Thermal history of the Universe probed by a joint analysis of the thermal Sunyaev–Zeldovich effect and galaxy surveys

Ryu Makiya (Kavli IPMU) Collaborators: Eiichiro Komatsu (MPA), Shin'ichiro Ando (Univ. of Amsterdam), Chiaki Hikage (Kavli IPMU), Brice Ménard (JHU) and Yi-Kuan Chiang (Ohio State Univ.)

THANKS

- First of all, I'd like to appreciate this KAKENHI for supporting my work and my life
- Spent 2yrs in MPA and 2yrs in IPMU
- Research activities
 - PFS Cosmology
 - developed the simulation tools for Subaru SSP
 - Developed the tools for tomographic analysis og thermal hot gas (RM et al. 2018, RM et al. 2020)
- KAKENHI induced the accelerating expansion of my Universe!

The thermal Sunyaev-Zel'dovich (tSZ) Effect

(Sunyaev & Zel'dovich 1972)

- Cosmic microwave background (CMB) photons are inverse Compton scattered by energetic electrons in ICM
- Characterized by the Compton-y parameter

$$\frac{\Delta T_{\rm CMB}}{T_{\rm CMB}} = f_{\nu}(x) \left(\frac{k_B \sigma_T}{m_e c^2}\right) \int n_e(l) T(l) dl$$
Compton-y

Full-sky Map of ALL HOT GAS

The ΛCDM fits!

The largest uncertainty: mass bias

- The mass bias $B = M_{true} / M_{obs}$
 - Planck cluster mass is calibrated by the X-ray observation assuming hydrostatic equilibrium => bias
- Cosmological parameters strongly degenerate with *B*
 - M_{obs} should be ~40% lower than M_{true} to reconcile with the CMB+CMB lensing
 - Numerical simulations yield 5-20% of mass bias

Planck cluster mass vs lensing mass - HSC results

Planck cluster mass vs lensing mass - HSC results

Questions

- Is the mass bias really originated from the gas physics (e.g., non-thermal pressure)? or due to some systematics in the observations?
- Is there any mass or redshift dependence of the mass bias?
 - But all the redshift information is compressed

Questions

- Is the mass bias really originated from the gas physics (e.g., non-thermal pressure)? or due to some systematics in the observations?
- Is there any mass or redshift dependence of the mass bias?
 - But all the redshift information is compressed

=> Cross correlation!

Cross with 2MASS redshift survey (RM et al. 2018)

- 2MRS (Huchra et al. 2012)
 - Redshift distribution peaks at z ~ 0.03
 - Mass range of groups or clusters: 10^11 < Mvir/Msun < 10^16
- What can we learn?
 - Gas physics in the local universe
 How do local galaxies trace gas?

The tSZ x 2MRS cross-power spectrum

Power spectrum -- Halo model

$$C_l^{AB} = C_l^{AB,1h} + C_l^{AB,2h}$$

- 1-halo (intra-halo correlation)

$$C_l^{AB,1h} = \int dz \frac{dV}{dz d\Omega} \int dM \frac{dn}{dM} \tilde{u}_l^A(M,z) \tilde{u}_l^B(M,z)$$

- 2-halo (halo-halo correlation)

$$C_l^{AB,2h} = \int dz \frac{dV}{dz d\Omega} b_l^A(z) b_l^B(z) P_{\text{lin}}(l/\chi,z)$$

Mass function: Magneticum Pathfinder sim. (Bocquet+ 2016)

Model: tSZ

$$\tilde{u}_l^y(M,z) = \frac{4\pi r_{500}}{l_{500}^2} \int_0^\infty \mathrm{d}x \; x^2 \frac{\sigma_T}{m_e c^2} P_e(x) \frac{\sin(lx/l_{500})}{lx/l_{500}}$$

- Universal Pressure Profile (UPP; Arnaud et al. 2010)

$$P_e(x) = 1.65 \ h_{70}^2 \ \text{eV cm}^{-3}$$
$$\times E^{8/3}(z) \left[\frac{M_{500}}{3 \times 10^{14} h_{70} M_{\odot}}\right]^{2/3 + \alpha_p} p(x)$$

- mass bias

$$M_{500} = M_{500,\text{true}}/B$$

Model: tSZ

$$\tilde{u}_l^y(M,z) = \frac{4\pi r_{500}}{l_{500}^2} \int_0^\infty \mathrm{d}x \; x^2 \frac{\sigma_T}{m_e c^2} P_e(x) \frac{\sin(lx/l_{500})}{lx/l_{500}}$$

- Universal Pressure Profile (UPP; Arnaud et al. 2010)

$$\begin{aligned} P_e(x) &= 1.65 \ h_{70}^2 \ \text{eV cm}^{-3} \\ &\times E^{8/3}(z) \left[\frac{M_{500}}{3 \times 10^{14} h_{70} M_{\odot}} \right]^{2/3 + \alpha_p} p(x) \end{aligned}$$

- mass bias Calibrated by the X-ray observations

$$M_{500} = M_{500,\text{true}}/B$$

Model: tSZ

$$\tilde{u}_l^y(M,z) = \frac{4\pi r_{500}}{l_{500}^2} \int_0^\infty \mathrm{d}x \; x^2 \frac{\sigma_T}{m_e c^2} P_e(x) \frac{\sin(lx/l_{500})}{lx/l_{500}}$$

- Universal Pressure Profile (UPP; Arnaud et al. 2010)

Covariance matrix

- Gaussian term

$$\operatorname{Cov}^{\mathrm{G}}(C_{l_{1}}^{\mathrm{AB}}, C_{l_{2}}^{\mathrm{CD}}) = \frac{\delta_{l_{1}l_{2}}}{f_{\mathrm{sky}}(2l_{1}+1)\Delta l_{1}} \left[\hat{C}_{l_{1}}^{\mathrm{AC}} \hat{C}_{l_{2}}^{\mathrm{BD}} + \hat{C}_{l_{1}}^{\mathrm{AD}} \hat{C}_{l_{2}}^{\mathrm{BC}} \right]$$

- Non-Gaussian term

$$\operatorname{Cov}^{\mathrm{NG}}(C_{l}^{AB}, C_{l'}^{CD}) = \frac{1}{4\pi f_{\mathrm{sky}}} T_{ll'}^{ABCD}$$
$$T_{ll'}^{ABCD} = \int_{z_{\min}}^{z_{\max}} \mathrm{d}z \frac{\mathrm{d}V}{\mathrm{d}z\mathrm{d}\Omega} \int_{M_{\min}}^{M_{\max}} \mathrm{d}M \frac{\mathrm{d}n}{\mathrm{d}M} \tilde{u}_{l}^{A} \tilde{u}_{l}^{B} \tilde{u}_{l'}^{C} \tilde{u}_{l'}^{D}$$

Consistency of the auto- and cross-spectra

tSZ auto and 2MRS x tSZ prefers the same mass bias B
 => high B not due to the obvious systematics in the SZ data

- •The 2MRS x tSZ solves the degeneracy between α_p and B
- consistent with the self-similar model, or no mass dependence of B

tSZ x 2MRS

- First detection of the 2MRS x tSZ
- Assuming the Planck cosmology, observed cluster mass should be 35% lower than the true mass
 - consistent results for the tSZ auto and tSZ-2MRS cross
- tSZ x 2MRS significantly improves a constraint on the mass - pressure relation

Go to high redshift

Redshift distribution of SDSS sample

(Chiang & Menard 2019)

- Take a cross-correlation with SDSS galaxies and quasar sample
 - wide redshift coverage
 0 < z < 4.0
- Redshift evolution of mass bias?
- Can ACDM fits to all data?

Redshift evolution of tSZ (RM et al. 2020 in prep.)

Redshift evolution of tSZ (RM et al. 2020 in prep.)

Redshift vs Mass bias (preliminary!)

Thermal history of the Universe (Chiang, RM et al. 2020 in prep.)

-5

Summary

- Cluster mass bias is critical in cluster cosmology
- Planck+tSZ auto and 2MRS x tSZ yields higher mass bias than hydro simulations (RM et al. 2018)
- tSZ also may be in tension with primordial CMB (RM et al. 2020)
- ACDM can explain the redshift evolution of the tSZ with constant mass bias (RM et al. 2020 in prep.)