gi = 0.

Thus, for the expression (36), ⇠(2)
local(c)(x1,x2) can be evaluated as

⇠(2)
local(c)(x1,x2) = W̃2(x1,x2;y1,y2)h�(y1)�(y2)i

= W̃2(x1,x2;y1,y2)h�G(y1)�G(y2)i

+
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8

Figure 3: (Left panel) rm(µ, k∗), (middle panel) C̄max(µ, k∗), Cth and µ(k∗)
th , and (right panel)

M̄(µ, k∗) for σ = 0.1 and 3fNL/5 = 1.

As we have mentioned, for the extended power spectrum, we find that the maximum value
of M is realized at k∗ = 0 for each µ. Therefore, for a given value of M , the minimum value of
µmin is given by

µmin(M) = µ(M, 0) . (30)

Thus, in the estimation of the PBH fraction, we should take into account the relevant region of
µ with the mass M given by (15). The dependence of µb(M) on different values of fNL is shown
in the left panel in Figure 4. The resultant PBH fraction β0 for the extended power spectrum
is depicted as a function of M in the right panel of Figure 4.

Figure 4: (Left panel) µth(M) and µmin(M) for σ = 0.1, and (right panel) β0 as a function of
M . The PBH abundance increases with a larger value of fNL.

5 Summary

We have discussed the effect of the local type non-Gaussianity on the PBH abundance. Our
procedure is based on the peak theory for the Gaussian variable ζG, which is related to the non-
Gaussian curvature perturbation ζ via (2), which is the simplest type of non-Gaussianity with
the non-linear parameter fNL. Summary of our procedure is schematically shown in Figure 5.
The value of |fNL| ∼ 1 induces a similar effect to a few factors of difference in the amplitude

7

Mass of formed PBH

abundance
Positive fNL
à more efficient PBH formation

Negative fNL
à suppressed PBH formation

Compared with Gaussian case,

N.B. non-linearity between curvature pert. 
and density fluc. is included.



PBH formation 
with primordial magnetic fields (PMFs)

Saga, Tashiro, SY, 2002.01286

9

mass, with solutions accurate to order m2. Thus our so-
lutions include both massless neutrinos and a number of
degenerate massive species.

We make several standard approximations, firstly we
assume we are in the regime of tight coupling between
photons and baryons where Thomson scattering prevents
slippage between the fluids, giving Vb ⇡ V� (see [17]).
This gives two parameters which much be small: there
must be many scatterings per wavelength of the pertur-
bation k⌧c ⌧ 1; and the scattering rate must be large
compared to the expansion rate ⌧c/⌧ ⌧ 1. We take the
leading order corrections to this and truncate the tight
coupling hierarchy by assuming the photon anisotropic
stress ⇧� is negligible (it is suppressed by a factor k⌧c rel-
ative to the velocity). We also assume that the baryons
are pressureless with wb = c2s,b = 0, neglect any change
in the background ionization fraction and degrees of free-
dom, and as before assume a flat universe. Standard dark
energy does not a↵ect the result until O(⌧5).

The solutions are too lengthy to list in the main text
and so we include them in Appendix B.

VII. PRIMORDIAL MAGNETIC FIELDS

We will consider a stochastic background of magnetic
fields Bi(xj , ⌧) generated by some mechanism in the very
early Universe. As for all the periods of interest the Uni-
verse contains a highly ionized plasma, Maxwell’s equa-
tions at first order show that the field is frozen in, with an
amplitude decaying with 1/a2. From this we separate out
the time evolution and write Bi(xj , ⌧) = Bi(xj)/a(⌧)2.
For a thorough discussion of the dynamics of cosmolog-
ical magnetic fields, see [21]. The non-zero components
of the energy-momentum tensor are

T 0
0 = � 1

8⇡a4
B2(x) ,

T i
j =

1

4⇡a4
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As there is no magnetic field on the background, the per-
turbations of the stochastic background are manifestly
gauge invariant. We construct two perturbations�B and
⇧B , defined by

T 0
0 = �⇢��B ,

T i
j = p�

�
�B�

i
j +⇧

i
B j

�
, (80a)

where we include the factors of ⇢� and p� to take account
of the a�4 factors. As usual ⇧i

j can be decomposed in
the standard manner into scalar, vector and tensor con-
tributions.

A. Magnetic Modes

Though the exact mechanism by which magnetic fields
may be produced in the primordial Universe is unclear,

we are still able to address their observational conse-
quences. We imagine that the production of magnetic
fields occurs quickly at some time ⌧B , prior to the de-
coupling of neutrinos from the photons at time ⌧⌫ . We
assume that this decoupling is e↵ectively instantaneous.
Below we briefly review what happens for the scalar case.
This is discussed in detail in [22] using the synchronous
gauge, where the calculations are somewhat simpler. Our
gauge-invariant notation has the di�culty that some of
the perturbations diverge on the superhorizon scales we
are interested in, and this needs to be carefully addressed.
The Mathematica notebook used for the calculations of
the gauge-invariant scalar, and tensor case can be found
at http://camb.info/jrs/, and describes these issues
in more detail.
Combining the four scalar Einstein equations (70) al-

lows us to form the Bardeen equation for the potential
� which is sourced only by the total anisotropic stress ⇧
and the entropy �

�̈+ 3H(1 + c2s)�̇+ [3(c2s � w)H2 + c2sk
2]�

= 3w
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k2

hk2

2
�+H⇧̇� k2

3
⇧

+2Ḣ⇧+ 3H2
�
1� c2s/w

�
⇧
i
. (81)

Prior to neutrino decoupling the Universe is dominated
by the combined radiative fluid with c2s = w = 1

3 . In this
limit the Hubble parameter H = ⌧�1. The fluid is tightly
bound to the trace amount of Baryons and cannot de-
velop any anisotropic stress, and so the only anisotropic
stress comes from the primordial magnetic source, the
constant ⇧B . Until neutrino decoupling there is no mech-
anism to compensate this, and it will act as a source for
the potentials. We will only discuss the anisotropic stress
as the magnetic density perturbation must be compen-
sated at generation on energy conservation grounds [23].
We reduce the Bardeen equation to the radiation domi-
nated limit

3k2⌧2
h
⌧2�̈+ 4⌧ �̇

i
+ k4⌧4� = �R�⇧B

�
6 + k2⌧2

�
(82)

This can be solved exactly, and in the superhorizon limit
of small k⌧ it reduces to a solution of

�(⌧) ⇡ R�⇧B

k2⌧2
� c1

k3⌧3
� c1

6k⌧
+c2�

2

9
R�⇧B log (⌧) (83)

which has a singularity for k⌧ = 0. As we are concerned
with superhorizon modes, we check the physicality of this
by examining the co-moving curvature perturbation ⇣ =
�+ 2( + �̇/H)/3(1 + w) finding that

⇣(⌧) = ⇣(⌧B)�
1

3
R�⇧B


log (⌧/⌧B) +

⌧B
2⌧

� 1

2

�
(84)

where we have absorbed the remaining constant terms
by demanding continuity of the ⇣ and the comoving den-
sity perturbation (equivalent to continuity of �). All the
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mass, with solutions accurate to order m2. Thus our so-
lutions include both massless neutrinos and a number of
degenerate massive species.
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assume we are in the regime of tight coupling between
photons and baryons where Thomson scattering prevents
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where we have absorbed the remaining constant terms
by demanding continuity of the ⇣ and the comoving den-
sity perturbation (equivalent to continuity of �). All the

; anisotropic stress

è

Anisotropic stress of PMFs can induce both scalar and tensor on super-horizon
(if super-horizon PMFs exist.)



Solutions on super-horizon scales
see, e.g., Shaw and Lewis (2009)

ü Curvature perturbations induced from PMFs anisotropic stress

ü Tensor perturbations 

(in comoving slice) log (physical scale)

log a(t)

Hubble scale ~ 1/H(t)

cosmological scale ~ a(t)/k

Inflationary phase Big bang universe

N ~ 60 tend

Figure 2.2: This figure shows the behavior of a cosmological comoving scale 1/k and the
physical Hubble scale 1/H (horizon scale). The Hubble scale stay constant in time during
inflation, whereas, the physical scale a(t)/k evolves. Thus, a certain scale which is smaller
than the horizon scale at initial time can exit the horizon scale in the inflationary phase.
After the inflation, the Hubble parameter starts to evolve and the scale which is larger than
the horizon scale at the end of inflation reenter the horizon. The e-folding number between
the time when the cosmological scale exit the horizon scale and the time when inflation ends
needs to be about sixty to solve the flatness and horizon problems.
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for 

è almost constant (just log-dependence)

Note; vector mode in metric (vorticity) cannot grow even when PMFs exist. 

By using the above solutions, we can obtain (upper) limits on PMFs amplitude
from already-obtained constraints on primordial scalar and tensor amplitudes !!

see this explicitly, let us focus on the simple case where Rc consists of two uncorrelated
Gaussian fields φ,χ as

Rc(x) = (1 + αχ(x))φ(x). (30)

Here it is assumed that χ has super-Hubble scale correlation and φ gives a dominant
contribution to PBH formation. For such a case, the density contrast on the comoving
slice can be given as

δ(x) = −(1 + αχ(x))
4

9

1

a2H2
△φ(x). (31)

For super-Hubble distance |x− y| ≫ (aH)−1, we obtain

⟨δ2(x)δ2(y)⟩
⟨δ2(x)⟩2

− 1 ≈ 4α2⟨χ(x)χ(y)⟩+O(α4). (32)

There are two remarks regarding this result. First, on super-Hubble scales the correlation
of the local variance is directly proportional to the correlation function of χ. This result
simply reflects our naive intuition that a local quantity can possess correlation over super-
Hubble distance only when the quantity is sourced by another quantity having correlation
over super-Hubble distance. Secondly, the correlation of the local variance is proportional
to a part of the connected part of the four-point function of Rc. More explicitly, the
connected part of the four-point function of Rc is given by

⟨R2
c(x)R2

c(y)⟩c
⟨R2

c(x)⟩
2 = 4α2

[

⟨χ(x)χ(y)⟩+
⟨Rc(x)Rc(y)⟩2

⟨R2
c(x)⟩

2

(

⟨χ2(x)⟩+ ⟨χ(x)χ(y)⟩
)

]

+O(α4),

(33)
and the right-hand side of Eq. (32) is obtained by ignoring terms proportional to the two-
point correlation function of Rc, ⟨Rc(x)Rc(y)⟩, in the above equation (i.e., only the first
term).

In particular, if the power spectrum of χ is the same as that of φ, the parameter α is
related to the local-type trispectrum parameter τNL as τNL = α2 [28], and Eq. (32) becomes

⟨δ2(x)δ2(y)⟩
⟨δ2(x)⟩2

− 1 ≈ 4τNL⟨Rc(x)Rc(y)⟩+O(α4). (34)

Thus, the correlation of the local variance is proportional to τNL and the correlation
function of the curvature perturbation. Notice that the bispectrum parameter is fNL = 0
in the present case, and it is actually the trispectrum (not the bispectrum) that determines
the clustering of PBHs over the super-Hubble distance.

On the other hand, if fNL ≠ 0, τNL is also non-zero with the lower bound τNL ≥ 36
25f

2
NL

[29]. Thus PBHs are necessarily clustered on super-Hubble scales in this case, which is
consistent with Refs. [19, 20] which showed that the clustering is characterized by fNL.

In the following discussion, we actually employ the local-type ansatz for the non-
Gaussianities of primordial curvature perturbations. Based on our result in Eq. (25), we
explicitly show that the PBH two-point correlation function is proportional to τNL and the
two-point correlation function of the primordial curvature perturbations.

8
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2 Curvature perturbation from PMFs

In this section, we briefly review the curvature perturbation generated from PMFs during
the radiation dominated era [1]. Since we are interested in the curvature perturbation on
super-horizon scales in order to consider PBH formation at the early universe, we do not
consider so-called compensated magnetic modes [1, 2].

2.1 Passive mode

If there exist PMFs before the neutrino decoupling era, the scalar part of the anisotropic
stress of PMFs can be a source of the curvature perturbation. The curvature perturbation
from the anisotropic stress of PMFs is given in Fourier space as

⇣B(k) =
1

3
⇠R�⇧B(k) , (2.1)

where ⇠ ⌘ ln
⇣

⌘⌫
⌘B

⌘
+ 5

8R⌫
� 1, R� = ⇢�/(⇢� + ⇢⌫), R⌫ = 1 � R� , ⌘⌫ is a conformal time at

neutrino decoupling era, ⌘B is a conformal time at PMFs generation era, and ⇧B is the scalar
part of the anisotropic stress of PMFs, which is defined as

⇧B(k) =
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�ij
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9

8⇡⇢�,0

Z
d3k1
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Bi(k1)Bj(k � k1) , (2.2)

where B(k) is the Fourier component of primordial magnetic fields removed those adiabatic
decaying.

– 1 –

Source term is given by a convolution of the magnetic fields.
èEven if ``B” is Gaussian, 

induced curvature perturbations should be non-Gaussian! 

see this explicitly, let us focus on the simple case where Rc consists of two uncorrelated
Gaussian fields φ,χ as

Rc(x) = (1 + αχ(x))φ(x). (30)

Here it is assumed that χ has super-Hubble scale correlation and φ gives a dominant
contribution to PBH formation. For such a case, the density contrast on the comoving
slice can be given as

δ(x) = −(1 + αχ(x))
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For super-Hubble distance |x− y| ≫ (aH)−1, we obtain
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− 1 ≈ 4α2⟨χ(x)χ(y)⟩+O(α4). (32)

There are two remarks regarding this result. First, on super-Hubble scales the correlation
of the local variance is directly proportional to the correlation function of χ. This result
simply reflects our naive intuition that a local quantity can possess correlation over super-
Hubble distance only when the quantity is sourced by another quantity having correlation
over super-Hubble distance. Secondly, the correlation of the local variance is proportional
to a part of the connected part of the four-point function of Rc. More explicitly, the
connected part of the four-point function of Rc is given by
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and the right-hand side of Eq. (32) is obtained by ignoring terms proportional to the two-
point correlation function of Rc, ⟨Rc(x)Rc(y)⟩, in the above equation (i.e., only the first
term).

In particular, if the power spectrum of χ is the same as that of φ, the parameter α is
related to the local-type trispectrum parameter τNL as τNL = α2 [28], and Eq. (32) becomes

⟨δ2(x)δ2(y)⟩
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− 1 ≈ 4τNL⟨Rc(x)Rc(y)⟩+O(α4). (34)

Thus, the correlation of the local variance is proportional to τNL and the correlation
function of the curvature perturbation. Notice that the bispectrum parameter is fNL = 0
in the present case, and it is actually the trispectrum (not the bispectrum) that determines
the clustering of PBHs over the super-Hubble distance.

On the other hand, if fNL ≠ 0, τNL is also non-zero with the lower bound τNL ≥ 36
25f

2
NL

[29]. Thus PBHs are necessarily clustered on super-Hubble scales in this case, which is
consistent with Refs. [19, 20] which showed that the clustering is characterized by fNL.

In the following discussion, we actually employ the local-type ansatz for the non-
Gaussianities of primordial curvature perturbations. Based on our result in Eq. (25), we
explicitly show that the PBH two-point correlation function is proportional to τNL and the
two-point correlation function of the primordial curvature perturbations.
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PDF of density perturbations 
induced from PMFs
• Constructed by monte-carlo method

Saga, Tashiro, SY (2020)
see also Nakama and Suyama (2015,2016) (for 2nd order tensor)

3 PBH clustering with local-type non-Gaussianity

Before a quantitative discussion for the amplitude of the PBH two-point correlation func-
tion, let us first provide an intuitive idea of why we take into account up to the four-point
correlation function of the primordial fluctuations in the above formulation.

Hereafter, as the primordial fluctuations, θ(x), in the above formulation, we use the
primordial curvature perturbations on the comoving slice, often denoted by Rc(x). In the
long-wavelength approximation, comoving density fluctuations can be given in terms of
Rc(x) as [27]

δ(x) = −
4(1 + w)

3w + 5
e−5Rc(x)/2 △

a2H2
(eRc(x)/2), (26)

where w, a and H are respectively an equation of state of the Universe, a scale factor and
the Hubble parameter. As can be seen in the above expression, if we use the primordial
curvature perturbations on the comoving slice as θ(x) in the previous section, a natural
variable for the local primordial fluctuations θlocal would be the comoving density fluctua-
tions. In fact, this quantity represents a local three-curvature and is in good accordance
with a physical argument that the criterion for PBH formation should be determined by
local dynamics (i.e. within the Hubble horizon) and be free from the addition of super-
Hubble modes. By introducing a local scale factor a eRc(x) → a [25], at the linear order,
the above expression can be reduced to

δ(x) = −
4

9

1

a2H2
△Rc(x) . (27)

Here, we take w = 1/3 in the radiation-dominated era. The two-point correlation function
of δ is given by

⟨δ(x)δ(y)⟩ =
(

4

9a2H2

)2

△2⟨Rc(x)Rc(y)⟩. (28)

Because of the two Laplacians, ⟨δ(x)δ(y)⟩ rapidly approaches zero for |x− y| ≫ (aH)−1

unless Rc is extremely red-tilted. Thus, in general, ⟨δ(x)δ(y)⟩ is suppressed on super-
Hubble scales.

Due to the locality, at the leading order in δ the PBH abundance at point x would be
determined by the local variance ⟨δ2(x)⟩, and then the PBH two-point correlation function
is given by the its correlation. If δ is Gaussian, the correlation of the local variance is given
as

⟨δ2(x)δ2(y)⟩
⟨δ2(x)⟩2

− 1 = 2⟨δ(x)δ(y)⟩2 , (29)

and it should be suppressed on super-Hubble scales, as can be seen by Eq. (28). Thus,
PBHs are produced by the same amount in every super-Hubble size region. In other words,
PBHs are not clustered on super-Hubble scales. If, on the other hand, δ is non-Gaussian,
the correlation of the local variance may remain on super-Hubble scales. In order to

7
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local dynamics (i.e. within the Hubble horizon) and be free from the addition of super-
Hubble modes. By introducing a local scale factor a eRc(x) → a [25], at the linear order,
the above expression can be reduced to

δ(x) = −
4

9

1

a2H2
△Rc(x) . (27)

Here, we take w = 1/3 in the radiation-dominated era. The two-point correlation function
of δ is given by

⟨δ(x)δ(y)⟩ =
(

4

9a2H2

)2

△2⟨Rc(x)Rc(y)⟩. (28)

Because of the two Laplacians, ⟨δ(x)δ(y)⟩ rapidly approaches zero for |x− y| ≫ (aH)−1

unless Rc is extremely red-tilted. Thus, in general, ⟨δ(x)δ(y)⟩ is suppressed on super-
Hubble scales.

Due to the locality, at the leading order in δ the PBH abundance at point x would be
determined by the local variance ⟨δ2(x)⟩, and then the PBH two-point correlation function
is given by the its correlation. If δ is Gaussian, the correlation of the local variance is given
as

⟨δ2(x)δ2(y)⟩
⟨δ2(x)⟩2

− 1 = 2⟨δ(x)δ(y)⟩2 , (29)

and it should be suppressed on super-Hubble scales, as can be seen by Eq. (28). Thus,
PBHs are produced by the same amount in every super-Hubble size region. In other words,
PBHs are not clustered on super-Hubble scales. If, on the other hand, δ is non-Gaussian,
the correlation of the local variance may remain on super-Hubble scales. In order to

7

Highly non-Gaussian !!!

Obviously, 
enhanced PBH formation!!
compared with Gaussian



PBH formation 
with primordial magnetic fields (PMFs)

Constraint on PBH abundance è constraint on the amplitude PMFs

èHSC
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Figure 11: Upper limit on fPBH = ⌦PBH/⌦DM for various PBH mass (assuming monochro-
matic mass function). Blue curves represent lensing constraints by EROS [119], OGLE [122],
Kepler [125], HSC [126] and Caustic [128] (see 3.1.1). Black curves represent constraints by the
millilensing [135] (3.1.2) and the femtolensing [141] (3.1.3). Orange curves represent dynamical
constraints obtained by requiring that existent compact objects such as white dwarfs (WDs) [144]
(3.2.1) and neutron stars (NSs) [145] (3.2.2) as well as the wide binaries (WBs) [154] (3.2.3) are
not disrupted by PBHs. Green curves represent constraints by the dynamical friction (DF) on
PBHs [155] (3.2.6), the ultra-faint dwarfs (UFDs) [156], and Eridanus II [156] (3.2.5). Red curves
represent constraints by the accretion onto the PBHs such as CMB for the case of the spherical
accretion [169] and the case of the accretion disk [174] with two opposite situations where the
sound speed of the baryonic matter is greater (labeled by CMB) or smaller (labeld by CMB-II)
than the relative baryon-dark matter velocity (3.3.1), radio, and X-rays [176,183] (3.3.2).
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About > 100 nano-Gauss

Corresponding to the mass of PBH

Saga, Tashiro, SY, 2002.01286
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Primordial 4-point NG 
à PBH clustering

Assuming simple local type non-Gaussianity,
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(for |x1 � x2| � R) . (50)

Finally, we can find that the contribution from ⇠(4)
local(c)(x1,x2,x2,x2) is suppressed,

based on the assumption that the long wavelength �G modes beyond the horizon scale are
suppressed. Thus, for the so-called local-type primordial non-Gaussianity parameterized
by fNL, the two-point correlation function of PBHs would become non-zero even on the
super-horizon scales, and at the leading order it can be given as
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In Fourier space, 

Suyama, SY 1906.04958, 

Matsubara, Terada,  Kohri, SY 1909.04053…

3.1 Primordial local-type non-Gaussianity

The local-type primordial non-Gaussianity in Fourier space#4 has conventionally been
characterized by introducing three constant parameters, so-called non-linearity parame-
ters, fNL, gNL, and τNL, which respectively represent the amplitudes of the bispectrum and
trispectrum of the primordial curvature perturbations as [28]

⟨Rc(k1)Rc(k2)Rc(k3)⟩ := (2π)3δ(3)(k1 + k2 + k3)
6

5
fNL [PRc

(k1)PRc
(k2) + 2 perms.] ,

⟨Rc(k1)Rc(k2)Rc(k3)Rc(k4)⟩ := (2π)3δ(3)(k1 + k2 + k3 + k4)

×
{
54

25
gNL [PRc

(k1)PRc
(k2)PRc

(k3) + 3 perms.]

+τNL [PRc
(k1)PRc

(k2)PRc
(|k1 + k3|) + 11 perms.]} ,(36)

where PRc
(k) is the power spectrum of the primordial curvature perturbations given as

⟨Rc(k)Rc(k
′)⟩ := (2π)3δ(3)(k + k′)PRc

(k) . (37)

3.2 PBH power spectrum with non-Gaussian primordial fluctu-

ations

In the previous section we discussed the two-point correlation function of the spatial
distribution of PBHs. The two-point correlation function can be expressed by the PBH
power spectrum as

ξPBH(x1,x2) := ⟨δPBH(x1)δPBH(x2)⟩ =
∫

d3k

(2π)3
PPBH(k) e

ik·(x1−x2) , (38)

where δPBH(x) is the number density field of PBHs, and PPBH(k) is the PBH power spec-
trum:

⟨δPBH(k)δPBH(k
′)⟩ := (2π)3δ(3)(k + k′)PPBH(k) , (39)

with δPBH(k) being a Fourier transform of the PBH number density field. Assuming
statistical isotropy, the PBH power spectrum can be inversely given by

PPBH(k) =

∫

d3r ξPBH(r) e
−ik·r , (40)

#4We use the Fourier transform expression given by

f(x) =

∫
d3k

(2π)3
F (k)eik·x. (35)
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3.2 PBH power spectrum with non-Gaussian primordial fluctu-

ations

In the previous section we discussed the two-point correlation function of the spatial
distribution of PBHs. The two-point correlation function can be expressed by the PBH
power spectrum as
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∫
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where δPBH(x) is the number density field of PBHs, and PPBH(k) is the PBH power spec-
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⟨δPBH(k)δPBH(k
′)⟩ := (2π)3δ(3)(k + k′)PPBH(k) , (39)

with δPBH(k) being a Fourier transform of the PBH number density field. Assuming
statistical isotropy, the PBH power spectrum can be inversely given by

PPBH(k) =

∫

d3r ξPBH(r) e
−ik·r , (40)

#4We use the Fourier transform expression given by

f(x) =

∫
d3k

(2π)3
F (k)eik·x. (35)
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is a non-linearity parameter in the trispectrum of curvature pert.

Two-point correlation function;



Clustering?

• “clustering” 

=  spatial distribution of PBHs 

We focus on - at the formation

- during radiation dominated era

è Spatial distribution of PBHs on super-Hubble scales

2

FIG. 1. Schematic representation of qualitatively di↵erent small-scale spatial distribution of PBHs at formation. On the left,
PBHs are in dense clusters, as predicted in Ref. [24]. On the right, PBHs are distributed approximately randomly. In this
work, we argue that the latter distribution is what is expected for PBHs forming from large density fluctuations. Note that
this graphic is only schematic and ignores relativistic gauge issues.

where we have re-written the joint probability P (C0, Cr)
as the product of P (C0) = P1 times the conditional prob-
ability P (Cr|C0). The latter is always less than unity, and
as a consequence, it must be that

1 + ⇠pbh(r)  1/P1, 8 r. (3)

This inequality is saturated at zero separation, since
P (C0|C0) = 1 (note that the correlation function need
not be continuous at r ! 0 due to possible exclusion
e↵ects [25, 29, 30]):

1 + ⇠pbh(0) = 1/P1. (4)

We emphasize that we did not make any specific assump-
tion about the probability distribution of the underlying
density field in this derivation; in particular, it applies
whether the underlying field is Gaussian or not. We also
stress that our argument is independent of the details of
the formation criterion C[�].

Let us now explain how this implies that PBHs are ini-
tially at most Poisson-clustered on small enough scales.
The formation criterion should not depend on the den-
sity field much outside the horizon length at formation
[31], hence the PBH correlation function ought to drop
rapidly at larger separations. The mean number density
of PBHs is then approximately P1 per correlation length
cubed, i.e. npbh ⇠ P1/VH , where VH is the horizon vol-
ume (this supposes that one PBH is formed per horizon
volume if the criterion is satisfied). Therefore, ⇠pbh(r)
is bounded by a function whose value at the origin is
approximately 1/(npbhVH), and which quickly drops at
separations greater than a horizon size. This bounding
function is approximately �Dirac(r)/npbh, smoothed over
a horizon volume, which what is expected for a Poisson
distribution of finite-size objects. Note that the cluster-
ing can in fact be sub-Poissonian at small separations

due to exclusion e↵ects [25, 29, 30]. We expect such ef-
fects to matter only at separations of the order of a few
horizon lengths, much smaller than scales relevant to any
observational tests of PBHs. We also emphasize that this
discussion can only be made fully quantitative with a rig-
orous relativistic treatment, outside our scope.

III. CORRELATION FUNCTION OF RARE

OVERDENSITIES OF A GAUSSIAN FIELD

Let us now specify to the case where � is a Gaus-
sian random field, whose statistics are hence entirely de-
termined by its two-point correlation function ⇠(r) ⌘

h�(0)�(r)i ⌘ �2w(r), where �2
⌘ ⇠(0) ⌘ h�2

i is the
variance, and 0  w(r)  1. The normalized correla-
tion w(r) approaches unity for small separations, and
zero for large separations. We consider the clustering of
objects with the simple formation criterion � > �c, and
denote by ⌫ ⌘ �c/� the formation threshold in units of
the standard deviation. We will focus in particular on
the case ⌫ � 1, which is typically expected if PBHs are
to form out of the rare order-unity fluctuations of an
otherwise nearly smooth background. The probability of
being above threshold is

P1 =
1

2
erfc

✓
⌫
p

2

◆
, (5)

and the probability that two regions separated by r are
both above threshold is [28]

P2 =

Z 1

⌫

dx1
p

2⇡

Z 1

⌫

dx2
p

2⇡

1
p

1 � w2

⇥ exp


�

x2
1 + x2

2 � 2wx1x2

2(1 � w2)

�
. (6)

Ali-Haimoud (2018)

ü DM isocurvature fluctuations

ü Event rate of PBH binary mergers

ü (additional adiabatic pert.??)

Tada, SY (2015), Young, Byrnes (2015), …

related to the Hawking radiation…

Raidal et al. (2017), Bringmann et al. (2018), …



Primordial 4-point NG 
à PBH clustering

Assuming simple local type non-Gaussianity,
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⇥
"
hRc,G(y1)Rc,G(y2)ihRc,G(ỹ1)�G(ỹ2)i
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#

+2

✓
6

5
fNL

◆4

W̃4(x1,x2;y1, ỹ1,y2, ỹ2)
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! 2

✓
6

5
fNL

◆4

W̃4(x1,x2;y1, ỹ1,y2, ỹ2)
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(for |x1 � x2| � R) . (50)

Finally, we can find that the contribution from ⇠(4)
local(c)(x1,x2,x2,x2) is suppressed,

based on the assumption that the long wavelength �G modes beyond the horizon scale are
suppressed. Thus, for the so-called local-type primordial non-Gaussianity parameterized
by fNL, the two-point correlation function of PBHs would become non-zero even on the
super-horizon scales, and at the leading order it can be given as
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In Fourier space, 

Suyama, SY 1906.04958, 

Matsubara, Terada,  Kohri, SY 1909.04053…

3.1 Primordial local-type non-Gaussianity

The local-type primordial non-Gaussianity in Fourier space#4 has conventionally been
characterized by introducing three constant parameters, so-called non-linearity parame-
ters, fNL, gNL, and τNL, which respectively represent the amplitudes of the bispectrum and
trispectrum of the primordial curvature perturbations as [28]

⟨Rc(k1)Rc(k2)Rc(k3)⟩ := (2π)3δ(3)(k1 + k2 + k3)
6

5
fNL [PRc

(k1)PRc
(k2) + 2 perms.] ,

⟨Rc(k1)Rc(k2)Rc(k3)Rc(k4)⟩ := (2π)3δ(3)(k1 + k2 + k3 + k4)

×
{
54

25
gNL [PRc

(k1)PRc
(k2)PRc

(k3) + 3 perms.]

+τNL [PRc
(k1)PRc

(k2)PRc
(|k1 + k3|) + 11 perms.]} ,(36)

where PRc
(k) is the power spectrum of the primordial curvature perturbations given as

⟨Rc(k)Rc(k
′)⟩ := (2π)3δ(3)(k + k′)PRc

(k) . (37)

3.2 PBH power spectrum with non-Gaussian primordial fluctu-

ations

In the previous section we discussed the two-point correlation function of the spatial
distribution of PBHs. The two-point correlation function can be expressed by the PBH
power spectrum as

ξPBH(x1,x2) := ⟨δPBH(x1)δPBH(x2)⟩ =
∫

d3k

(2π)3
PPBH(k) e

ik·(x1−x2) , (38)

where δPBH(x) is the number density field of PBHs, and PPBH(k) is the PBH power spec-
trum:

⟨δPBH(k)δPBH(k
′)⟩ := (2π)3δ(3)(k + k′)PPBH(k) , (39)

with δPBH(k) being a Fourier transform of the PBH number density field. Assuming
statistical isotropy, the PBH power spectrum can be inversely given by

PPBH(k) =

∫

d3r ξPBH(r) e
−ik·r , (40)

#4We use the Fourier transform expression given by

f(x) =

∫
d3k

(2π)3
F (k)eik·x. (35)
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is a non-linearity parameter in the trispectrum of curvature pert.

Two-point correlation function;



Why tau-NL  ?

3.1 Primordial local-type non-Gaussianity

The local-type primordial non-Gaussianity in Fourier space#4 has conventionally been
characterized by introducing three constant parameters, so-called non-linearity parame-
ters, fNL, gNL, and τNL, which respectively represent the amplitudes of the bispectrum and
trispectrum of the primordial curvature perturbations as [28]
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(k) . (37)

3.2 PBH power spectrum with non-Gaussian primordial fluctu-
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In the previous section we discussed the two-point correlation function of the spatial
distribution of PBHs. The two-point correlation function can be expressed by the PBH
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(2π)3
PPBH(k) e

ik·(x1−x2) , (38)

where δPBH(x) is the number density field of PBHs, and PPBH(k) is the PBH power spec-
trum:

⟨δPBH(k)δPBH(k
′)⟩ := (2π)3δ(3)(k + k′)PPBH(k) , (39)

with δPBH(k) being a Fourier transform of the PBH number density field. Assuming
statistical isotropy, the PBH power spectrum can be inversely given by

PPBH(k) =

∫

d3r ξPBH(r) e
−ik·r , (40)

#4We use the Fourier transform expression given by

f(x) =

∫
d3k

(2π)3
F (k)eik·x. (35)
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3 PBH clustering with local-type non-Gaussianity

Before a quantitative discussion for the amplitude of the PBH two-point correlation func-
tion, let us first provide an intuitive idea of why we take into account up to the four-point
correlation function of the primordial fluctuations in the above formulation.

Hereafter, as the primordial fluctuations, θ(x), in the above formulation, we use the
primordial curvature perturbations on the comoving slice, often denoted by Rc(x). In the
long-wavelength approximation, comoving density fluctuations can be given in terms of
Rc(x) as [27]

δ(x) = −
4(1 + w)

3w + 5
e−5Rc(x)/2 △

a2H2
(eRc(x)/2), (26)

where w, a and H are respectively an equation of state of the Universe, a scale factor and
the Hubble parameter. As can be seen in the above expression, if we use the primordial
curvature perturbations on the comoving slice as θ(x) in the previous section, a natural
variable for the local primordial fluctuations θlocal would be the comoving density fluctua-
tions. In fact, this quantity represents a local three-curvature and is in good accordance
with a physical argument that the criterion for PBH formation should be determined by
local dynamics (i.e. within the Hubble horizon) and be free from the addition of super-
Hubble modes. By introducing a local scale factor a eRc(x) → a [25], at the linear order,
the above expression can be reduced to

δ(x) = −
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△Rc(x) . (27)

Here, we take w = 1/3 in the radiation-dominated era. The two-point correlation function
of δ is given by

⟨δ(x)δ(y)⟩ =
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△2⟨Rc(x)Rc(y)⟩. (28)

Because of the two Laplacians, ⟨δ(x)δ(y)⟩ rapidly approaches zero for |x− y| ≫ (aH)−1

unless Rc is extremely red-tilted. Thus, in general, ⟨δ(x)δ(y)⟩ is suppressed on super-
Hubble scales.

Due to the locality, at the leading order in δ the PBH abundance at point x would be
determined by the local variance ⟨δ2(x)⟩, and then the PBH two-point correlation function
is given by the its correlation. If δ is Gaussian, the correlation of the local variance is given
as
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− 1 = 2⟨δ(x)δ(y)⟩2 , (29)

and it should be suppressed on super-Hubble scales, as can be seen by Eq. (28). Thus,
PBHs are produced by the same amount in every super-Hubble size region. In other words,
PBHs are not clustered on super-Hubble scales. If, on the other hand, δ is non-Gaussian,
the correlation of the local variance may remain on super-Hubble scales. In order to
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Why tau-NL  ?

3.1 Primordial local-type non-Gaussianity

The local-type primordial non-Gaussianity in Fourier space#4 has conventionally been
characterized by introducing three constant parameters, so-called non-linearity parame-
ters, fNL, gNL, and τNL, which respectively represent the amplitudes of the bispectrum and
trispectrum of the primordial curvature perturbations as [28]
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(k) is the power spectrum of the primordial curvature perturbations given as

⟨Rc(k)Rc(k
′)⟩ := (2π)3δ(3)(k + k′)PRc

(k) . (37)

3.2 PBH power spectrum with non-Gaussian primordial fluctu-

ations

In the previous section we discussed the two-point correlation function of the spatial
distribution of PBHs. The two-point correlation function can be expressed by the PBH
power spectrum as

ξPBH(x1,x2) := ⟨δPBH(x1)δPBH(x2)⟩ =
∫

d3k

(2π)3
PPBH(k) e

ik·(x1−x2) , (38)

where δPBH(x) is the number density field of PBHs, and PPBH(k) is the PBH power spec-
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′)⟩ := (2π)3δ(3)(k + k′)PPBH(k) , (39)

with δPBH(k) being a Fourier transform of the PBH number density field. Assuming
statistical isotropy, the PBH power spectrum can be inversely given by

PPBH(k) =

∫

d3r ξPBH(r) e
−ik·r , (40)

#4We use the Fourier transform expression given by

f(x) =
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d3k

(2π)3
F (k)eik·x. (35)
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Before a quantitative discussion for the amplitude of the PBH two-point correlation func-
tion, let us first provide an intuitive idea of why we take into account up to the four-point
correlation function of the primordial fluctuations in the above formulation.

Hereafter, as the primordial fluctuations, θ(x), in the above formulation, we use the
primordial curvature perturbations on the comoving slice, often denoted by Rc(x). In the
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where w, a and H are respectively an equation of state of the Universe, a scale factor and
the Hubble parameter. As can be seen in the above expression, if we use the primordial
curvature perturbations on the comoving slice as θ(x) in the previous section, a natural
variable for the local primordial fluctuations θlocal would be the comoving density fluctua-
tions. In fact, this quantity represents a local three-curvature and is in good accordance
with a physical argument that the criterion for PBH formation should be determined by
local dynamics (i.e. within the Hubble horizon) and be free from the addition of super-
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The spatial fluctuation of PBH number density is

Naively, we can expand this in terms of density fluc. as

Correlation function is

On super-horizon scales,                               , these should be zero..

see this explicitly, let us focus on the simple case where Rc consists of two uncorrelated
Gaussian fields φ,χ as

Rc(x) = (1 + αχ(x))φ(x). (30)

Here it is assumed that χ has super-Hubble scale correlation and φ gives a dominant
contribution to PBH formation. For such a case, the density contrast on the comoving
slice can be given as

δ(x) = −(1 + αχ(x))
4

9

1

a2H2
△φ(x). (31)

For super-Hubble distance |x− y| ≫ (aH)−1, we obtain

⟨δ2(x)δ2(y)⟩
⟨δ2(x)⟩2

− 1 ≈ 4α2⟨χ(x)χ(y)⟩+O(α4). (32)

There are two remarks regarding this result. First, on super-Hubble scales the correlation
of the local variance is directly proportional to the correlation function of χ. This result
simply reflects our naive intuition that a local quantity can possess correlation over super-
Hubble distance only when the quantity is sourced by another quantity having correlation
over super-Hubble distance. Secondly, the correlation of the local variance is proportional
to a part of the connected part of the four-point function of Rc. More explicitly, the
connected part of the four-point function of Rc is given by

⟨R2
c(x)R2

c(y)⟩c
⟨R2

c(x)⟩
2 = 4α2

[

⟨χ(x)χ(y)⟩+
⟨Rc(x)Rc(y)⟩2

⟨R2
c(x)⟩

2

(

⟨χ2(x)⟩+ ⟨χ(x)χ(y)⟩
)

]

+O(α4),

(33)
and the right-hand side of Eq. (32) is obtained by ignoring terms proportional to the two-
point correlation function of Rc, ⟨Rc(x)Rc(y)⟩, in the above equation (i.e., only the first
term).

In particular, if the power spectrum of χ is the same as that of φ, the parameter α is
related to the local-type trispectrum parameter τNL as τNL = α2 [28], and Eq. (32) becomes

⟨δ2(x)δ2(y)⟩
⟨δ2(x)⟩2

− 1 ≈ 4τNL⟨Rc(x)Rc(y)⟩+O(α4). (34)

Thus, the correlation of the local variance is proportional to τNL and the correlation
function of the curvature perturbation. Notice that the bispectrum parameter is fNL = 0
in the present case, and it is actually the trispectrum (not the bispectrum) that determines
the clustering of PBHs over the super-Hubble distance.

On the other hand, if fNL ≠ 0, τNL is also non-zero with the lower bound τNL ≥ 36
25f

2
NL

[29]. Thus PBHs are necessarily clustered on super-Hubble scales in this case, which is
consistent with Refs. [19, 20] which showed that the clustering is characterized by fNL.

In the following discussion, we actually employ the local-type ansatz for the non-
Gaussianities of primordial curvature perturbations. Based on our result in Eq. (25), we
explicitly show that the PBH two-point correlation function is proportional to τNL and the
two-point correlation function of the primordial curvature perturbations.
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where δPBH(x) is the number density field of PBHs, and PPBH(k) is the PBH power spec-
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with δPBH(k) being a Fourier transform of the PBH number density field. Assuming
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3 PBH clustering with local-type non-Gaussianity

Before a quantitative discussion for the amplitude of the PBH two-point correlation func-
tion, let us first provide an intuitive idea of why we take into account up to the four-point
correlation function of the primordial fluctuations in the above formulation.

Hereafter, as the primordial fluctuations, θ(x), in the above formulation, we use the
primordial curvature perturbations on the comoving slice, often denoted by Rc(x). In the
long-wavelength approximation, comoving density fluctuations can be given in terms of
Rc(x) as [27]

δ(x) = −
4(1 + w)

3w + 5
e−5Rc(x)/2 △

a2H2
(eRc(x)/2), (26)

where w, a and H are respectively an equation of state of the Universe, a scale factor and
the Hubble parameter. As can be seen in the above expression, if we use the primordial
curvature perturbations on the comoving slice as θ(x) in the previous section, a natural
variable for the local primordial fluctuations θlocal would be the comoving density fluctua-
tions. In fact, this quantity represents a local three-curvature and is in good accordance
with a physical argument that the criterion for PBH formation should be determined by
local dynamics (i.e. within the Hubble horizon) and be free from the addition of super-
Hubble modes. By introducing a local scale factor a eRc(x) → a [25], at the linear order,
the above expression can be reduced to

δ(x) = −
4

9

1

a2H2
△Rc(x) . (27)

Here, we take w = 1/3 in the radiation-dominated era. The two-point correlation function
of δ is given by

⟨δ(x)δ(y)⟩ =
(

4

9a2H2

)2

△2⟨Rc(x)Rc(y)⟩. (28)

Because of the two Laplacians, ⟨δ(x)δ(y)⟩ rapidly approaches zero for |x− y| ≫ (aH)−1

unless Rc is extremely red-tilted. Thus, in general, ⟨δ(x)δ(y)⟩ is suppressed on super-
Hubble scales.

Due to the locality, at the leading order in δ the PBH abundance at point x would be
determined by the local variance ⟨δ2(x)⟩, and then the PBH two-point correlation function
is given by the its correlation. If δ is Gaussian, the correlation of the local variance is given
as

⟨δ2(x)δ2(y)⟩
⟨δ2(x)⟩2

− 1 = 2⟨δ(x)δ(y)⟩2 , (29)

and it should be suppressed on super-Hubble scales, as can be seen by Eq. (28). Thus,
PBHs are produced by the same amount in every super-Hubble size region. In other words,
PBHs are not clustered on super-Hubble scales. If, on the other hand, δ is non-Gaussian,
the correlation of the local variance may remain on super-Hubble scales. In order to
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density fluc. ßà curvature pert.
see this explicitly, let us focus on the simple case where Rc consists of two uncorrelated
Gaussian fields φ,χ as

Rc(x) = (1 + αχ(x))φ(x). (30)

Here it is assumed that χ has super-Hubble scale correlation and φ gives a dominant
contribution to PBH formation. For such a case, the density contrast on the comoving
slice can be given as

δ(x) = −(1 + αχ(x))
4

9

1

a2H2
△φ(x). (31)

For super-Hubble distance |x− y| ≫ (aH)−1, we obtain

⟨δ2(x)δ2(y)⟩
⟨δ2(x)⟩2

− 1 ≈ 4α2⟨χ(x)χ(y)⟩+O(α4). (32)

There are two remarks regarding this result. First, on super-Hubble scales the correlation
of the local variance is directly proportional to the correlation function of χ. This result
simply reflects our naive intuition that a local quantity can possess correlation over super-
Hubble distance only when the quantity is sourced by another quantity having correlation
over super-Hubble distance. Secondly, the correlation of the local variance is proportional
to a part of the connected part of the four-point function of Rc. More explicitly, the
connected part of the four-point function of Rc is given by

⟨R2
c(x)R2

c(y)⟩c
⟨R2

c(x)⟩
2 = 4α2

[

⟨χ(x)χ(y)⟩+
⟨Rc(x)Rc(y)⟩2

⟨R2
c(x)⟩

2

(

⟨χ2(x)⟩+ ⟨χ(x)χ(y)⟩
)

]

+O(α4),

(33)
and the right-hand side of Eq. (32) is obtained by ignoring terms proportional to the two-
point correlation function of Rc, ⟨Rc(x)Rc(y)⟩, in the above equation (i.e., only the first
term).

In particular, if the power spectrum of χ is the same as that of φ, the parameter α is
related to the local-type trispectrum parameter τNL as τNL = α2 [28], and Eq. (32) becomes

⟨δ2(x)δ2(y)⟩
⟨δ2(x)⟩2

− 1 ≈ 4τNL⟨Rc(x)Rc(y)⟩+O(α4). (34)

Thus, the correlation of the local variance is proportional to τNL and the correlation
function of the curvature perturbation. Notice that the bispectrum parameter is fNL = 0
in the present case, and it is actually the trispectrum (not the bispectrum) that determines
the clustering of PBHs over the super-Hubble distance.

On the other hand, if fNL ≠ 0, τNL is also non-zero with the lower bound τNL ≥ 36
25f

2
NL

[29]. Thus PBHs are necessarily clustered on super-Hubble scales in this case, which is
consistent with Refs. [19, 20] which showed that the clustering is characterized by fNL.

In the following discussion, we actually employ the local-type ansatz for the non-
Gaussianities of primordial curvature perturbations. Based on our result in Eq. (25), we
explicitly show that the PBH two-point correlation function is proportional to τNL and the
two-point correlation function of the primordial curvature perturbations.

8

constant parameter
has super-Hubble scale correlation

dominant source of PBH formation (small scales)

see this explicitly, let us focus on the simple case where Rc consists of two uncorrelated
Gaussian fields φ,χ as

Rc(x) = (1 + αχ(x))φ(x). (30)

Here it is assumed that χ has super-Hubble scale correlation and φ gives a dominant
contribution to PBH formation. For such a case, the density contrast on the comoving
slice can be given as

δ(x) = −(1 + αχ(x))
4

9

1

a2H2
△φ(x). (31)

For super-Hubble distance |x− y| ≫ (aH)−1, we obtain

⟨δ2(x)δ2(y)⟩
⟨δ2(x)⟩2

− 1 ≈ 4α2⟨χ(x)χ(y)⟩+O(α4). (32)

There are two remarks regarding this result. First, on super-Hubble scales the correlation
of the local variance is directly proportional to the correlation function of χ. This result
simply reflects our naive intuition that a local quantity can possess correlation over super-
Hubble distance only when the quantity is sourced by another quantity having correlation
over super-Hubble distance. Secondly, the correlation of the local variance is proportional
to a part of the connected part of the four-point function of Rc. More explicitly, the
connected part of the four-point function of Rc is given by

⟨R2
c(x)R2

c(y)⟩c
⟨R2

c(x)⟩
2 = 4α2

[

⟨χ(x)χ(y)⟩+
⟨Rc(x)Rc(y)⟩2

⟨R2
c(x)⟩

2

(

⟨χ2(x)⟩+ ⟨χ(x)χ(y)⟩
)

]

+O(α4),

(33)
and the right-hand side of Eq. (32) is obtained by ignoring terms proportional to the two-
point correlation function of Rc, ⟨Rc(x)Rc(y)⟩, in the above equation (i.e., only the first
term).

In particular, if the power spectrum of χ is the same as that of φ, the parameter α is
related to the local-type trispectrum parameter τNL as τNL = α2 [28], and Eq. (32) becomes

⟨δ2(x)δ2(y)⟩
⟨δ2(x)⟩2

− 1 ≈ 4τNL⟨Rc(x)Rc(y)⟩+O(α4). (34)

Thus, the correlation of the local variance is proportional to τNL and the correlation
function of the curvature perturbation. Notice that the bispectrum parameter is fNL = 0
in the present case, and it is actually the trispectrum (not the bispectrum) that determines
the clustering of PBHs over the super-Hubble distance.
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In the following discussion, we actually employ the local-type ansatz for the non-
Gaussianities of primordial curvature perturbations. Based on our result in Eq. (25), we
explicitly show that the PBH two-point correlation function is proportional to τNL and the
two-point correlation function of the primordial curvature perturbations.
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see this explicitly, let us focus on the simple case where Rc consists of two uncorrelated
Gaussian fields φ,χ as

Rc(x) = (1 + αχ(x))φ(x). (30)

Here it is assumed that χ has super-Hubble scale correlation and φ gives a dominant
contribution to PBH formation. For such a case, the density contrast on the comoving
slice can be given as

δ(x) = −(1 + αχ(x))
4

9

1

a2H2
△φ(x). (31)

For super-Hubble distance |x− y| ≫ (aH)−1, we obtain

⟨δ2(x)δ2(y)⟩
⟨δ2(x)⟩2

− 1 ≈ 4α2⟨χ(x)χ(y)⟩+O(α4). (32)

There are two remarks regarding this result. First, on super-Hubble scales the correlation
of the local variance is directly proportional to the correlation function of χ. This result
simply reflects our naive intuition that a local quantity can possess correlation over super-
Hubble distance only when the quantity is sourced by another quantity having correlation
over super-Hubble distance. Secondly, the correlation of the local variance is proportional
to a part of the connected part of the four-point function of Rc. More explicitly, the
connected part of the four-point function of Rc is given by

⟨R2
c(x)R2

c(y)⟩c
⟨R2

c(x)⟩
2 = 4α2

[

⟨χ(x)χ(y)⟩+
⟨Rc(x)Rc(y)⟩2

⟨R2
c(x)⟩

2

(

⟨χ2(x)⟩+ ⟨χ(x)χ(y)⟩
)

]

+O(α4),

(33)
and the right-hand side of Eq. (32) is obtained by ignoring terms proportional to the two-
point correlation function of Rc, ⟨Rc(x)Rc(y)⟩, in the above equation (i.e., only the first
term).

In particular, if the power spectrum of χ is the same as that of φ, the parameter α is
related to the local-type trispectrum parameter τNL as τNL = α2 [28], and Eq. (32) becomes

⟨δ2(x)δ2(y)⟩
⟨δ2(x)⟩2

− 1 ≈ 4τNL⟨Rc(x)Rc(y)⟩+O(α4). (34)

Thus, the correlation of the local variance is proportional to τNL and the correlation
function of the curvature perturbation. Notice that the bispectrum parameter is fNL = 0
in the present case, and it is actually the trispectrum (not the bispectrum) that determines
the clustering of PBHs over the super-Hubble distance.

On the other hand, if fNL ≠ 0, τNL is also non-zero with the lower bound τNL ≥ 36
25f
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NL

[29]. Thus PBHs are necessarily clustered on super-Hubble scales in this case, which is
consistent with Refs. [19, 20] which showed that the clustering is characterized by fNL.

In the following discussion, we actually employ the local-type ansatz for the non-
Gaussianities of primordial curvature perturbations. Based on our result in Eq. (25), we
explicitly show that the PBH two-point correlation function is proportional to τNL and the
two-point correlation function of the primordial curvature perturbations.
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è : super-Hubble correlation
in the correlation of the local variance !!



Primordial 4-point NG 
à PBH clustering

Assuming simple local type non-Gaussianity,

⇥
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h�G(y2)Rc,G(y1)ihRc,G(ỹ1)Rc,G(y2)�G(ỹ2)Rc,G(ỹ2)i

+(y1 $ ỹ1)

#

+
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5
fNL
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"
hRc,G(y1)Rc,G(y2)ihRc,G(ỹ1)�G(ỹ2)i
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#
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5
fNL
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W̃4(x1,x2;y1, ỹ1,y2, ỹ2)

⇥ h�G(y1)�G(ỹ1)ih�G(y2)�G(ỹ2)ihRc,G(y1)Rc,G(y2)ihRc,G(ỹ1)Rc,G(ỹ2)i

! 2

✓
6

5
fNL

◆4

W̃4(x1,x2;y1, ỹ1,y2, ỹ2)

⇥ h�G(y1)�G(ỹ1)ih�G(y2)�G(ỹ2)ihRc,G(y1)Rc,G(y2)ihRc,G(ỹ1)Rc,G(ỹ2)i

(for |x1 � x2| � R) . (50)

Finally, we can find that the contribution from ⇠(4)
local(c)(x1,x2,x2,x2) is suppressed,

based on the assumption that the long wavelength �G modes beyond the horizon scale are
suppressed. Thus, for the so-called local-type primordial non-Gaussianity parameterized
by fNL, the two-point correlation function of PBHs would become non-zero even on the
super-horizon scales, and at the leading order it can be given as

⇠PBH(x1,x2) ⇡
⌫4

�4

local

✓
6

5
fNL

◆2

W̃4(x1,x2;y1, ỹ1,y2, ỹ2)

⇥h�G(y1)�G(ỹ1)ih�G(y2)�G(ỹ2)ihRc,G(y1)Rc,G(y2)i

⇠ ⌫4
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fNL

◆2

⇠Rc,G(x1,x2) . (51)

13

In Fourier space, 

Suyama, SY (2019)
Matsubara, Terada,  Kohri, SY (2019), …

If this form can be  applied to the CMB scale, this  should behave as a DM isocurvature,
and it  is highly suppressed ! è PBH DM scenario has to be strongly constrained !!!

Tada, SY (2015)



Implication ?

• From CMB observations,

• If we assume PBH is a dominant component of DM,

• If  we ``believe” Maldacena’s  consistency  relation,

DM isocurvature perturbation is tightly constrained. 
( less than 1% compared with the adiabatic curvature perturbations!)

Please check Planck 2018

should  be so small !! 



Crisis on PBH-DM scenario?

PBH can not be DM?



PBH can not be DM?
Maybe Yes, PBH can be DM.

Maldacena’s consistency relation would be invalid. 

1. In inflationary models associated with PBH formation, slow-roll violation might be essential. 
2. Due to  so-called ``local observer effect”, for single field inflation case,

non-linearity parameter fNL and tauNL should be zero.  

Crisis on PBH-DM scenario?

We need to investigate this issue more carefully.



Still PBH is interesting !!

PTA

Possible detection
by LIGO/VIRGO ?
(or upper limit)

Dark matter window !!

Detected by OGLE?

Niikura, Takada, SY+ (2019), …



Summary

• PBH is an interesting target as a DM  and LIGO BH 
(also exoplanet?).

• In formation process, non-Gaussianity becomes 
important. è abundance, clustering

Future issues
Ø Non-Gaussianity could induce spinning PBH?

Ø Evaluate the clustering feature for concrete models

Ø Extended ``Maldacena’s consistency relation” ? …

(è secondary GWs! (in Sasaki-san’s talk))


