Revisiting slow-roll dynamics and the tensor tilt in general single-field inflation

Tsutomu Kobayashi A01 連携研究者 + 公募研究

Rikkyo University

Based on work with Yosuke Mishima (Rikkyo) arXiv:1911.02143, Phys. Rev. D (to appear)

In cosmology textbooks...

Tensor modes from inflation: red tilt

$$n_t < 0$$

because

$$n_t = -2\epsilon, \quad \epsilon = -\frac{H}{H^2} = \frac{3}{2} \frac{\rho + p}{\rho} > 0$$

Null energy condition (NEC)

Is this always true?

Blue tensor from inflation

Radical scenarios...

Diffeomorphism-breaking inflation (solid inflation, massive gravity, ...)

Endlich, et al. (2013); Cannone, et al. (2015); Fujita, et al. (2019); ...

$$n_t \sim m_g^2/H_{\rm inf}^2 > 0$$

Kinetically driven G-inflation

 $H_{\mathrm{inf}} \sim \mathrm{constant}\,\mathrm{kinetic}\,\mathrm{energy}$

TK, Yamaguchi, Yokoyama (2010)

$$n_t = -2\epsilon > 0$$

Stable violation of NEC

Stay conservative...

Blue tensor from single-field <u>slow-roll</u> inflation driven by <u>potential</u> (breaking only time diffeomorphism invariance)?

Extended slow-roll models

$$\mathcal{L} = \frac{M_{\text{Pl}}^2}{2} R + X - V(\phi) + \cdots, \quad X := -\frac{1}{2} (\partial \phi)^2$$

- Non-canonical kinetic term: $\kappa(\phi)X$
- "Galileon": $h(\phi)X\Box\phi$
- Non-minimal couplings: $f(\phi)R$

$$G^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi$$

$$\implies 3M_{\text{eff}}^2(\phi)H^2 \simeq V(\phi), \quad 3H\dot{\phi} + V' + \cdots \simeq 0$$

$$3H\dot{\phi} + V' + \cdots \simeq 0$$

Horndeski theory

Horndeski (1974)

Horndeski theory — the most general scalar-tensor theory with 2nd-order field equations — can be used for a comprehensive study of extended models of slow-roll inflation

$$\mathcal{L} = G_2(\phi, X) - G_3(\phi, X) \Box \phi + G_4(\phi, X) R$$

$$+ G_{4X} \left[(\Box \phi)^2 - (\nabla_{\mu} \phi \nabla_{\nu} \phi)^2 \right]$$

$$+ G_5(\phi, X) G_{\mu\nu} \nabla^{\mu} \nabla^{\nu} \phi - \frac{G_{5X}}{6} \left[(\Box \phi)^3 - 3 \Box \phi (\nabla_{\mu} \nabla_{\nu} \phi)^2 + 2 (\nabla_{\mu} \nabla_{\nu} \phi)^3 \right]$$

Deffayet et al. (2011); TK, Yamaguchi, Yokoyama (2011)

- Background dynamics
- Perturbations
- Reheating

Cf. EFT of inflation can incorporate only the perturbation dynamics on a given background

Unified description of slow-roll inflation Kamada et al. (2012)

Taylor-expand the functions:

$$G_a(\phi, X) = g_a(\phi) + h_a(\phi)X + \mathcal{O}(X^2) \quad (a = 2, 3, 4, 5)$$

Assume "slow-roll" conditions:

$$-\frac{\dot{H}}{H^2} \ll 1, \quad \frac{\dot{g}_a}{Hg_a} \ll 1, \quad \frac{\dot{h}_a}{Hh_a} \ll 1$$

Under these assumptions, Kamada et al. argued that

All stable slow-roll models predict red tensor spectra

Counter-example: Gauss-Bonnet inflation

Satoh & Soda (2008); Satoh (2010); Koh, et al. (2018)

Tensor spectrum can be blue in stable slow-roll inflation with GB term,

$$f(\phi) \left(R^2 - 4R_{\mu\nu}R^{\mu\nu} + R_{\mu\nu\rho\lambda}R^{\mu\nu\rho\lambda} \right)$$

GB term leads to 2nd-order field equations, and hence is included within the Horndeski theory

Something is wrong with Kamada et al. (2012)?

Revisit (and improve) Kamada et al. (2012)!

GB term in Horndeski language

$$f(\phi) \left(R^2 - 4R_{\mu\nu}R^{\mu\nu} + R_{\mu\nu\rho\lambda}R^{\mu\nu\rho\lambda} \right)$$

$$\Leftrightarrow G_2 = 8f''''X^2(3 - \ln X), \quad G_3 = 4f'''X(7 - 3\ln X)$$
$$G_4 = 4f''X(2 - \ln X), \quad G_5 = -4f'\ln X$$

TK, Yamaguchi, Yokoyama (2010)

$$G_2 \simeq G_3 \simeq G_4 \simeq 0, \quad G_5 = -4f' \ln X$$

at leading order in slow-roll

Taylor-expanded form in Kamada et al. (2012) fails to capture this In X structure

$$G_a(\phi, X) = g_a(\phi) + h_a(\phi)X + \mathcal{O}(X^2) \quad (a = 2, 3, 4, 5)$$

Beyond Kamada et al.

$$G_a(\phi, X) = g_a(\phi) + \lambda_a(\phi) \ln X + h_a(\phi) X + \cdots$$

This includes GB inflation and other more general models

Friedmann equation

Singular terms
$$\Rightarrow \lambda_2 = \lambda_4 = 0$$

$$i=-g_2(\phi)$$
 $i=-g_2(\phi)$ $i=-g$

Effective Planck mass

$$g_4(\phi) > 0$$

Assume potential-dominance conditions:

$$\delta_3 := \frac{\lambda_3 \dot{\phi}}{g_4 H} \lesssim \mathcal{O}(\epsilon), \quad \delta_5 := \frac{\lambda_5 H \dot{\phi}}{g_4} \lesssim \mathcal{O}(\epsilon)$$

Modified slow-roll dynamics

Einstein-Hilbert + canonical scalar

$$3M_{\rm Pl}^2H^2\simeq V$$

$$3H\dot{\phi}\simeq -V'$$

$$3H\dot{\phi} \simeq V$$

$$3H\dot{\phi} \simeq -\frac{g_4^2}{\mathcal{I}} \left(\frac{V}{g_4^2}\right)'$$

 $\mathcal{I}(\phi)$ ($\supset g_a(\phi), \ h_a(\phi), \ \underline{\lambda_a(\phi)}$) effectively modifies the potential slope

$$\mathcal{I}(\phi) := \frac{U'}{2(U' + \varpi)} \left[u + \sqrt{u - 4v(U' + \varpi)} \right],$$

$$U' := g_4^2 \left(\frac{V}{g_4^2}\right)', \quad u := h_2 + \frac{h_4 V}{g_4}, \quad v := h_3 + \frac{h_5 V}{6g_4}, \quad \varpi := \frac{3V\lambda_3}{g_4} + \frac{\lambda_5}{6} \left(\frac{V}{g_4}\right)^2$$

Tensor tilt v.s. stability

Recall the standard story...

$$\mathcal{L} = rac{M_{
m Pl}^2}{2} R + X - V(\phi)$$
 or even $\mathcal{L} = rac{M_{
m Pl}^2}{2} R + P(\phi, X)$

Tensor tilt:

$$n_t = -2\epsilon$$

$$\mathcal{L}_{\zeta}^{(2)} = \frac{a^{3} M_{\text{Pl}}^{2} \epsilon}{c_{s}^{2}} \left[\dot{\zeta}^{2} - a^{-2} c_{s}^{2} (\partial \zeta)^{2} \right]$$

Stability prohibits $n_t > 0$

Tensor tilt v.s. stability

Tensor power spectrum:

$$\mathcal{P}_{GW} = \frac{H^2}{\pi^2 g_4}, \quad n_t = -2\epsilon - \frac{\dot{g}_4}{H g_4} = -\frac{\dot{\phi}^2 \mathcal{I}}{2g_4 H^2}$$

$$n_t < 0 \Leftrightarrow \mathcal{I} > 0 / n_t > 0 \Leftrightarrow \mathcal{I} < 0$$

Stability:
$$\mathcal{L}_{\zeta}^{(2)} = \frac{a^3 \mathcal{F}}{c_s^2} \left[\dot{\zeta}^2 - a^{-2} c_s^2 (\partial \zeta)^2 \right]$$

Stability is NOT correlated with the sign of \mathcal{I} in general

Case study 1 — Reanalysis of Kamada et al. (2012)

$$\mathcal{L} = \frac{M_{\text{Pl}}^2}{2}R + h_2(\phi)X - V(\phi) - h_3(\phi)X\Box\phi$$

Blue tensor even without $\ln X$

Kamada et al. unnecessarily assumed

$$h_2(\phi) > 0$$

and simply overlooked the interesting model space

Case study 2

Gauss-Bonnet inflation and further generalizations

$$\mathcal{L} = \frac{M_{\text{Pl}}^2}{2} R + X - V(\phi) - G_3(\phi, X) \Box \phi + G_5(\phi, X) G^{\mu\nu} \nabla_{\mu} \nabla_{\nu} \phi + \cdots$$

$$G_3 = \lambda_3(\phi) \ln X$$
$$G_5 = \lambda_5(\phi) \ln X$$

For $\lambda_3 = 0$ this reproduces previous results on GB inflation

Summary

Yosuke Mishima & TK arXiv:1911.02143, Phys. Rev. D (to appear)

- Blue tensor spectra from slow-roll inflation driven by potential?
- **■ — YES!**
- We have improved the unified description of slow-roll inflation [Kamada et al. (2012)] in two ways:
 - (1) reanalyzed the model space with blue tensor spectra which was carelessly overlooked;
 - (2) included In X terms to accommodate more general models than previously considered.