Concluding Remarks

Hitoshi Murayama (Berkeley, Kavli IPMU) February 19, 2020 Kavli IPMU

Send your slides to Masahiro

Phases of cosmic expansion 3 pillars of science A03 dark energy A02 dark matter ation deceleration A01 Inflation time

size of the Universe

Cosmic Microwave Bkgd CMB 2011 Nobel Prize in Physics

D01:combination⇒synergy

CMB T map (B01)

CMB T map

galaxy map

galaxy map (B02, B03)

D01

important observables at each intersection

C01: ultimate, theory Ogguri(Caltech)

Universe before inflation? Birth of time? quantum gravity? string? other dims? end of Universe? Multiverse? swampland de Sitter conjecture

> IADEITESE ATE (ALL) CMAS IENSII ISOCUITY.

eak lensing

oh gals.

112,

sNe. y

BAQRSD $S_{de}(z), \gamma$

宇宙加速膨强 の直接検出

science cases log normal analyses cross correlation earth acceleration

forests

X00: organization Murayama (IPMU)

D01: ultimate intensity maps matsu(MPA)

man-

IGM

Why accelerate?

- From GW170817, modified gravity unlikely to explain current acceleration
- swampland hypothesis suggests w>-1: quintessence
- if cosmological constant, can test multiverse with curvature measurement $\Omega_k > 0$, fluctuation in Ω_k with PFS
- inflation, dark matter, quintessence may have common origin (PBH, axion, supergravity)

All Star Team

Team	Name	Affiliation	Expertise
PI, organization	Murayama	Tokyo/Berkeley	particle theory
administration	Katayama	Tokyo	particle expt
A01	Sasaki	Kyoto	relativity
A02	Takahashi	Tohoku	particle theory
A03	Sugiyama	Nagoya	cosmology
B01	Hazumi	KEK	particle expt
B02	Miyazaki	NAOJ	observation, instrument
B03	Takada	Tokyo	cosmology
B04	Usuda	NAOJ	observation, instrument
C01	Ooguri	Tokyo/Caltech	particle
D01	Komatsu	Tokyo/MPA	cosmology

Age population

research led by grad students and researchers in 30s-40s

Thank you!!!

0

Finale

Have a safe trip home!

But there is exciting science ahead!