Physics Landscape with Focus on Flavor

<u>Gino Isidori</u> [University of Zürich]

Introduction

► The flavor problem

On the recent "anomalies" in B-physics

> What have we learned (3 general lessons)?

An explicit model to address the anomalies

What more do we hope to learn ?

Conclusions

Ι

Π

European Research Council Established by the European Commission

<u>Introduction</u>

(*almost*...) all <u>microscopic phenomena</u> we observe in Nature seems to be well described by the SM, a simple and elegant Theory that we continue to call "model" only for historical reasons...

However, despite all its phenomenological successes, the SM has some deep unsolved problems (*hierarchy problem*, *flavor problem*, *neutrino masses, dark-matter, dark energy, inflation...*)

The Standard Model should be regarded as an *Effective Field Theory* (*EFT*)

i.e. the limit (*in the range of energies and effective couplings so far probed*) of a more fundamental theory with new degrees of freedom

What we know after the first phase of the LHC is that:

- The Higgs boson is SM-like and is "light" (completion of the SM spectrum)
- There is a mass-gap above the SM spectrum

Beauty 2020 - Sept. 2020

What we know after the first phase of the LHC is that:

- The Higgs boson is SM-like and is "light" (completion of the SM spectrum)
- There is a mass-gap above the SM spectrum

We identified the *"light"* ↔ *"large"* pieces of our *"construction game"* & their long-range interactions

Beauty 2020 - Sept. 2020

What we know after the first phase of the LHC is that:

- The Higgs boson is SM-like and is "light" (completion of the SM spectrum)
- There is a mass-gap above the SM spectrum

Reconstructing the UV theory from its low-energy limit is a very difficult problem with <u>no unique solution</u>

[It took more than 35 years to go from the Fermi Theory to the SM...]

Introduction

The most interesting hints toward UV dynamics come from problems of the SM and, in particular, by the *un-natural features* of the SM-EFT...

Introduction

The most interesting hints toward UV dynamics come from problems of the SM and, in particular, by the *un-natural features* of the SM-EFT...

problem due to...

•) Electroweak hierarchy problem <u>Instability</u> of the Higgs mass under quantum corrections

II. Flavor problem(s) <u>Un-natural</u> tuning of the couplings to describe fermion masses Two un-natural (*correlated* ?) features of the SM-EFT

As I will argue in the rest of this talk, it is worth trying to "attack" these two problems together

- Theoretical motivation already from a closer inspection of the SM-EFT
- Phenomenological motivation from recent data in B physics

The Flavor Problem

Isidor Issac Rabi

(1898—1988)

 $\mathscr{L}_{\text{SM-EFT}} = \mathscr{L}_{\text{gauge}} + \mathscr{L}_{\text{Higgs}}$

In principle, we could expect many other sources of flavor non-degeneracy from the heavy dynamics

However (beside the *anomalies* in B-meson decays \rightarrow *more later*...), we observe none

<u>Stringent bounds</u> on the scale of possible new <u>flavor non-universal interactions</u>

 $\frac{1}{\Lambda^2} (\overline{\psi}_i \psi_j)^2$

E.g.:

Most general description of the heavy dynamics, as long as we do not have enough energy to directly excite it

+ $\sum_{i} \frac{1}{\Lambda_{i}^{d-4}} O_{i}^{d \ge 5}$

 $\mathscr{L}_{\text{SM-EFT}} = \mathscr{L}_{\text{gauge}} + \mathscr{L}_{\text{Higgs}}$

In principle, we could expect many other sources of flavor non-degeneracy from the heavy dynamics

However (beside a few *anomalies* in B-meson decays \rightarrow *more later*...), we observe none

<u>Stringent bounds</u> on the scale of possible new <u>flavor non-universal interactions</u>

The NP Flavor problem

Strong tension with a natural solution of the EW hierarchy problem

$$\Sigma_{i} \frac{1}{\Lambda_{i}^{d-4}} O_{i}^{d \ge 5}$$

+

Most general description of the heavy dynamics, as long as we do not have enough energy to directly excite it

Structure fully dictated by

- Number of light fields
- Their charges under long-range interactions

The Flavor Problem

- $\mathrm{m}_{\phi}~(\mathrm{125~GeV})~\ll\Lambda_{\mathrm{EW}}$ • Hierarchy problem (I. vs. II): Why
- Why y_e (~10⁻⁵) $\ll y_t$ (~1) ? • SM Flavor problem (III):
- NP Flavor problem (I. vs. IV): Why m_{ϕ} (125 GeV) $\ll \Lambda_{Flavor}$?

These problems have been with us since a long time... and we tried to solve them in different ways:

The Minimal Flavor Violation "solution" (popular in the pre-LHC era):

 New physics is flavor blind + the (genuine) hierarchy problem is not too severe → expect NP around the TeV scale

Try to separate the two problems & postpone the Flavor one

These problems have been with us since a long time... and we tried to solve them in different ways: un-popular post

The Minimal Flavor Violation "solution" (popular in the pre-LHC era):

• Expect NP around the TeV scale: No signals of NP up to rather high energy scales, <u>especially if NP is coupled universally</u>....

The <u>anthropic/landscape idea</u> (popular in the *post LHC run-I era*):

The genuine hierarchy problem is already too severe → accept fine-tuning & give up on solving both problems (at least at the EFT level)

I don't like it !

These problems have been with us since a long time... and we tried to solve them in different ways:

The path of <u>flavor non-universal interactions</u> (not so popular *yet*...):

- The hierarchical structure of the SM Yukawa coupl. is a clear indication that <u>all the new degrees of freedom</u> are coupled in a <u>non-universal way</u> to SM fermion families → expect TeV scale NP coupled mainly to 3rd gen.
- Genuine hierarchy problem less severe for NP coupled mainly to 3rd gen.

We should not give up & should <u>not try to separate</u> the two problems

These problems have been with us since a long time... and we tried to solve them in different ways:

The path of <u>flavor non-universal interactions</u> (not so popular *yet*...):

 The hierarchical structure of the SM Yukawa coupl. is a clear indication that <u>all the new degrees of freedom</u> are coupled in a <u>non-universal way</u> to SM fermion families → expect TeV scale NP coupled mainly to 3rd gen.

This is the path that seems to be indicated by the recent hints of Lepton Flavor non Universality in semi-leptonic B decays

On the recent LFU anomalies in B decays

Recent data show some <u>convincing</u> evidences of Lepton Flavor Universality violations in semi-leptonic decays of the b quark.

More precisely, we seem to observe a <u>different behavior (beside pure</u> kinematical effects) of different lepton species in the following processes:

• b \rightarrow c *lv* (charged currents): τ vs. light leptons (μ , e)

• b \rightarrow s l^+l^- (neutral currents): μ vs. e

IF taken together... this is probably the largest "coherent" set of deviations from the SM we have ever seen...

 \rightarrow Hope some more news in the next days !!!

On the recent LFU anomalies in B decays

Recent data show some <u>convincing</u> evidences of Lepton Flavor Universality violations:

• $b \rightarrow c lv$ (charged currents): τ vs. light leptons (μ , e) • $b \rightarrow s l^+l^-$ (neutral currents): μ vs. e

What is particularly interesting, is that these anomalies are challenging an assumption (LFU), that we gave for granted for many years (*without many good theoretical reasons*...)

<u>Three main messages</u> for BSM physics that remains valid/interesting even if (some of) the anomalies will go away

Flavor-non-universal interactions

The role of flavor symmetries

The Return of the Leptoquark

What have we learned?

Flavor-non-universal interactions

The role of flavor symmetries The Return of the Leptoquark

I. *Flavor non-universal interactions*

So far, the vast majority of model-building attempts to extend the SM was based on the following two (*implicit*) hypotheses:

- Concentrate on the Higgs hierarchy problem
- Postpone (*ignore*) the flavor problem =

The 3 gen. as "identical" copies (*but for Yukawa-type interactions*)

I. *Flavor non-universal interactions*

So far, the vast majority of model-building attempts to extend the SM was based on the following two (*implicit*) hypotheses:

- Concentrate on the Higgs hierarchy problem
- Postpone (*ignore*) the flavor problem

The recent flavor anomalies seem to suggest a <u>new avenue in BSM approaches:</u>

The <u>universality</u> of SM gauge interactions is only a <u>low-energy property</u>

↓

- <u>We should not ignore the flavor problem</u> → new TeV-scale interactions distinguishing the different families
- A (very) different behavior of the 3 families (with special role for 3rd gen.), may be the key to solve/understand also the gauge hierarchy problem
 - \rightarrow Higgs mostly coupled to 3^{rd} gen.
 - \rightarrow TeV-scale NP mainly coupled to 3rd gen. could have escaped direct searches

Beauty 2020 - Sept. 2020

What have we learned?

LFU violation & flavor-non-universal interactions

The role of flavor symmetries

The Return of the Leptoquark

- Anomalies are seen only in semi-leptonic (quark×lepton) operators
- We definitely need non-vanishing <u>left-handed</u> current-current operators although other contributions are also possible

Bhattacharya *et al.* '14 Alonso, Grinstein, Camalich '15 Greljo, GI, Marzocca '15 (+many others...)

- Large coupling [*competing with SM tree-level*] in $bc \rightarrow l_3 v_3$ [R_D, R_{D*}]
- Small coupling [*competing with SM loop-level*] in bs $\rightarrow l_2 \ l_2 \ [R_K, R_{K^*}, ...]$

$$\mathbf{T}_{ij\alpha\beta} = (\delta_{i3} \times \delta_{3j}) \times (\delta_{\alpha3} \times \delta_{3\beta}) +$$

small terms for 2nd (& 1st) generations

- Anomalies are seen only in semi-leptonic (quark×lepton) operators
- We definitely need non-vanishing <u>left-handed</u> current-current operators although other contributions are also possible

Bhattacharya *et al.* '14 Alonso, Grinstein, Camalich '15 Greljo, GI, Marzocca '15 (+many others...)

<u>Long list of constraints [FCNCs + semi-leptonic b decays + π , K, τ decays + EWPO]</u>

Essential role of *flavor symmetries*, not only to explain the pattern of the anomalies, but also to "protect" against too large effects in other low-energy observables

A very good candidate to address both these issues (link with the origin of the Yukawa couplings + compatibility with other low-energy data) is a <u>chiral</u> flavor symmetry of the type $U(2)^n$

$$\Psi = \begin{bmatrix} \begin{pmatrix} \Psi_1 \\ \Psi_2 \end{pmatrix} \\ \Psi_3 \end{bmatrix} \longleftarrow \text{ light generations (flavor doublet)}$$
$$\bullet \quad 3^{\text{rd}} \text{ generation (flavor singlet)}$$

SM fermion (e.g. q_L)

....with suitable (<u>small</u>) symmetry-breaking terms, related to the structures observed in the SM Yukawa couplings

Barbieri, G.I., Jones-Perez, Lodone, Straub, '11

NB: This flavor symmetry does not need to be a "fundamental" symmetry, it could well be an "accidental" symmetry, resulting from non-universal interactions that distinguish the 3rd family

A very good candidate to address both these issues (link with the origin of the Yukawa couplings + compatibility with other low-energy data) is a <u>chiral</u> flavor symmetry of the type $U(2)^n$

An EFT based on the following two hypothesis:

- $U(2)_q \times U(2)_l$ chiral flavor symmetry
- NP in left-handed semi-leptonic operators only [at the high-scale]

provides an excellent fit to the data

A very good candidate to address both these issues (link with the origin of the Yukawa couplings + compatibility with other low-energy data) is a <u>chiral</u> flavor symmetry of the type $U(2)^n$

An EFT based on the following two hypothesis:

- $U(2)_q \times U(2)_l$ chiral flavor symmetry
- NP in left-handed semi-leptonic operators only [at the high-scale]

provides an excellent fit to the data

N.B.: This set-up was proposed in 2015 and refined in 2017.

Data from 2019 and 2020 have made this picture more consistent:

- I. Higher NP scale given smaller central value of the $b \rightarrow c$ anomaly
- II. Rising "evidence" of LFU contribution to C_9 from $\tau\tau$ loops

Crivellin *et al.* '19 Alguero *et al.* '19 Aebischer *et al.* '19

III. Evidence of a ~20% suppression of BR($B_s \rightarrow \mu\mu$) [as predicted in 2015...]

IV. First hint of μ/e LFU violation in $\Lambda_b \rightarrow pKll$, with $R_{pK} \approx R_K$ Fuentee

Fuentes-Martin *et al.* 19 LHCb '19

Beauty 2020 - Sept. 2020

What have we learned?

LFU violation & flavor-non-universal interactions

The role of flavor symmetries

The Return of the Leptoquark

III. *The return of the Leptoquark*

Which mediators can generate the effective operators required for by the EFT fit? If we restrict the attention to tree-level mediators, not many possibilities...

N.B.: The choice of a tree-level mediator is compelling only if we are interested into a combined fit of the anomalies (\rightarrow low scale) effective low-scale of NP.

III. *The return of the Leptoquark*

Which mediators can generate the effective operators required for by the EFT fit? If we restrict the attention to tree-level mediators, not many possibilities...

LQ (both scalar and vectors) have two general <u>strong advantages</u> with respect to the other mediators:

II. Direct 3^{rd} gen. LQ are also in better shape as far as direct searchessearches:are concerned (*contrary to Z'...*).

III. *The return of the Leptoquark*

Leptoquarks suffered of an (*undeserved*) "bad reputation" for two main reasons:

Could mediate proton decay → not a general feature of the LQ: it depends on the model...!
[e.g. not the case in the Pati-Salam model]

• Severe bounds from processes involving μ & e (such as $K_L \rightarrow \mu e$) \rightarrow avoided with non-trivial flavor structure [*e.g. non-univ. interactions*]

III. *The return of the Leptoquark*

Leptoquarks suffered of an (*undeserved*) "bad reputation" for two main reasons:

Could mediate proton decay → not a general feature of the LQ: it depends on the model...!
[e.g. not the case in the Pati-Salam model]

• Severe bounds from processes involving μ & e (such as $K_L \rightarrow \mu e$) \rightarrow avoided with non-trivial flavor structure [*e.g. non-univ. interactions*]

On the other hand, they are a "natural" feature in many SM extensions \rightarrow "Renaissance" of LQ models (*to explain the anomalies, but not only*...):

- Scalar LQ as PNG Gripaios, '10 Gripaios, Nardecchia, Renner, '14 Marzocca '18
- Vector LQ as techni-fermion resonances

Barbieri *et al.* '15; Buttazzo *et al.* '16, Barbieri, Murphy, Senia, '17

- Scalar LQ from GUTs & K SUSY Hiller & Schmaltz, '14; Becirevic *et al.* '16, Fajfer *et al.* '15-'17; Dorsner *et al.* '17; Crivellin *et al.* '17; Altmannshofer *et al.* '17 Trifinopoulos '18, Becirevic *et al.* '18 + ...
 - LQ as Kaluza-Klein excit.

Megias, Quiros, Salas '17 Megias, Panico, Pujolas, Quiros '17 Blanke, Crivellin, '18 Vector LQ in GUT gauge models

> Assad *et al.* '17 Di Luzio *et al.* '17 Bordone et *al.* '17 + ...

An explicit model to address the anomalies

An explicit (class of) model(s) to address the anomalies

Starting observation: the gauge theory proposed in the 70's to unify quarks and leptons by <u>Pati & Salam</u> predicts a massive vector LQ with the correct quantum numbers to fit <u>both</u> the anomalies:

<u>Pati-Salam</u> group: $SU(4) \times SU(2)_L \times SU(2)_R$

Main Pati-Salam idea: Lepton number as "the 4th color"

The massive LQ $[U_1]$ arise from the breaking SU(4) \rightarrow SU(3)_C×U(1)_{B-L}

The problem of the "original PS model" are the strong bounds on the LQ couplings to $1^{st} \& 2^{nd}$ generations [e.g. M > 200 TeV from $K_L \rightarrow \mu e$]

Interesting attempts to solve this problem adding extra fermions and/or modifying the gauge group Calibbi, Crivellin, Li, '17; Di Luzio, Greljo, Nardecchia, '17 Fornal, Gadam, Grinstein, '18

▶ <u>The PS³ model</u>

 $[PS]^3 = [SU(4) \times SU(2)_L \times SU(2)_R]^3$

Bordone, Cornella, Fuentes-Martin, GI, '17

Main idea: at high energies the 3 families are charged under 3 independent gauge groups (gauge bosons carry a flavor index !)

▶ <u>The PS³ model</u>

- * The breaking to the diagonal SM group occurs via appropriate "link" fields, responsible also for the generation of the hierarchy in the Yukawa couplings.
- * The 2-3 breaking gives a TeV-scale LQ [+ Z' & G'] coupled mainly to 3rd gen., as in the flavor-universal "4321" model [Di Luzio, Greljo, Nardecchia, '17]

▶ <u>The PS³ model</u>

The wider class of "4321" models

Fuentes-Martin & Stangl '20

The wider class of "4321" models

Present collider and low-energy pheno are all controlled by the last-step in the breaking chain $[4321 \rightarrow SM]$

Despite the apparent complexity, the construction is highly constrained

Renormalizable structure (no d>5 ops) achieved with vector-like fermions

	Field	SU(4)	SU(3)'	$SU(2)_L$	$U(1)^{\prime}$
	$q_L^{\prime i}$	1	3	2	1/6
	$u_R'^i$	1	3	1	2/3
	$d_R'^i$	1	3	1	-1/3
	$\ell_L'^i$	1	1	2	-1/2
	$e_R'^i$	1	1	1	-1
	ψ'_L	4	1	2	0
	ψ_u'	4	1	1	1/2
	ψ_d'	4	1	1	-1/2
	χ^i_L	4	1	2	0
	χ^i_R	4	1	2	0
	H_1	1	1	2	1/2
	H_{15}	15	1	2	1/2
	Ω_1	$\overline{4}$	1	1	-1/2
	Ω_3	$ar{4}$	3	1	1/6
	Ω_{15}	15	1	1	0

 $\begin{array}{c|c} SU(4)_{3} \times SU(3)_{1+2} \times [SU(2)_{L} \times U(1)'] \\ \psi_{3} & \psi_{1,2} \end{array}$ $\langle \Omega's \rangle \longrightarrow LQ [U_{1}] + Z' + G' \\ [\sim 1-5 \text{ TeV}] \\ \hline \\ & \Psi_{1,2,3} \end{array}$

- Positive features the EFT reproduced
- Calculability of $\Delta F=2$ processes
- Precise predictions for high-pT data

Consistent with present data both at low and high energies

Greljo, Stefanek, '18; Di Luzio *et al.* '17 & '18; Cornella *et al.*, '19; Baker, Fuentes-Martin, GI, König, '19, Fuentes-Martin, GI, König, Selimovic '20

"It doesn't matter how beautiful your theory is, it doesn't matter how smart you are. If it doesn't agree with experiment, it's wrong." [Feynman]

Ideally, to confirm all this... we would like to see a direct signal of the new mediators at high-pT.

But a high-energy discovery is not guaranteed in the short term [even in the optimistic case of a combined explanation of the anomalies]

E.g.: Z' for $b \rightarrow suu$ only [Allanach *et al.* '19]

Ideally, to confirm all this... we would like to see a direct signal of the new mediators at high-pT.

But a high-energy discovery is not guaranteed in the short term [even in the optimistic case of a combined explanation of the anomalies]

In the short (?) term, the role of low-energy observables is potentially more interesting \rightarrow many visible BSM effects expected, by consistency, virtually in all the models addressing the anomalies

<u>Main message</u>: "super-reach" program for LHCb & Belle-II and other low-energy facilities

- This program is <u>essential</u> to determine the flavor structure of the new sector
- Correlations among low-energy obs. can be studied by means of EFT *and already with low-energy data we could rule-out many models...*

<u>Main message</u>: "super-reach" program for LHCb & Belle-II and other low-energy facilities.

Two examples -in 4321 modes- of observables relevant to both LHCb & Belle-II:

Conclusions

- Flavor physics remains somehow a mystery [*who ordered the muon?*]: we do not have yet clear answers for the two (*SM & NP*) *flavor puzzles*. But flavor physics is also a great opportunity to understand what's beyond the SM
- So far, most attempts in model-building tried to "postpone" the solution of the flavor problems to high-energy scales. This has not been very successful, and is not what the SM-EFT suggests.
- The recent LFU anomalies, *albeit not statistically compelling yet*, provide a clear phenomenological indication of non-trivial flavor dynamics around the TeV scale.
- These anomalies are <u>not in contradiction</u> with existing low- & high-energy data and, <u>taken together</u>, they point out to a well-defined structure of New Physics coupled mainly to 3rd generation, with a flavor structure connected to that appearing in the SM Yukawa couplings.

A lot of fun ahead of us...

(both on the exp., the pheno, and the model-building point of view)