

Cosmic Acceleration @ KIPMU, Feb 19, 2020

Cosmology in the Era of Galaxy Surveys: from DES to LSST

Chihway Chang (UChicago/KICP)

For

Cosmic Acceleration @ KIPMU, Feb 19, 2020

Cosmology in the Era of Galaxy Surveys: from DES to LSST

Chihway Chang (UChicago/KICP)

For

Cosmic Acceleration @ KIPMU, Feb 19, 2020

Cosmology in the Era of Galaxy Surveys: from DES to LSST

Chihway Chang (UChicago/KICP)

For

Image credit: NASA/WMAP

Galaxy Surveys Have a lot to Offer

Outline

- The Dark Energy Survey (DES)
- Recent DES cosmology result highlight
- DES in the next few months
- Rubin Observatory's Legacy Survey of Space and Time (LSST)

The Dark Energy Survey

DES is an imaging survey using the **Dark Energy Camera** on the Blanco telescope SV: 2012-2013, Y1: 2013-2014 Survey finished Jan 9, 2019

> 5 filter bands (*grizY*), 3 sq. deg FOV, 5.5 years, **5000 sq. deg, i~24** Wide field and time-domain science

The Dark Energy Survey

DES is an imaging survey using the **Dark Energy Camera** on the Blanco telescope SV: 2012-2013, Y1: 2013-2014 Survey finished Jan 9, 2019

> 5 filter bands (*grizY*), 3 sq. deg FOV, 5.5 years, **5000 sq. deg, i~24** Wide field and time-domain science

The Dark Energy Survey

Image credit: DES

Papers are Rolling Out...

List of recent WL-related papers from DES, posted or published since the last DESC meeting:

- A Detection of CMB-Cluster Lensing using Polarization Data from SPTpol, S. Raghunathan et al., 1907.08605
- Blinding multi-probe cosmological experiments, J. Muir et al., 1911.05929
- Cosmological Constraints from Multiple Probes in the Dark Energy Survey, DES Collaboration, 1811.02375
- Cosmological lensing ratios with DES Y1, SPT and Planck, J. Prat et al., 1810.02212
- Detection of cross-correlation between gravitational lensing and gamma rays, S. Ammazzalorso, D. Gruen et al., 1907.13484
- DES Y1 results: Calibration of Cluster Mis-centering in the redMaPPer Catalogs, Y. Zhang et al., 1901.07119
- DES Y1 results: Joint Analysis of Galaxy Clustering, Galaxy Lensing, and CMB Lensing Two-point Functions, DES Collaboration et al., 1810.02322
- DES Y1 results: Methodology and Projections for Joint Analysis of Galaxy Clustering, Galaxy Lensing, and CMB Lensing Two-point Functions, E. J. Baxter et al., 1802.05257
- DES Y1 results: Methods for Cluster Cosmology and Application to the SDSS, M. Costanzi et al., 1810.09456
- DES Y1 results: The effect of intra-cluster light on photometric redshifts for weak gravitational lensing, D. Gruen et al., 1809.04599
- DES Y1 results: The relationship between mass and light around cosmic voids, Y. Fang, N. Hamaus et al., 1909.01386
- DES Y1 results: tomographic cross-correlations between DES galaxies and CMB lensing from SPT+Planck, Y. Omori et al.,, 1810.02342
- DES Y1 results: Wide field mass maps via forward fitting in harmonic space, B. Mawdsley et al., 1905.12682
- Monte Carlo Control Loops for cosmic shear cosmology with DES Year 1, T. Kacprzak et al., 1906.01018
- Optimising Automatic Morphological Classification of Galaxies with Machine Learning and Deep Learning using Dark Energy Survey Imaging, T.Y. Cheng, et al., 1908.03610
- Producing a BOSS-CMASS sample with DES imaging, S. Lee et al., 1906.01136
- The lensing imprint of DES voids on the Cosmic Microwave Background, P. Vielzeuf et al., 1911.02951
- The SPTpol Extended Cluster Survey, L. E. Bleem et al., 1910.04121

Since Nov 2019

3x2pt Cosmology

1) Cosmic shear

2) Galaxy-galaxy lensing

3) Galaxy clustering

Subsets of 3x2pt have been explored in previous literature. DES sets a new "normal".

3x2pt Cosmology

1) Cosmic shear

2) Galaxy-galaxy lensing

3) Galaxy clustering

Subsets of 3x2pt have been explored in previous literature. DES sets a new "normal".

DES Y1 3x2pt Cosmology

Prat et al. (2017)

• Consider all auto- and cross-correlations

• 2 samples of galaxies: **lens** • and **source**

Elvin-Poole et al. (2017) • - •

Blinded analysis

3x2pt Cosmology

$$\begin{split} C_{\kappa\kappa}^{ij}(l) = &\int d\chi \frac{q_{\kappa}^{i}(\chi)q_{\kappa}^{j}(\chi)}{\chi^{2}}P_{\mathrm{NL}}\left(\frac{l+1/2}{\chi}, z(\chi)\right) \\ C_{\delta_{\mathrm{g}}\kappa}^{ij}(l) = &\int d\chi \frac{q_{\delta_{\mathrm{g}}}^{i}\left(\frac{l+1/2}{\chi}, \chi\right)q_{\kappa}^{j}(\chi)}{\chi^{2}}P_{\mathrm{NL}}\left(\frac{l+1/2}{\chi}, z(\chi)\right) \\ C_{\delta_{\mathrm{g}}\delta_{\mathrm{g}}}^{ij}(l) = &\int d\chi \frac{q_{\delta_{\mathrm{g}}}^{i}\left(\frac{l+1/2}{\chi}, \chi\right)q_{\delta_{\mathrm{g}}}^{j}\left(\frac{l+1/2}{\chi}, \chi\right)}{\chi^{2}}P_{\mathrm{NL}}\left(\frac{l+1/2}{\chi}, z(\chi)\right) \end{split}$$

$$\begin{split} q^{i}_{\delta_{\rm g}}(k,\chi) &= b^{i}\left(k,z(\chi)\right) \frac{n^{i}_{\rm g}(z(\chi))}{\bar{n}^{i}_{\rm g}} \frac{dz}{d\chi} \quad \text{Lens} \\ q^{i}_{\kappa}(\chi) &= \frac{3H_{0}^{2}\Omega_{m}}{2{\rm c}^{2}} \frac{\chi}{a(\chi)} \int_{\chi}^{\chi_{\rm h}} {\rm d}\chi' \frac{n^{i}_{\kappa}(z(\chi'))dz/d\chi'}{\bar{n}^{i}_{\kappa}} \frac{\chi'-\chi}{\chi'} \quad \text{Source} \end{split}$$

$$\operatorname{Cov}\left(\Xi^{ij}(\theta),\,\Theta^{km}(\theta')\right) = \int \frac{dl\,l}{2\pi} J_{n(\Xi)}(l\theta) \int \frac{dl'\,l'}{2\pi} J_{n(\Theta)}(l'\theta') \left[\operatorname{Cov}^{\mathrm{G}}\left(C_{\Theta}^{ij}(l),C_{\Xi}^{km}(l')\right) + \operatorname{Cov}^{\mathrm{NG}}\left(C_{\Theta}^{ij}(l),C_{\Xi}^{km}(l')\right)\right]$$

3x2pt Cosmology

$$\begin{split} C_{\kappa\kappa}^{ij}(l) = & \int d\chi \frac{q_{\kappa}^{i}(\chi)q_{\kappa}^{j}(\chi)}{\chi^{2}} \underbrace{P_{\mathrm{NL}}\left(\frac{l+1/2}{\chi}, z(\chi)\right)}_{\chi} \begin{array}{ll} \text{Intrinsic alignment}\\ \text{Shear calibration} \\ C_{\delta_{\mathrm{g}}\kappa}^{ij}(l) = & \int d\chi \frac{q_{\delta_{\mathrm{g}}}^{i}\left(\frac{l+1/2}{\chi}, \chi\right)q_{\kappa}^{j}(\chi)}{\chi^{2}} P_{\mathrm{NL}}\left(\frac{l+1/2}{\chi}, z(\chi)\right) \\ C_{\delta_{\mathrm{g}}\delta_{\mathrm{g}}}^{ij}(l) = & \int d\chi \frac{q_{\delta_{\mathrm{g}}}^{i}\left(\frac{l+1/2}{\chi}, \chi\right)q_{\delta_{\mathrm{g}}}^{j}\left(\frac{l+1/2}{\chi}, \chi\right)}{\chi^{2}} P_{\mathrm{NL}}\left(\frac{l+1/2}{\chi}, z(\chi)\right) \\ \end{array}$$

$$\begin{aligned} q_{\delta_{\rm g}}^{i}(k,\chi) = & b^{i}(k,z(\chi)) \underbrace{n_{\rm g}^{i}(z(\chi))}_{\bar{n}_{\rm g}^{i}} \frac{dz}{d\chi} \quad \text{Lens} \\ q_{\kappa}^{i}(\chi) = & \frac{3H_{0}^{2}\Omega_{m}}{2{\rm c}^{2}} \frac{\chi}{a(\chi)} \int_{\chi}^{\chi_{\rm h}} {\rm d}\chi' \underbrace{n_{\kappa}^{i}(z(\chi'))}_{\bar{n}_{\kappa}^{i}} \frac{dz/d\chi'}{\chi'} \frac{\chi'-\chi}{\chi'} \quad \text{Source} \end{aligned}$$

$$\operatorname{Cov}\left(\Xi^{ij}(\theta),\,\Theta^{km}(\theta')\right) = \int \frac{dl\,l}{2\pi} J_{n(\Xi)}(l\theta) \int \frac{dl'\,l'}{2\pi} J_{n(\Theta)}(l'\theta') \left[\operatorname{Cov}^{\mathrm{G}}\left(C_{\Theta}^{ij}(l),C_{\Xi}^{km}(l')\right) + \operatorname{Cov}^{\mathrm{NG}}\left(C_{\Theta}^{ij}(l),C_{\Xi}^{km}(l')\right)\right]$$

Where we think we'll get in the next round of joint analyses (Y3/Y5).

Slide shamelessly stole from Troxel

5x2pt Cosmology

with Eric Baxter (Hawaii) Yuuki Omori (Stanford)

DES Y1 5x2pt Cosmology

0.24 0.27

0.30 0.33 0.36

 $\Omega_{\rm m}$

0.775

0.825

 $S_8 = \sigma_8 \sqrt{\Omega_m / 0.3}$

0.875

DES Y1 5x2pt Cosmology

DES in the Next Few Month

DES Y3: 4143 sq deg, 110 million WL objects, order 20 papers in the pipeline. Major changes relative to Y1:

- New PSF model (PIFF)
- Deblending using MOF
- New photo-z methodology bridging deep- (ugrizYJHK) and wide-field (riz) data
- New Balrog simulation to infer survey selection function (via injection)
- Two lens populations (redMaGic and magnitude-limited sample)
- Modelling improvements:
 - Nonlinear galaxy bias modelling
 - Nonlocal tangential shear marginalization
 - Magnification
 - Mixed tidal alignment/tidal torquing intrinsic alignment model

DES in the Next Few Month

DES in the Next Few Month

DES Outside-the-Box

with Marco Gatti (Barcelona)

DES Outside-the-Box

with Tae-Hyeon Shin (UPenn) Eric Baxter (Hawaii) Susmita Adhikari (Stanford) Bhuv Jain (UPenn)

 10^{1}

Shin et al. (2019

 10^{1}

 $v_r = 0$ $r = r_sp$

 $\mathrm{dlog}\rho(r)/\mathrm{dlog}r$

Hubbleflow

 10^{2}

400+ AdvACT clusters —> SZ-selected clusters are starting to have the statistics to say something interesting

24

DES Outside-the-Box

Investigating the effect of spectroscopic incompleteness in WL experiments

with Will Hartley (Geneva)

(Vera Rubin's Observatory, Simony Survey Telescope)

The Legacy Survey of Space and Time

LSST is an imaging survey scheduled science run ~2022

6 filter bands (u*grizY*), 10 sq. deg FOV, 10 years, ~3 day cadence, **18000 sq. deg, i~27** Wide field and time-domain science

(Vera Rubin's Observatory, Simony Survey Telescope)

The Legacy Survey of Space and Time

LSST is an imaging survey scheduled science run ~2022

6 filter bands (u*griz*Υ), 10 sq. deg FOV, 10 years, ~3 day cadence, **18000 sq. deg, i~27** Wide field and time-domain science

Image credit: LSST

(Vera Rubin's Observatory, Simony Survey Telescope)

The Legacy Survey of Space and Time

LSST is an imaging survey scheduled science run ~2022

6 filter bands (u*griz*Υ), 10 sq. deg FOV, 10 years, ~3 day cadence, **18000 sq. deg, i~27** Wide field and time-domain science

Image credit: LSST

28

The LSST Dark Energy Science Collaboration (DESC)

DESC Cosmology Pipelines

Reanalyzed **DLS**, **CFHTLenS**, **DES-SV**, **KiDS-450** cosmic shear analysis under unified assumption Currently we are using reanalysis of Stage III published data to push the development of DESC pipelines. Example: cosmic shear from **DES-Y1, KV450, HSC Y1**

Recall: HSC~LSST

Summary

31

