

Computations of quantities characterizing PBHs formed from primordial perturbations

-report of my research activities-

Teruaki Suyama (Tokyo Institute of Technology)

Cosmic acceleration 2020 Kashiwa 2/181

Who am I?

I am a member of A01 group (Misao's group).

I receive a grant of public research (2018-2020). "Theoretical studies to test stellar mass PBHs"

Achievements during this innovative area (- July 2015)

Totally 24 papers in 9 journals(PRL, PRD, JCAP, PTEP, CQG, JHEP, JPSJ, PASJ, ApJ)

16 papers by collaborations with members in this area

8 papers on PBHs (triggered by the LIGO events)

Proposal of the PBH hypothesis as an explanation of the LIGO events

 $f_{PBH} \sim 10^{-3} \rightarrow$ Strong constraint on PBH dark matter scenario

Mass distribution of the merger rate

Spin, clustering of PBHs, PBH mass function

etc.

Class. Quantum Grav. 35 (2018) 063001 (76pp)

https://doi.org/10.1088/1361-6382/aaa7b4

Topical Review

arXiv:1801.05235

Primordial black holes—perspectives in gravitational wave astronomy

Misao Sasaki¹, Teruaki Suyama², Takahiro Tanaka^{1,3} and Shuichiro Yokoyama^{4,5}

¹ Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

² Research Center for the Early Universe (RESCEU), Graduate School of Science,

The University of Tokyo, Tokyo 113-0033, Japan

³ Department of Physics, Kyoto University, Kyoto 606-8502, Japan

- ⁴ Department of Physics, Rikkyo University, Tokyo 171-8501, Japan
- ⁵ Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan

E-mail: misao@yukawa.kyoto-u.ac.jp

Received 5 November 2016, revised 11 January 2018 Accepted for publication 15 January 2018 Published 8 February 2018

Abstract

This article reviews current understanding of primordial black holes (PBHs), with particular focus on those massive examples ($\gtrsim 10^{15}$ g) which remain at

加速膨張と言えば、ド・ジッターである が、ド・ジッターの写真はどれ?

3

2

Achievements during this fiscal year (-April 2019)

Totally 5 papers

- Quantum Ostrogradsky theorem, H.Motohashi, TS, 2001.02483
- A novel formulation of the PBH mass function, TS, S.Yokoyama, 1912.04687, to appear in PTEP
- Formation threshold of rotating primordial black holes, M.He, TS, 1906.10987, PRD 100, 063520 (2019)
- Clustering of primordial black holes with non-Gaussian initial fluctuations, TS, S.Yokoyama, 1906.04958, PTEP 103E02 (2019)
- A large mass hierarchy from a small nonminimal coupling, C.Ringeval, TS, M.Yamaguchi, 1903.03544, PRD 99, 123524(2019)

Summer School on Gravitational Wave Astronomy 15 July 2019 to 26 July 2019

TATA INSTITUTE OF FUNDAMENTAL RESEARCH

Primordial black holes and GW astronomy (lecture: 90min×5, exercise : 90min×5)

Papers on PBHs

- Clustering of primordial black holes with non-Gaussian initial fluctuations, TS, S.Yokoyama, 1906.04958
 - clustering
- Formation threshold of rotating primordial black holes, M.He, TS, 1906.10987

spin

 A novel formulation of the PBH mass function, TS, S.Yokoyama, 1912.04687

mass function

Computations of PBH-related quantities from the primordial density perturbations

1) "Clustering of primordial black holes with non-Gaussian initial fluctuations" TS, S.Yokoyama

This was already addressed by Shuichiro's talk.

Motivation of the study

There has been confusion in the literature as to super-Hubble clustering of PBHs.

<u>Result</u>

We showed that PBHs cluster on super-Hubble scale if the seed perturbation has local-type trispectrum parametrized by τ_{NL} .

$$\xi_{PBH}^{(2)}(r) = \tau_{NL} \left(\frac{4\delta_{th}}{9\sigma}\right)^4 \xi_{\mathcal{R}}^{(2)}(r)$$
correlation function of PBHs
correlation function of the primordial perturbation

2) "Formation threshold of rotating primordial black holes" M.He, TS

Motivation of the study

Spin distribution of BHs may be used to test a hypothesis that LIGO BHs are PBHs.

Formal expression of the spin distribution of PBHs at time t

$$W(J,t) = \int dJ' Q(J,J',t) \int_{\delta_{\mathrm{th}}(J')} P(\delta_M,J') d\delta_M.$$

 $P(\delta_M, J)$: probability that region collapsing to a BH has (δ_M, J) (given in the literature) $\delta_{th}(J)$: Formation threshold of PBH (derived in my paper) Q(J, J', t): spin evolution from J' to J (given in the literature)

Carr's formula - analytic formula for $\delta_{\rm th}(J=0)$ -

Assumption

Overdense region is uniform

$$H^{2} = \frac{8\pi G}{3}\bar{\rho}(1+\delta) - \frac{1}{a^{2}}$$

Regard the overdense region as a closed FLRW universe. 12

Inclusion of the angular momentum

$$\omega^2 = c_s^2 k^2 + 4\Omega^2 - 4\pi G \rho$$
 Ω : angular velocity

Use
$$\frac{c_s}{\sqrt{G\rho - \Omega^2/\pi}}$$
 as the Jeans length

Formation threshold increases in proportional to J^2 , which indicates that highly spinning PBHs are unlikely.

3) "A novel formulation of the PBH mass function" TS, S.Yokoyama

PBH mass function

 $f(M)d\ln M$: fraction of PBHs in $(M, M + d\ln M)$

Primordial density perturbations

$$f(M)$$

Existing methods to compute the PBH mass function

- i) Press-Schechter formalism
- ii) Peak theory

Motivation of the study

These two methods have issues at the conceptual level.

e.g.
$$\beta = f(M)$$

Basic variable for the PBH formation

 $\theta(\vec{x}, R)$: density contrast smoothed on scale R

Criterion of the PBH formation

$$\vec{\nabla}\theta = 0, \partial_R\theta = 0$$

-Main result
$$f(M) = \frac{M}{n_{\text{PBH}}} \int dR \, \langle J\delta(M - m(R, \theta_R))\Theta(\theta_R - \theta_{\text{th}}) \prod_{a=1}^4 \delta(\theta_{R,a})\Theta(-\lambda_a) \rangle$$

- Automatically derived from the new criterion
- Applicable to any type of primordial perturbations

Similar works

- Germani, Sheth, 1912.07072
- Luca, Franciolini, Riotto, 2001.04372
- Young, Musco, 2001.06469

Summary

• Clustering of primordial black holes with non-Gaussian initial fluctuations, TS, S.Yokoyama, 1906.04958

clustering

- Formation threshold of rotating primordial black holes, M.He, TS, 1906.10987
 spin
- A novel formulation of the PBH mass function, TS, S.Yokoyama, 1912.04687

mass function

Computations of PBH-related quantities from the primordial density perturbations