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While the KS profiles are generally in a good agreement
with the X-ray derived profiles, they are more extended
than the X-ray-derived profiles (see Figure 16), which
makes the KS prediction for the projected SZ profiles
bigger. Note, however, that the outer slope of the fitting
formula given by Arnaud et al. (2009) (equation (C3))
has been forced to match that from hydrodynamical sim-
ulations of Nagai et al. (2007) in r ≥ r500. See the bot-
tom panels of Figure 16. The steepness of the profile
at r ! r500 from the simulation may be attributed to a
significant non-thermal pressure support from ρv2, which
makes it possible to balance gravity by less thermal pres-
sure at larger radii. In other words, the total pressure
(i.e., thermal plus ρv2) profile would probably be closer
to the KS prediction, but the thermal pressure would
decline more rapidly than the total pressure would.
If the SZ effect seen in the WMAP data is less than

expected, what would be the implications? One possibil-
ity is that protons and electrons do not share the same
temperature. The electron-proton equilibration time is
longer than the Hubble time at the virial radius, so that
the electron temperature may be lower than the pro-
ton temperature in the outer regions of clusters which
contribute a significant fraction of the predicted SZ flux
(Rudd & Nagai 2009; Wong & Sarazin 2009). The other
sources of non-thermal pressure support in outskirts of
the cluster (turbulence, magnetic field, and cosmic rays)
would reduce the thermal SZ effect relative to the ex-
pectation, if these effects are not taken into account in
modeling the intracluster medium. Heat conduction may
also play some role in suppressing the gas pressure (Loeb
2002, 2007).
In order to explore the impact of gas pressure at

r > r500, we cut the X-ray derived pressure profile at
rout = r500 (instead of 6r500) and repeat the analysis.
We find a = 0.74± 0.09 and 0.44± 0.14 for high and low
LX clusters, respectively. (We found a = 0.67±0.09 and
0.43± 0.12 for rout = 6r500. See Table 12.) These results
are somewhat puzzling - the X-ray observations directly
measure gas out to r500, and thus we would expect to find
a ≈ 1 at least out to r500. This analysis may suggest that
the fiducial scaling relation of Böhringer et al. (2007) is a
source of a < 1. Note that a = 1 is within the systematic
error due to the scatter in the scaling relation. Had we
used the scaling relations of Melin et al. (2010), we would
find a ≈ 1 for rout = r500. While a large uncertainty in
the scaling relation prevents us from convincingly ruling
out a = 1, the relative amplitudes between high and low
LX clusters suggest that a significant amount of pressure
is missing in low mass (M500 " 4 × 1014 h−1 M⊙) clus-
ters, even if we scale all the results such that high-mass
clusters are forced to have a = 1. A similar trend is also
seen in Figure 3 of Melin et al. (2010).
This interpretation is consistent with the SZ power

spectrum being lower than expected. The SPT mea-
sures the SZ power spectrum at l ! 3000. At such high
multipoles, the contributions to the SZ power spectrum
are dominated by relatively low-mass clusters, M500 "
4 × 1014 h−1 M⊙ (see Figure 6 of Komatsu & Seljak
2002). Therefore, a plausible explanation for the lower-
than-expected SZ power spectrum is a missing pressure
in lower mass clusters.
Scaling relations, gas pressure, and entropy of low-

mass clusters and groups have been studied in the lit-

Fig. 19.— Two-dimensional joint marginalized constraint (68%
and 95% CL) on the primordial tilt, ns, and the tensor-to-scalar
ratio, r, derived from the data combination of WMAP+BAO+H0.
The symbols show the predictions from “chaotic” inflation models
whose potential is given by V (φ) ∝ φα (Linde 1983), with α =
4 (solid) and α = 2 (dashed) for single-field models, and α =
2 for multi-axion field models with β = 1/2 (dotted; Easther &
McAllister 2006).

erature.35 Leauthaud et al. (2010) obtained a rela-
tion between LX of 206 X-ray-selected galaxy groups
and the mass (M200) derived from the stacking anal-
ysis of weak lensing measurements. Converting their
best-fitting relation to r200–LX relation, we find r200 =
1.26 h−1 Mpc

E0.89(z) [LX/(1044 h−2 erg s−1)]0.22. (Note that
the pivot luminosity of the original scaling relation is
2.6 × 1042 h−2 erg s−1.) As r500 ≈ 0.65r200, their rela-
tion is ≈ 1σ higher than the fiducial scaling relation that
we adopted (equation (89)). Had we used their scaling
relation, we would find even lower normalizations.
The next generation of simulations or analytical cal-

culations of the SZ effect should be focused more on
understanding the gas pressure profiles, both the ampli-
tude and the shape, especially in low-mass clusters. New
measurements of the SZ effect toward many individual
clusters with unprecedented sensitivity are now becom-
ing available (Staniszewski et al. 2009; Hincks et al. 2009;
Plagge et al. 2009). These new measurements would be
important for understanding the gas pressure in low-mass
clusters.

8. CONCLUSION

With the WMAP 7-year temperature and polarization
data, new measurements of H0 (Riess et al. 2009), and
improved large-scale structure data (Percival et al. 2009),
we have been able to rigorously test the standard cosmo-
logical model. The model continues to be an exquisite
fit to the existing data. Depending on the parameters,
we also use the other data sets such as the small-scale
CMB temperature power spectra (Brown et al. 2009; Re-
ichardt et al. 2009, for the primordial helium abundance),
the power spectrum of LRGs derived from SDSS (Reid
et al. 2009, for neutrino properties), the Type Ia super-
nova data (Hicken et al. 2009b, for dark energy), and the
time-delay distance to the lens system B1608+656 (Suyu
et al. 2009a, for dark energy and spatial curvature). The
combined data sets enable improved constraints over the

35 A systematic study of the thermodynamic properties of low-
mass clusters and groups is given in Finoguenov et al. (2007) (also
see Finoguenov et al. 2005a,b).
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erature.35 Leauthaud et al. (2010) obtained a rela-
tion between LX of 206 X-ray-selected galaxy groups
and the mass (M200) derived from the stacking anal-
ysis of weak lensing measurements. Converting their
best-fitting relation to r200–LX relation, we find r200 =
1.26 h−1 Mpc

E0.89(z) [LX/(1044 h−2 erg s−1)]0.22. (Note that
the pivot luminosity of the original scaling relation is
2.6 × 1042 h−2 erg s−1.) As r500 ≈ 0.65r200, their rela-
tion is ≈ 1σ higher than the fiducial scaling relation that
we adopted (equation (89)). Had we used their scaling
relation, we would find even lower normalizations.
The next generation of simulations or analytical cal-

culations of the SZ effect should be focused more on
understanding the gas pressure profiles, both the ampli-
tude and the shape, especially in low-mass clusters. New
measurements of the SZ effect toward many individual
clusters with unprecedented sensitivity are now becom-
ing available (Staniszewski et al. 2009; Hincks et al. 2009;
Plagge et al. 2009). These new measurements would be
important for understanding the gas pressure in low-mass
clusters.

8. CONCLUSION

With the WMAP 7-year temperature and polarization
data, new measurements of H0 (Riess et al. 2009), and
improved large-scale structure data (Percival et al. 2009),
we have been able to rigorously test the standard cosmo-
logical model. The model continues to be an exquisite
fit to the existing data. Depending on the parameters,
we also use the other data sets such as the small-scale
CMB temperature power spectra (Brown et al. 2009; Re-
ichardt et al. 2009, for the primordial helium abundance),
the power spectrum of LRGs derived from SDSS (Reid
et al. 2009, for neutrino properties), the Type Ia super-
nova data (Hicken et al. 2009b, for dark energy), and the
time-delay distance to the lens system B1608+656 (Suyu
et al. 2009a, for dark energy and spatial curvature). The
combined data sets enable improved constraints over the

35 A systematic study of the thermodynamic properties of low-
mass clusters and groups is given in Finoguenov et al. (2007) (also
see Finoguenov et al. 2005a,b).
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best-fitting relation to r200–LX relation, we find r200 =
1.26 h−1 Mpc
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the pivot luminosity of the original scaling relation is
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tion is ≈ 1σ higher than the fiducial scaling relation that
we adopted (equation (89)). Had we used their scaling
relation, we would find even lower normalizations.
The next generation of simulations or analytical cal-

culations of the SZ effect should be focused more on
understanding the gas pressure profiles, both the ampli-
tude and the shape, especially in low-mass clusters. New
measurements of the SZ effect toward many individual
clusters with unprecedented sensitivity are now becom-
ing available (Staniszewski et al. 2009; Hincks et al. 2009;
Plagge et al. 2009). These new measurements would be
important for understanding the gas pressure in low-mass
clusters.

8. CONCLUSION

With the WMAP 7-year temperature and polarization
data, new measurements of H0 (Riess et al. 2009), and
improved large-scale structure data (Percival et al. 2009),
we have been able to rigorously test the standard cosmo-
logical model. The model continues to be an exquisite
fit to the existing data. Depending on the parameters,
we also use the other data sets such as the small-scale
CMB temperature power spectra (Brown et al. 2009; Re-
ichardt et al. 2009, for the primordial helium abundance),
the power spectrum of LRGs derived from SDSS (Reid
et al. 2009, for neutrino properties), the Type Ia super-
nova data (Hicken et al. 2009b, for dark energy), and the
time-delay distance to the lens system B1608+656 (Suyu
et al. 2009a, for dark energy and spatial curvature). The
combined data sets enable improved constraints over the

35 A systematic study of the thermodynamic properties of low-
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and future: Simons Array with !(r) = 0.003 ; LiteBIRD with !(r) = 6 x 10-4 

-> see talks yesterday afternoon!



string theory’s 6 compact dimensions:
strings , branes & fluxes

the string theory landscape:
many isolated vacua, connected by tunneling

some mountain slopes drive inflation
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Planck Collaboration: Cosmological parameters
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Fig. 21. Left: Constraints on the tensor-to-scalar ratio r0.002 in the ⇤CDM model, using Planck TT+lowP and Planck
TT+lowP+lensing+BAO+JLA+H0 (red and blue, respectively) assuming negligible running and the inflationary consistency rela-
tion. The result is model-dependent; for example, the grey contours show how the results change if there were additional relativistic
degrees of freedom with �Ne↵ = 0.39 (disfavoured, but not excluded, by Planck). Dotted lines show loci of approximately con-
stant e-folding number N, assuming simple V / (�/mPl)p single-field inflation. Solid lines show the approximate ns–r relation for
quadratic and linear potentials to first order in slow roll; red lines show the approximate allowed range assuming 50 < N < 60 and
a power-law potential for the duration of inflation. The solid black line (corresponding to a linear potential) separates concave and
convex potentials. Right: Equivalent constraints in the ⇤CDM model when adding B-mode polarization results corresponding to the
default configuration of the BICEP2/Keck Array+Planck (BKP) likelihood. These exclude the quadratic potential at a higher level
of significance compared to the Planck-alone constraints.

limited by cosmic variance of the dominant scalar anisotropies,
and it is also model dependent. In polarization, in addition to B-
modes, the EE and T E spectra also contain a signal from tensor
modes coming from reionization and last scattering. However,
in this release the addition of Planck polarization constraints at
` � 30 do not significantly change the results from temperature
and low-` polarization (see Table 5).

Figure 21 shows the 2015 Planck constraint in the ns–r plane,
adding r as a one-parameter extension to base ⇤CDM. Note that
for base ⇤CDM (r = 0), the value of ns is

ns = 0.9655 ± 0.0062, Planck TT+lowP. (38)

We highlight this number here since ns, a key parameter for in-
flationary cosmology, shows one of the largest shifts of any pa-
rameter in base ⇤CDM between the Planck 2013 and Planck
2015 analyses (about 0.7�). As explained in Sect. 3.1, part of
this shift was caused by the ` ⇡ 1800 systematic in the nominal-
mission 217 ⇥ 217 spectrum used in PCP13.

The red contours in Fig. 21 show the constraints from Planck
TT+lowP. These are similar to the constraints shown in Fig. 23
of PCP13, but with ns shifted to slightly higher values. The ad-
dition of BAO or the Planck lensing data to Planck TT+lowP
lowers the value of ⌦ch2, which at fixed ✓⇤ increases the small-
scale CMB power. To maintain the fit to the Planck tempera-
ture power spectrum for models with r = 0, these parameter
shifts are compensated by a change in amplitude As and the tilt
ns (by about 0.4�). The increase in ns to match the observed
power on small scales leads to a decrease in the scalar power
on large scales, allowing room for a slightly larger contribution

from tensor modes. The constraints shown by the blue contours
in Fig. 21, which add Planck lensing, BAO, and other astrophys-
ical data, are therefore tighter in the ns direction and shifted to
slightly higher values, but marginally weaker in the r-direction.
The 95 % limits on r0.002 are

r0.002 < 0.10, Planck TT+lowP, (39a)
r0.002 < 0.11, Planck TT+lowP+lensing+ext, (39b)

consistent with the results reported in PCP13. Note that we as-
sume the second-order slow-roll consistency relation for the ten-
sor spectral index. The result in Eqs. (39a) and (39b) are mildly
scale dependent, with equivalent limits on r0.05 being weaker by
about 5 %.

PCP13 noted a mismatch between the best-fit base ⇤CDM
model and the temperature power spectrum at multipoles ` <

⇠
40,

partly driven by the dip in the multipole range 20 <⇠ ` <⇠ 30. If
this mismatch is simply a statistical fluctuation of the ⇤CDM
model (and there is no compelling evidence to think otherwise),
the strong Planck limit (compared to forecasts) is the result of
chance low levels of scalar mode confusion. On the other hand if
the dip represents a failure of the ⇤CDM model, the 95 % limits
of Eqs. (39a) and (39b) may be underestimates. These issues are
considered at greater length in Planck Collaboration XX (2015)
and will not be discussed further in this paper.

As mentioned above, the Planck temperature constraints on
r are model-dependent and extensions to ⇤CDM can give sig-
nificantly di↵erent results. For example, extra relativistic de-
grees of freedom increase the small-scale damping of the CMB
anisotropies at a fixed angular scale, which can be compensated

34
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FIG. 7. Constraints in the r vs. ns plane when using Planck
plus additional data, and when also adding BICEP2/Keck
data through the end of the 2014 season including new 95 GHz
maps—the constraint on r tightens from r0.05 < 0.12 to
r0.05 < 0.07. This figure is adapted from Fig. 21 of Ref. [2]—
see there for further details.

also thank the Planck and WMAP teams for the use of
their data.
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FIG. 5. Constraints in the r vs. ns plane when using
Planck 2015 plus additional data, and when also adding BI-
CEP2/Keck data through the end of the 2015 season—the
constraint on r tightens from r0.05 < 0.12 to r0.05 < 0.06.
This figure is adapted from Fig. 21 of Ref. [3], with two no-
table di↵erences: switching lowP to lowT plus a ⌧ prior of
0.055±0.009 Ref. [41], and the exclusion of JLA data and the
H0 prior.

Fig. 6 shows the BK15 noise uncertainties in the ` ⇡ 80
bandpowers as compared to the signal levels. Note
that the new Keck 220GHz band has approximately the
same signal-to-noise on dust as Planck 353GHz with two
receiver-years of operation. In 2016 and 2017 we recorded
an additional eight receiver-years of data which will re-
duce the noise by a factor of 5 &

p
5 for 220 ⇥ 220 &

150⇥ 220 respectively.

As seen in the lower right panel of Fig. 4 with four Keck
receiver-years of data, our 95GHz data starts to weakly
prefer a non-zero value for the synchrotron amplitude for
the first time. In 2017 alone BICEP3 recorded nearly
twice as much data in the 95GHz band as is included in
the current result. We plan to proceed directly to a BK17
result which can be expected to improve substantially on
the current results.

Dust decorrelation, and foreground complexity more
generally, will remain a serious concern. With higher
quality data we will be able to constrain the foreground
behavior ever better, but of course we will also need to
constrain it ever better. The BICEP Array experiment
which is under construction will provide BICEP3 class
receivers in the 30/40, 95, 150 and 220/270GHz bands
and is projected to reach �(r) < 0.005 within five years.
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FIG. 6. Expectation values and noise uncertainties for the
` ⇠ 80 BB bandpower in the BICEP2/Keck field. The solid
and dashed black lines show the expected signal power of
lensed-⇤CDM and r0.05 = 0.05 & 0.01. Since CMB units
are used, the levels corresponding to these are flat with fre-
quency. The blue/red bands show the 1 and 2� ranges of
dust and synchrotron in the baseline analysis including the
uncertainties in the amplitude and frequency spectral index
parameters (Async,23, �s and Ad,353, �d). The BICEP2/Keck
auto-spectrum noise uncertainties are shown as large blue cir-
cles, and the noise uncertainties of the WMAP/Planck single-
frequency spectra evaluated in the BICEP2/Keck field are
shown in black. The blue crosses show the noise uncertainty
of selected cross-spectra, and are plotted at horizontal posi-
tions such that they can be compared vertically with the dust
and sync curves.
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inflation in string theory …
must-haves …

O7-Z2: swap 2-
cycle bananas 
to get C2 axions - 
CICY scan  
[PhD R. Altman & 
ongoing work]

controlled moduli stabilization & inflation - e.g. KKLT, LVS …

e.g. 7-branes
3-form flux

anti-D3

axion inflation: 
- from monodromy 
- or 4D effective monodromy from many axions 
e.g. [Kim, Nilles & Peloso ’04; Higaki & Takahashi ’14; Choi, Kim & Yun ’14]



inflation



• example - B2 - axion monodromy from flux:

B2 ! B2 + d⇤1 ) Cp�1 ! Cp�1 �N⇤1 ^ fp�2

flux Fp�2 = Nfp�2 ,

Z

⌃p�2

fp�2 = 1

axion
mass term|F̃p|2 = |dCp�1 +B2 ^ Fp�2|2

�
d10x

�
|dB|2

g2
s

+ |F1|2 + |F3|2 +
���F̃5

���
2
�

axion monodromy - a summary

many models in ’10-’18: Stanford/Cornell/Hamburg, Madrid, Madison, Heidelberg, … 

[Silverstein & AW; McAllister, 
Silverstein & AW; Kaloper & Sorbo ’08]  

[Kaloper, Lawrence & Sorbo ’11]



• bare bones monodromy:

• 2 types of flattening — additive & multiplicative:

• other powers as well:   ɸ, ɸ4/3, ɸ2

Flattening 1: moduli backreact in axion monodromy
�

d10x

�
|dB|2

g2
s

+ |F1|2 + |F3|2 +
���F̃5

���
2
�

V =
C1

�
+ C2�

2(µ2 + b2)

Veff.(b) = V |h�i ⇠ h�i20
b2

(1 + b2/µ2)2/3
⇠

8
<

:

b2 � 2
3

b4

µ2 , µ � 1

b2/3 , µ ⌧ 1

h�i = h�i0(1 + b2/µ2)�1/3

[McAllister, Silverstein, AW & Wrase ’14]

[Buchmüller, Dudas, Heurtier,  AW,  Wieck & Winkler ’15]
[Hebecker et al. ’14]many models in ’10-’18: Stanford/Cornell/Hamburg, 

Madrid, Madison, Heidelberg, … 
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and B 3-cycle, respectively, of a given warped throat. In terms of these, the warp factor at the IR
end of the throat becomes [81]

e
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An important constraint on the distribution of Q and M comes from the fact that the 3-
form fluxes contribute to the total amount of D3-brane charge QD3. The compactness of the extra
dimensions then dictates a Gauss law type ‘tadpole’ constraint limiting the maximum value of QD3.
As the pair of quantised 3-form fluxes with quanta Q and M in a given warped throat contributes
an amount Q · M to QD3, we see that we must impose on any model of axion monodromy a limit

Q · M < QD3 < Q
max
D3 . (4.11)

We will thus describe Q and M as being drawn distributions with support on

Q, M 2 [1, Q
max
D3 ] (4.12)

subject to the above tadpole constraint. The maximum possible D3-brane charge in such type
IIB string compactifications we estimate by looking at the F-theory lift of the type IIB string
compactification with the largest Euler number of the underlying elliptically fibred CY fourfold
which determines Q

max
D3 to be Q

max
D3 ⇠ 105 [82].

4.1.3 Corrections to the tree-level model

Beyond the dominant flattening backreaction effects, the underlying discrete shift symmetries con-
trolling many of the corrections to such axion monodromy inflation models show up in the fact that
perturbative higher-dimensional corrections in 10D typically arise as integer powers of the field
strengths |Fp|

2 or their couplings to powers of the Riemann curvature tensor, or nonperturbative
effects producing periodically oscillating corrections. Hence, many of the corrections take the forms
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where generically the instanton actions S appearing in the non-perturbative effects may have de-
pendence on the inflaton-axion � as well. Moreover, V

(0)(�) = m
2
�

2 denotes the tree-level axion
scalar potential arising from the quadratic |Fp|

2-terms in 10D. The instanton action for an instanton
wrapping a k-cycle of the extra dimensions will scale as

S = C V
k (4.14)

for dimensional reasons, with k 2 {2, 3, 4, 6} and C 2 [V�l
, 1]. The energy scale ⇤UV of the non-

perturbative effects, by Weyl rescaling from 10D string frame to 4D Einstein frame, behaves as

⇤4
UV ⇠

1

V2
. (4.15)

This is typically to be expected, because non-perturbative effects arise in string theory from branes
wrapping cycles of the compact extra-dimensions. Hence, the Kaluza-Klein scale of the extra-
dimensions generically provides the UV cut-off to these non-perturbative corrections which in turn
leads to the above behaviour of ⇤4

UV .
Moving on, the Cn and Dm denote generically O(1) Wilsonian EFT coefficients, while the �n

represent the fact that many of the perturbative higher-dimensional corrections in 10D typically
arising as integer powers of the field strengths |Fp|

2 or their couplings to powers of the Riemann
curvature tensor are controlled by topological invariants of the extra dimensional manifold. We
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From this discussion it is clear that essentially all of the corrections consistent with 4D sym-
metries of the Kaloper-Sorbo effective description of axion monodromy take the form of Eq. (4.13).
Moreover, the fact that these corrections arise in the Kaloper-Sorbo descriptions as terms (F 2

4 )n,
implies that the perturbative corrections of the type Eq. (4.13) can be decomposed for each n into
two contributions

�nC
e↵.
n ⌘ C

tree
n + �nCn . (4.18)

Here, we model the parameter Cn as a random O(1) Wilsonian EFT coefficient, while we split off
a contribution C

tree
n such that all the associated correction pieces
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resum into the flattened tree-level axion inflaton potential Vtree(�).
Hence, we expect that describing single-field axion monodromy inflation as arising from a flat-

tened tree-level potential Eq. (4.8) subject to an infinite series of corrections Eq. (4.13) exhausting
the range allowed by 4D symmetries underlying the 4D Kaloper-Sorbo effective description of axion
monodromy, should capture a large class of effects arising from the typical spectrum of corrections
we expect in a string theory model of axion monodromy inflation. As such, this setup forms the
basis for a probabilistic network analysis of single-field axion monodromy inflation to which we now
turn.

4.2 Introducing the probabilistic model

Following the discussion of the previous section, the model we will be working with is an axion
monodromy construction based on Ref. [17] where suppressed perturbative and non-perturbative
corrections to the potential are modelled in the spirit of Ref. [18]. The potential looks like

V = V
e↵.
p + Vnp = V0

"✓
1 +

�
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µ2

◆p/2

� 1

#

| {z }
V tree
p

+Vp + Vnp , (4.20)

where Vp and Vnp are defined by Eqs. (4.13) and (4.19).
As discussed in §2, the first step to studying this model systematically is to recast it as a

probabilistic graphical model where all dependencies are made clear, and to establish the relevant
range of values each parameter can take. Our proposed graphical representation of the model is
presented in Fig. 8. We can see that the parameters in the potential do not necessarily correspond
to the parameters which are most easily constrained from the UV perspective. Rather, in some
cases, they are related by a series stochastic and deterministic dependencies. The deterministic
dependencies have been given in the previous section in Eqs. (4.5), (4.15), (4.9) and (4.14), together
with the expressions for observables given by Eqs. (2.1), (2.2), (2.3) and (2.4). We define the
stochastic dependencies in table 2 by giving the range of scales of each stochastic variable and
their fiducial prior. In cases where the top-level parameters have a finite range, we assume a (log-)
uniform distribution. This is simply a statement of our ignorance ([89]) of further microphysical
considerations. In some other cases we have a little more information. Most notably, our choice of
fiducial prior for �n comes from looking at the distribution of the 2nd and 3rd Chern classes (Euler
number) in the Kreuzer-Skarke database [83]. Fig. 7 shows a histogram of this data, together with
a Gaussian PDF with zero mean and standard deviation of 217. This very crude matching will
prove to be more than sufficient for our needs in §6.

Ultimately however the precise choice of fiducial prior is of limited importance. To probe the
model’s sensitivity to the choice of prior we endow the top-level priors with hyperparameters ⇠ which
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From this discussion it is clear that essentially all of the corrections consistent with 4D sym-
metries of the Kaloper-Sorbo effective description of axion monodromy take the form of Eq. (4.13).
Moreover, the fact that these corrections arise in the Kaloper-Sorbo descriptions as terms (F 2

4 )n,
implies that the perturbative corrections of the type Eq. (4.13) can be decomposed for each n into
two contributions
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resum into the flattened tree-level axion inflaton potential Vtree(�).
Hence, we expect that describing single-field axion monodromy inflation as arising from a flat-

tened tree-level potential Eq. (4.8) subject to an infinite series of corrections Eq. (4.13) exhausting
the range allowed by 4D symmetries underlying the 4D Kaloper-Sorbo effective description of axion
monodromy, should capture a large class of effects arising from the typical spectrum of corrections
we expect in a string theory model of axion monodromy inflation. As such, this setup forms the
basis for a probabilistic network analysis of single-field axion monodromy inflation to which we now
turn.

4.2 Introducing the probabilistic model

Following the discussion of the previous section, the model we will be working with is an axion
monodromy construction based on Ref. [17] where suppressed perturbative and non-perturbative
corrections to the potential are modelled in the spirit of Ref. [18]. The potential looks like
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where Vp and Vnp are defined by Eqs. (4.13) and (4.19).
As discussed in §2, the first step to studying this model systematically is to recast it as a

probabilistic graphical model where all dependencies are made clear, and to establish the relevant
range of values each parameter can take. Our proposed graphical representation of the model is
presented in Fig. 8. We can see that the parameters in the potential do not necessarily correspond
to the parameters which are most easily constrained from the UV perspective. Rather, in some
cases, they are related by a series stochastic and deterministic dependencies. The deterministic
dependencies have been given in the previous section in Eqs. (4.5), (4.15), (4.9) and (4.14), together
with the expressions for observables given by Eqs. (2.1), (2.2), (2.3) and (2.4). We define the
stochastic dependencies in table 2 by giving the range of scales of each stochastic variable and
their fiducial prior. In cases where the top-level parameters have a finite range, we assume a (log-)
uniform distribution. This is simply a statement of our ignorance ([89]) of further microphysical
considerations. In some other cases we have a little more information. Most notably, our choice of
fiducial prior for �n comes from looking at the distribution of the 2nd and 3rd Chern classes (Euler
number) in the Kreuzer-Skarke database [83]. Fig. 7 shows a histogram of this data, together with
a Gaussian PDF with zero mean and standard deviation of 217. This very crude matching will
prove to be more than sufficient for our needs in §6.

Ultimately however the precise choice of fiducial prior is of limited importance. To probe the
model’s sensitivity to the choice of prior we endow the top-level priors with hyperparameters ⇠ which
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4D effective axion monodromy inflation
[Kaloper, Lawrence & Sorbo ’11; Kaloper & Lawrence ...]
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1. Identify relevant scales (class of models) 
2. Learn the mapping from parameters                      

 to observables 
3. Study how predictions change according 

 to prior choice

Steps:

Use numerical methods developed in 
previous work to generate a large sample  
assuming  

Dias, JF, Mulryne, Seery: Implementations in C++, Python and Mathematica publicly available at https://transportmethod.com
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Figure 8. Graphical representation of the full potential of Eq. (4.20)

enable parametric deviations from the fiducial prior. We must therefore choose a distribution which
has finite range, includes the uniform distribution for a special choice of the hyperparameters, and
yet also demonstrates sufficient flexibility to enable us to study the impact of significant variations
of the prior. We find the Beta distribution to meet these requirements quite nicely.

The Beta distribution has the probability density function

p(z; ↵, �) =
�(↵ + �)

�(↵)�(�)
z

↵�1(1 � z)��1
�

1

2
. (4.21)

It has support on the interval [�1/2, 1/2], which we rescale for each parameter to match the desired
range and for ↵ = 1 and � = 1 is equal to the uniform distribution. By varying the hyperparameters
↵ and �, we can obtain a wide variety of distributions. In practice though, we do not perform a
complete scan of both ↵ and �. Instead we define a new hyperparamter ⇠ which for positive values
is gives ⇠ = � and ↵ = 1 and for negative values ⇠ = �↵ and � = 1. Examples of the resulting
distribution are shown in the lefthand plot of Fig. 9. The righthand plot shows how the relative
entropy between the fiducial distribution (↵ = 1, � = 1) and the Beta distribution depends on ⇠.

For the parameters with Gaussian fiducial prior, we simply study the impact of varying the
mean. For all priors, we compare the same range of values of the relative entropy and we choose
the maximum relative entropy to be roughly 4.4. So for instance, if a given parameter were to have
a fiducial prior that is Gaussian with mean zero and 0.5 standard deviation, then the maximum
variation of the mean would be 1.5, such that the maximum relative entropy between the fiducial
prior and the prior with shifted mean would be roughly 4.4. Similarly for the Beta distribution, we
take the maximum values of ⇠ to to be 9, since, as shown in Fig. 9, this gives a relative entropy
with respect to the uniform distribution of roughly 4.4.

Beside the parameters of the potential, the model in principle also depends on the initial
conditions for the field and its velocity, �0 and �̇0, We chose not to model this dependence, by
requiring 55 e-folds of inflation from all realisations. Similarly, we also do not model the choice of
pivot scale at which the observables are estimated (more specifically, the number e-folds from the
end of inflation to horizon exit of the pivot scale). The uncertainty in the pivot scale is related to
the uncertainty in the reheating process. For simplicity, we assume instantaneous reheating.

Before moving on to the analysis of this model, we would like to make a comment on the range
of V0. According to Eq. (4.9), and looking at the range of scales of A and V, the scale V0 can
take values between

⇥
10�24

, 1
⇤
. This is problematic as V0 ⇠ 1 breaks the perturbative treatment
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Figure 14. Scatter plot of ns versus r: the red dots correspond to the predictions of the tree level model,
the blue dots correspond to the predictions of the model when we include perturbative corrections, and the
orange dots correspond to the subset of the latter which satisfy COBE normalisation. The grey contours
are the 68% and 95% confidence limits from the 2018 Planck data [100]. We can see that the perturbative
corrections have a very strong impact on the predictions from monodromy.

to contain much information about the parameters �n and Cn. In other words, the predictions are
universal with respect to the distribution of �n and Cn, despite the perturbative correction clearly
having a large impact on the predictions.

Table 4. Mutual information between each parameter and each observables for the fiducial full model

P⇣ ns ↵s r

V0 0.7 0.3 0.2 0.2
µ 0.2 0.2 0.1 0.1
p 0.1 0.8 0.9 0.6
�n 0.0 0.1 0.1 0.1
Cn 0.0 0.1 0.1 0.1

6.3 Sharp Transitions

We can glean a little more intuition from the fiducial model by making two–dimensional histograms
for each observable and each parameter. Fig. 15 shows a number of sharp transitions in behaviour.
We can think of a vertical slice of these plots as a (unnormalised) histogram of a given observable,
conditioned on a particular value of the model parameter shown on the x-axis. For instance, we
can think of a vertical slice of the top left plot as being proportional to the conditional probability
density function p(ln P⇣ | ln V0). The first column therefore shows that as we vary V0, there is a
sharp transition, where for low values of V0 all observables are much more predictive compared to
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From 4-forms to Goldilocks …



• string dS construction have many dS vacua from fluxes 
— accommodate small CC a la Bousso-Polchinski:
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(4) = F (i)

µ⌫⇢� = @[µA
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⌫⇢�

<latexit sha1_base64="yIMTpzaPyBmTORftOwHCuWoSrMs=">AAACQ3icbVBLSwMxGMz6rPW16tHLYhFakLJbC3oRqoJ4s4J9QLcu2TRtQ5PskmSLZdmf5U/wR4h405M38SqYPgRtOxCYzMzHl4wfUiKVbT8bC4tLyyurqbX0+sbm1ra5s1uVQSQQrqCABqLuQ4kp4biiiKK4HgoMmU9xze9dDv1aHwtJAn6nBiFuMtjhpE0QVFryzJsrL84Wc8l9nCW55EzfXBa5PHJFN3Al6TD4a7khFIpA6sUNHUnOdXJOzDMzdt4ewZolzoRkwARlz3x1WwGKGOYKUShlw7FD1YyHuxDFSdqNJA4h6sEObmjKIcPyqNUnoRzRZvwwKiGxDrXbstqB0Icra6T+nY4hk3LAfJ1kUHXltDcU53mNSLVPmzHhYaQwR+NF7YhaKrCGjVotIjBSdKAJRILod1uoCwVESveu+3Cmfz9LqoW8c5wv3BYzpYtJMymwDw5AFjjgBJTANSiDCkDgEbyAN/BuPBkfxqfxNY4uGJOZPfAPxvcPe/uy9Q==</latexit>

S =

Z
d4x

p
�g

 
M2

P

2
R� ⇤0 �

X

i

⇣
F (i)
(4)

⌘2
!

+ Sbound.

<latexit sha1_base64="QNZS75huWToyXLRnNxl+7bHRZAU="></latexit>

, Smembr. = qi

Z
A(i)

(3)
<latexit sha1_base64="r3aNBvvo2eFgNrUF73SgzCBiDSU="></latexit>

[Bousso & Polchinski ’00]



• string dS construction have many dS vacua from fluxes 
— accommodate small CC a la Bousso-Polchinski:
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[Bousso & Polchinski ’00]

anthropic selection of CC 
via Weinberg argument [’87]

plug-in quantized F(4)

n q

n q
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Figure 1: The allowed values of the four-form energy density are given by the

radius-squared of points in the grid, whose dimension is the number of four-forms

J . The spacing in direction i is qi. The negative of the bare cosmological constant

corresponds to a (J − 1)-dimensional sphere, and cancellation is possible if there

is at least one grid point sufficiently close to the sphere.

An important feature of this result is that that the qi need not be exceed-
ingly small if there are more than two four-form fields. In order to achieve
a small λ, it is sufficient that there be a discrepancy between the magnitude
of λbare and that of the charges. For fixed charges, the task of cancellation
actually becomes easier, the larger the bare cosmological constant. This can
be understood from Fig. 1. The larger the shell, the more points it will
contain.6 The results (2.24) to (2.26) treat the ni as essentially continuous,
and break down if any of the qi exceed J−1/2|2λbare|1/2. In this case the flux
associated with qi should simply be ignored.

6Note, however, that the radius of the shell in Fig. 1 represents not |2λbare|, but the
square root of |2λbare|. This is why one cannot recognize in Fig. 1 the need for the charges
qi to be incommensurate, a fact that is immediately clear from Eq. (2.21). It is also the
reason why increasing |λbare| has no beneficial effect in the case of J = 2. For fixed ∆λ,
the shell gets thinner as one increases its radius. If J = 2, this precisely compensates for
the increase of the shell radius, and the volume remains constant.
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flux quantization:



• extend this to Higgs VEV, using coupling structure of 
axion monodromy:

been found to give new angles of attack on the cosmological constant problem [6, 7, 12–15].
Specifically, Higgs-4-form couplings were investigated in [8, 9].

Since the 4-form field strength Fµ⌫�� = 4@[µA⌫��] is dimension-2, this term is actually
renormalizable, and it could have been included in the SM from the start2. However, since
the 4-form field strength is additive, F ⇠ Nq where N is an integer and q the charge of
a membrane sourcing the flux of F , the field strengths could easily be very large, of either
sign. Further, it will take discrete values, separated by a unit of q, leading to many di↵erent
low energy theories of the Higgs sector.

Thus any UV contributions to the Higgs vev can be compensated by the 4-form flux in
some of the vacua, however large these corrections might be. If the unit of charge is picked
to be cq ⇠ TeV2, the flux of the 4-form will be just right to cancel the large UV corrections
for some value of N .

2 A Christmas Tree of Electroweak Vacua

Let us now flesh out the details. For simplicity we only work with the Higgs sector. The
idea is to assume that the Higgs potential includes the standard terms,

V0 =
�

4
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2
|�|2 + ⇤ (2)

where however v can be arbitrarily large, including any possible UV contribution from above
the EW scale; ⇤ is an a priori arbitrary contribution to the cosmological constant in the
vacuum. We will take it to be a globally dynamical variable, similar to [14,15]. In addition,
we add the terms ‘monodromizing’ the Higgs vev,
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and then we dualize F , replacing it with its dual magnetic field strength. This amounts to
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to the e↵ective potential. Adding them up gives our modification to the SM Lagrangian,
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The last term says that locally Q is a constant, which can only change by a membrane
emission, since a membrane with a charge q couples to A by
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And parameterize CP-violations in non-minimal extensions of the SM.
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couple one F(4) to Higgs

for simplicity, U(1) Higgs:



• extend this to Higgs VEV, using coupling structure of 
axion monodromy:

This means that Q is quantized in the units of the membrane charge q, Q = Nq. Now
completing the square in F and integrating it out yields the final formula for the extended
Higgs potential,
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where

�̄ = �+ 2c2 (8)

v̄2 = v2 � 2cQ . (9)

Note that the e↵ective potential (7) resembles the relaxion [16,17] realized via a monodromy
[18], which was ‘frozen’ out and replaced by a locally constant value Q. Such a model was
explored in [19].

The formula in Eq. (9) is particularly important. Since Q = Nq, no matter what v2 is,
we can always pick an integer N such that v̄2 is in the TeV window required to keep the SM
at the observed scales. This means that in order to make this natural, and avoid gross fine
tunings we must pick

cq <
⇠ TeV2 . (10)

In this case, we are guaranteed that there is a vacuum branch for any v � TeV, such that

N⇤ =
hv2

cq

i
(11)

is the integer closest to the ratio v2/cq from below, for any v2. In other words, whatever
the UV physics that could a↵ect the Higgs vev, there is a flux of F that compensates it,
retaining the expectation value of the Higgs in the EW window.

Note, that in this case the neighboring values of the flux, N = N⇤ ± 1 are already
problematic from the low energy point of view. For N = N⇤ + 1, the EW symmetry is
restored, since v2 � 2cq(N⇤ + 1) flips sign, as the flux overcompensates v2. For N = N⇤ � 1,
the Higgs vev is larger by O(1), rendering the SM particles all heavier, while all the charges
remain fixed. This is problematic for low energy physics, in particular BBN, bearing in
mind that light particles with the wrong values of fluxes would cease to be light when the
charges are quantized at the TeV scale. If we require that the universe should evolve to allow
nontrivial very low energy dynamics instead of being a cold boring place, this clearly favors3

the critical flux with N⇤.
Further issues – and insights – arise when we consider the cosmological constant contri-

bution from EW SSB. In vacua with N > N⇤ for a fixed v2, we have v̄2 < 0 and there is
no EW SSB. The SM in these states is completely massless, relativistic, yet with the net
vacuum energy given by

1

2
N2q2 + ⇤ . (12)

3
We are assuming that the Yukawa couplings to the EW fermions are fixed to their observed values

reflecting the observed reality. This is our prior, which for example excludes the limit of the ‘weakless’

universe [20].
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Such universes are very inhospitable. They can only have radiation being inflated away
forever, or rapidly crunching up if ⇤ is su�ciently negative.

In contrast, in the vacua with N < N⇤, EW SSB takes place in the IR, when the universe
cools down, and the e↵ective cosmological constant in these states is
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If we compare the cosmological constants in the preferred state N⇤ and the state N⇤�1 right
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Since �̄ = � + 2c2 – and, schematically, c may include the CP-violating e↵ects in non-
minimal generalizations of the Higgs sector – it is natural to expect that CP-violating e↵ects
in non-minimal Higgs models are small,

cCP�even/�̄
1/2

⌧ 1 . (15)

This implies that the cosmological constant in the state with N⇤ � 1, adjacent to the con-
ventional SM, is much smaller. The cosmological dynamics which picks the late low energy
state of the universe, introducing dynamics in the additional cosmological constant term ⇤,
as in for example [14, 15, 21, 22], would therefore have to pick the state with N⇤, since the
adjacent states either

• a) don’t break EW symmetry or

• b) break it too badly, making SM too heavy.

Further, since the adjacent state with N⇤�1 has a much smaller cosmological constant, once
⇤N⇤ is selected to be

⇤N⇤ ⇠ 10�122M4
P (16)

the cosmological constant in the state N⇤ � 1 will be huge and negative. The situation is
depicted in Fig. 1 for a choice of toy model parameters.
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MGUT < v < MP. Hence, in our setup the scale of residual cosmological constant problem
is reduced about as much as in models with low-energy supersymmetry as long as c is not
too small.

This means, if our universe ever transitions to such a state it will crunch immediately
due to a huge negative vacuum energy. However, since a probability of such a transition is
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P ⇠ exp(�
27⇡2

2

�4

(�⇤)3
) ⇠ exp(�

27⇡2

2

c3�4

q3v6
) (17)

4

Such universes are very inhospitable. They can only have radiation being inflated away
forever, or rapidly crunching up if ⇤ is su�ciently negative.

In contrast, in the vacua with N < N⇤, EW SSB takes place in the IR, when the universe
cools down, and the e↵ective cosmological constant in these states is

⇤N =
1

2
N2q2 + ⇤�

1

4

(v2 � 2Ncq)2

�̄
. (13)

If we compare the cosmological constants in the preferred state N⇤ and the state N⇤�1 right
next to it, we find that

�⇤ = ⇤N⇤ � ⇤N⇤�1 '
qv2

c
(1�

c

�̄
) . (14)

Since �̄ = � + 2c2 – and, schematically, c may include the CP-violating e↵ects in non-
minimal generalizations of the Higgs sector – it is natural to expect that CP-violating e↵ects
in non-minimal Higgs models are small,

cCP�even/�̄
1/2

⌧ 1 . (15)

This implies that the cosmological constant in the state with N⇤ � 1, adjacent to the con-
ventional SM, is much smaller. The cosmological dynamics which picks the late low energy
state of the universe, introducing dynamics in the additional cosmological constant term ⇤,
as in for example [14, 15, 21, 22], would therefore have to pick the state with N⇤, since the
adjacent states either

• a) don’t break EW symmetry or

• b) break it too badly, making SM too heavy.

Further, since the adjacent state with N⇤�1 has a much smaller cosmological constant, once
⇤N⇤ is selected to be

⇤N⇤ ⇠ 10�122M4
P (16)

the cosmological constant in the state N⇤ � 1 will be huge and negative. The situation is
depicted in Fig. 1 for a choice of toy model parameters.

We note that the spacing of the cosmological constant values around zero �⇤ ⇠ qv2/c =
1
c2 cq v

2
⇠ TeV2v2 is of the same scale as the scale of the residual cosmological constant

in low-energy supersymmetry with ⇤MSSM ⇠ m2
3/2M

2
P since there v ⇠ m3/2 ⇠ TeV and

MGUT < v < MP. Hence, in our setup the scale of residual cosmological constant problem
is reduced about as much as in models with low-energy supersymmetry as long as c is not
too small.

This means, if our universe ever transitions to such a state it will crunch immediately
due to a huge negative vacuum energy. However, since a probability of such a transition is
suppressed by

P ⇠ exp(�
27⇡2

2

�4

(�⇤)3
) ⇠ exp(�

27⇡2

2

c3�4

q3v6
) (17)

4

Such universes are very inhospitable. They can only have radiation being inflated away
forever, or rapidly crunching up if ⇤ is su�ciently negative.

In contrast, in the vacua with N < N⇤, EW SSB takes place in the IR, when the universe
cools down, and the e↵ective cosmological constant in these states is

⇤N =
1

2
N2q2 + ⇤�

1

4

(v2 � 2Ncq)2

�̄
. (13)

If we compare the cosmological constants in the preferred state N⇤ and the state N⇤�1 right
next to it, we find that

�⇤ = ⇤N⇤ � ⇤N⇤�1 '
qv2

c
(1�

c

�̄
) . (14)

Since �̄ = � + 2c2 – and, schematically, c may include the CP-violating e↵ects in non-
minimal generalizations of the Higgs sector – it is natural to expect that CP-violating e↵ects
in non-minimal Higgs models are small,

cCP�even/�̄
1/2

⌧ 1 . (15)

This implies that the cosmological constant in the state with N⇤ � 1, adjacent to the con-
ventional SM, is much smaller. The cosmological dynamics which picks the late low energy
state of the universe, introducing dynamics in the additional cosmological constant term ⇤,
as in for example [14, 15, 21, 22], would therefore have to pick the state with N⇤, since the
adjacent states either

• a) don’t break EW symmetry or

• b) break it too badly, making SM too heavy.

Further, since the adjacent state with N⇤�1 has a much smaller cosmological constant, once
⇤N⇤ is selected to be

⇤N⇤ ⇠ 10�122M4
P (16)

the cosmological constant in the state N⇤ � 1 will be huge and negative. The situation is
depicted in Fig. 1 for a choice of toy model parameters.

We note that the spacing of the cosmological constant values around zero �⇤ ⇠ qv2/c =
1
c2 cq v

2
⇠ TeV2v2 is of the same scale as the scale of the residual cosmological constant

in low-energy supersymmetry with ⇤MSSM ⇠ m2
3/2M

2
P since there v ⇠ m3/2 ⇠ TeV and

MGUT < v < MP. Hence, in our setup the scale of residual cosmological constant problem
is reduced about as much as in models with low-energy supersymmetry as long as c is not
too small.

This means, if our universe ever transitions to such a state it will crunch immediately
due to a huge negative vacuum energy. However, since a probability of such a transition is
suppressed by

P ⇠ exp(�
27⇡2

2

�4

(�⇤)3
) ⇠ exp(�

27⇡2

2

c3�4

q3v6
) (17)

4

[Kaloper & AW ’19]
[Giudice, Kehagias & Riotto ’19]



• extend this to Higgs VEV, using coupling structure of 
axion monodromy:

Figure 1: The Christmas tree of EW SSB vacua for parameter choices � = 1, c = 0.1, q =
0.01. The red circles delineate the vacuum manifolds. The highest ‘goldilocks’ branch with
the smallest scale EW SSB vacuum has small positive cosmological constant, the branches
below are deep AdS.

such disastrous transitions are extremely unlikely if the scale of the brane tension is controlled
by the UV (that is, by scales of order v so � ⇠ v3). In that case,

�4/v6 ⇠ v6 � q3 (18)

and the state with N⇤ units of flux is as stable as can be. In the early universe, of course,
transitions can and will occur more rapidly – at larger values of ⇤ – which will populate
states with N⇤ units of flux early on. These will be the states which will support interesting
low energy cosmology, explaining why we observe it [21, 22]. Note also from Eq. (9) that
while initially the cosmological constant for the states N < N⇤ decreases, becoming negative
if ⇤N⇤ is anthropically selected to be in the observed window, this quickly turns around and
⇤N starts to grow again thanks to c < �̄1/2. We show the distribution of the cosmological
constant for a numerical example in Fig. 2.

This means that the universe with the correct small Higgs vev is really a rather special
place. Most of the other universes in our framework have a much larger cosmological con-
stant, with either too large a Higgs vev or without EW SSB. There may be some universes
“nearby” where the Higgs vev is O(1) larger, that would be a problem for cosmochemistry.
However those few universes would have a large negative cosmological constant once the SM
one is selected, and hence are doubly disfavored.

3 Discussion

In summary, we have found that a nontrivial coupling of the Higgs to topological sectors
– modeled here by a 4-form fluxes and a monodromy-like mixing of the Higgs vev with it
– can generate a mini-multiverse of Higgs vacua. Many of them yield wrong low energy
dynamics for the SM. The SM is either too heavy, or EW SSB never happens. However,
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