LHCb: Status, Highlights, and Prospects

on behalf of the LHCb Collaboration

Biplab Dey

LHCb status, highlights, prospects

21st Sept, 2020

1 / 28

THE FLAVOR PARADIGM

• BABAR/Belle [2000-10]: established the CKM CPV framework.

- $\sigma_{b\bar{b}}^{\Upsilon(4S)} \sim \mathcal{O}(nb)$. For precision physics: super-flavor factory.
- @LHC: huge cross-sections $\sigma_{b\bar{b}} \sim \mathcal{O}(mb)$, but harsh environment.
- Folklore: hadron colliders are discovery machines, while lepton colliders are precision machines.
- To harness $\sigma_{b\bar{b}}^{\text{LHC}}$, needed a special detector...

FLAVOR-FACTORY AT A HADRON COLLIDER

• LHCb: $\frac{m_b}{\sqrt{s}} \sim 10^{-3}$. Highly boosted b's \Rightarrow forward spectrometer.

[JINST14(2019)P11023, JINST14(2019)P04013, Int.J.Mod.Phys.A30(2015)1530022, JINST3(2008)S08005]

BUT, ALSO A GENERAL PURPOSE DETECTOR...

• Rich haul of physics (> 530 publications). Broad program.

LHCb status, highlights, prospects

RUN I/II OPERATIONS AND LUMINOSITIES

- 10-15× lower lumi than ATLAS/CMS to limit occupancies in sub-detectors (lumi-levelling).
- LHCb design lumi was 2×10^{32} cm⁻²s⁻¹. We were able to run at twice of that. Mainly due to innovations in the trigger.

• Thanks to excellent performance of the LHC as well!

TAKEAWAYS FROM RUN I+II TILL NOW...

- Gained huge experience in triggering for precision flavor physics in harsh LHC environment ⇒ lessons for Hi-Lumi LHC.
- Significantly sharpened CKM picture. Charm CPV, B_s^0 mixing...
- Access to all *b*-hadron species $(B^{\pm,0}, B_s^0, \Lambda_b^0, \dots)$ has been critical.
- LHCb can do neutrals, semileptonics, once thought to be near-impossible ($|V_{ub}|, \Lambda_{\rm b}^0 \to \Lambda \gamma,...$).
- $\mathcal{B}(B^0_{(s)} \to \mu^+ \mu^-)$ consistent with SM, but evolution of *B*-anomalies among the most promising topics in HEP today. \hookrightarrow [Adlene's talk]
- Revolutionized exotic hadron spectroscopy.

Run I/II physics highlights

- I will cover:
 - Hadron Spectroscopy
 - New measurements for γ and CPV in B_s^0
 - Dark sector searches
- Adlene's talk (next session) will cover anomalies in:
 - Semileptonics
 - $b \rightarrow s$ FCNC decays

Event 251784647 Run 125013 Thu, 09 Aug 2012 05:53:58

Hadron spectroscopy

Making sense of the "zoo"...

• 1974 J/ψ discovery: could be immediately interpreted.

These quarks are much heavier than the QCD scale Λ_{QCD} , & hence are discernable, nonrelativistic entities within the hadron

I [R. Lebed] This part consists of innumerable gluons and sea $q\bar{q}$ pairs, but in the hadrons of lowest mass it just has $J^{PC} = 0^{++}$ • NR potential model predicted the $c\bar{c}$ spectrum... [eg., PRD17(1978)3090]

• Till Belle discovered the X(3872) exotic candidate in 2003.

- ~ 40 exotic candidates since then.
- No single theory picture that fits all cases, though $\Lambda_{\rm QCD}/m_c \ll 1$ is a common thread.

LHCb status, highlights, prospects

 21^{st} Sept, 2020

The $\chi_{c1}(3872)$ lineshape puzzle

[JHEP 08(2020) 123] [LHCb-PAPER-2020-008]

- LHCb established the $\chi_{c1}(3872)$ (X(3872)) as 1⁺⁺ $\begin{bmatrix} PRL110, 222001 (2013) \\ PRD92, 011102 (2015) \end{bmatrix}$, but its nature still not understood. Molecule or tetraquark?
- Key features: narrow width, mass right at the $D^0 \overline{D}^{*0}$ threshold.

• Flatté with couplings to $D\overline{D}^*$, $\rho^0 J/\psi$, $\omega J/\psi$: FWHM ~ 0.22 MeV, $< \Gamma^{\text{rBW}} \Rightarrow$ rBW lineshape inadequate.

FIRST $|cc\bar{c}\bar{c}\rangle$ TETRAQUARKS

[LHCb-PAPER-2020-011] (Science Bulletin (2020))

- $T_{QQ\bar{Q}\bar{Q}}$, $Q \in \{c, b\}$, in many QCD models [1803.02522, 1911.00960].
- $\bullet~T_{bb\bar{b}\bar{b}}$ searched at LHCb [JHEP10(2018),086] and CMS [2002.06393].
- LHCb prompt di- J/ψ : peak at 6900 MeV + other structures.

- Diquark models: $[cc]_{S=1}[\bar{c}\bar{c}]_{S=1}$.
- Karliner *et al.* [2009.04429]: $0^{++}(2S)$. "Dip": opening of S-wave di- η_{c0} .
- Becchi *et al.* [2006.14388]: 2⁺⁺.

• Spin-parity determination (as $X \to 4\ell$) with Run 3 data [2007.05501].

11 / 28

First $|cs\bar{u}\bar{d}\rangle$ tetraquarks

[LHCb-PAPER-2020-024] [LHCb-PAPER-2020-025]

- "Model-independent" analysis: $c\bar{c}$ reflections can't mimic $m(D^-K^+)$ band.
- Karliner *et al.* [2008.05993]: X_0 (compact tetraquark), X_1 ($D^*\overline{K}^*$ molecule?).

•
$$B^0 \to D^0 \overline{D}^0 K^+ \pi^-$$
: no isospin-partner $[D^0 K^+]$

12 / 28

EXCITED b/c-HADRONS

 \hookrightarrow [see Arvind's talk]

13 / 28

• Major strides in conventional (heavy-flavor) baryon spectroscopy...

... AND MORE A COMING (NEW!)

- New B^+K^- structures from B^{**0} decays.
- New $\Xi_b(6227)^0 \to \Xi_b^- \pi^+$: likely isospin partner of the $\Xi_b(6227)^-$.

• See Arvind's talk on Wed for details.

CKM angle γ and CPV in B_s^0

$\gamma \text{ FROM } B^{\mp} \rightarrow D(\rightarrow K^0_s \pi^+ \pi^-) K^{\pm}$

[LHCb-CONF-2020-001]"BPGGSZ" method

- SM benchmark: γ accessible in tree decays. $V_{ub} \sim e^{-i\gamma}$.
- $\gamma = (72.1^{+4.1}_{-4.5})^{\circ}$ from trees [HFLAV]; $(65.7^{+0.1}_{-2.7})^{\circ}$ from loops [CKMFitter].
- Model-independent method (inputs from BESIII on D decay).

- $B \to D\pi$ as control mode. $\gamma = (69 \pm 5)^{\circ}$. Most precise single measurement.
- Combined γ|_{LHCb} precision at 4° level on target. ⇒ see Anton's talk on Wed

 $\gamma \text{ from } B^0_s \to D^{\mp}_s K^{\pm} \pi^+ \pi^- \text{ (NEW!)}$ [lhcb-paper-2020-030]

- Similar to $B_s^0 \to D_s^{\mp} K^{\pm}$ [JHEPO3(2018)059], except complicated $K\pi\pi$ system.
- Time-dep. flavor-tagged 5D amplitude analyis! $N_{\rm sig} \sim 7500.$

• Most precise measurement of Δm_s and a new measurement of γ from B_s^0 decays \Rightarrow see Stefano's talk tomorrow.

CPV IN
$$B^0_{(s)} \rightarrow h^+ h'^-$$
 (NEW!) [LHCb-paper-2020-029]

• 2-body $B_{(s)}^0$ decays: rich set of diagrams (tree, penguin, mixing).

• Results dominated by Run I LHCb analysis [PRD98(2018)032004] \Rightarrow evidence for TD-CPV in $B_s^0 \rightarrow K^+K^-$.

Biplab Dev

- Update to 2015+16 (2.2/fb) data. Results compatible w/ Run I analysis.
- First observation of TD-CPV in $B_s^0 \to K^+ K^- \Rightarrow$ see Stefano's talk tomorrow.

ot, 2020 18 / 28

Dark sector searches

DARK SECTORS: A DIFFERENT PARADIGM FOR NP

- DM charged under its own (dark) gauge sector \Rightarrow SM talks to DM via messengers. Messengers can be at any (GUT?) scale.
- Low energy EFT \Rightarrow four portals.
- LHCb sensitive to all: scalar (Higgs), neutrino (HNL), vector (dark photons), axions (ALPs).

- LHCb: low pileup, soft triggers (p_T > 1 GeV for muons, p_T > 3 GeV for calo), exotica from B decays.
 - Run II (2015) onwards: offline quality selection (PID, vertexing, calo) in trigger. No pre-scale for dimuons. Non-standard searches.

A SAMPLE OF EXOTICA SEARCHES AT LHCB

• Many dark photon, Majorana neutrinos, dark scalar searches...

PRL 124	(2020)	041801					
EPJC78	(2018) 1	1008					
JHEP 09	(2018)	147					
PRL 120	(2018)	061801					
EPJC 77	(2017)	812					
EPJC 77	(2017)	224					
EPJC76 (2016) 664							
PRL 112	(2014)	131802					
PRL 115	(2015)	161802					
PRD 95	(2017) (071101(R)					
PRL 116	(2016)	251803					
PRD 92	(2015) 1	L15017					

Search for $A' \to \mu^+ \mu^-$

Search for lepton-flavour-violating decays of Higgs-like bosons Search for a dimuon resonance in the Υ mass region

Search for dark photons produced in 13 TeV pp collisions

Updated search for long-lived particles decaying to jet pairs Search for massive long-lived particles decaying semileptonically in the LHCb detector

Search for Higgs-like bosons decaying into long-lived exotic particles

Search for Majorana Neutrinos in $B^- \to \pi^+ \mu^- \mu^-$ Decays

Search for Hidden-Sector Bosons in $B^0 \to K^{*0} \mu^+ \mu^-$

Search for long-lived scalar particles in $B^+ \to K^+ \chi(\mu^+ \mu^-)$

Proposed Inclusive Dark Photon Search at LHCb

Dark photons from charm mesons at LHCb (for Run 3)

Low mass A' with dimuons

[PRL124(2020)041801]

• Low mass dark photon $(A' \to \ell^+ \ell^-)$: $\mu^+ \mu^-$ easiest at LHCb

• Run 3 proposal: e^+e^- in with $D^* \to DA', \pi^0, \eta \to \gamma A'$.

Biplab Dey

LHCb status, highlights, prospects

21st Sept, 2020 22 / 28

HNL IN $W^+ \rightarrow \mu^+ \mu^\pm \text{JET}$

[LHCb-PAPER-2020-022]

- Heavy right-handed ("sterile") neutrinos can solve DM, ν mass. Mixing w/ active ν ($|V_{\nu M}|$).
- Run I search of on-shell $W^{\pm} \to \mu^{\pm} N$. Prompt decay of HNL, and $m_N \in [5, 50]$ GeV.

• Both same-sign(LNV) and opp.-sign(LNC, 1^{st} time!) $\mu\mu$ probed.

• Sensitivity still statistics-limited (compared to ATLAS/DELPHI limits). Can be competitive after the upgrade.

Biplab Dey

LHCb status, highlights, prospects

21st Sept, 2020

23 / 28

Looking ahead...

LHCb UPGRADES

CERN-LHCC-2017-003

• Aim to collect $\times 100$ data, improving upon $1-2 \, \text{fb}^{-1}/\text{year}$.

LHCb status, highlights, prospects

LHCb UPGRADES

CERN-LHCC-2017-003 LHCB-PUB-2018-009

• No departures from CKM picture yet, but 20% NP still allowed.

Table 10.1: Summary of prospects for future measurements of selected flavour observables for LHCb, Belle II and Phase-II ATLAS and CMS. The projected LHCb sensitivities take no account of potential detector improvements, apart from in the trigger. The Belle-II sensitivities are taken from Ref. [608].

Observable	Current LHCb	LHCb 2025	Belle II	Upgrade II	ATLAS & CMS
EW Penguins					
$R_K (1 < q^2 < 6 \text{ GeV}^2 c^4)$	0.1 [274]	0.025	0.036	0.007	-
R_{K^*} $(1 < q^2 < 6 \text{ GeV}^2 c^4)$	0.1 [275]	0.031	0.032	0.008	-
$R_{\phi}, R_{pK}, R_{\pi}$		0.08,0.06,0.18	-	0.02, 0.02, 0.05	-
CKM tests					
γ , with $B^0_* \rightarrow D^+_* K^-$	$\binom{+17}{-22}^{\circ}$ [136]	4°	-	1°	-
γ , all modes	$(^{+5.0}_{-5.8})^{\circ}$ [167]	1.5°	1.5°	0.35°	-
$\sin 2\beta$, with $B^0 \rightarrow J/\psi K_s^0$	0.04 [609]	0.011	0.005	0.003	-
ϕ_s , with $B_s^0 \rightarrow J/\psi\phi$	49 mrad [44]	14 mrad	-	4 mrad	22 mrad [610]
ϕ_s , with $B_s^0 \rightarrow D_s^+ D_s^-$	170 mrad [49]	35 mrad	-	9 mrad	-
$\phi_s^{s\bar{s}s}$, with $B_s^0 \rightarrow \phi \phi$	154 mrad [94]	39 mrad	-	11 mrad	Under study [611]
$a_{\rm el}^s$	33×10^{-4} [211]	10×10^{-4}	-	$3 imes 10^{-4}$	
$ \vec{V}_{ub} / V_{cb} $	6% [201]	3%	1%	1%	-
$B^0_*, B^0 { ightarrow} \mu^+ \mu^-$					
$\overline{\mathcal{B}(B^0 \to \mu^+ \mu^-)}/\mathcal{B}(B^0_s \to \mu^+ \mu^-)$	90% [264]	34%	-	10%	21% [612]
$\tau_{B^0 \rightarrow \mu^+ \mu^-}$	22% [264]	8%	-	2%	-
$S_{\mu\mu}$	-	-	_	0.2	-
$b \rightarrow c \ell^- \bar{\nu}_l$ LUV studies					
$\overline{R(D^*)}$	0.026 [215, 217]	0.0072	0.005	0.002	-
$R(J/\psi)$	0.24 [220]	0.071	-	0.02	-
<u>Charm</u> $> 5\sigma$ in PRL1	22(2019)21180	3			
$\Delta A_{CP}(KK - \pi\pi)$	$8.5 imes 10^{-4}$ [613]	$1.7 imes 10^{-4}$	5.4×10^{-4}	3.0×10^{-5}	-
$A_{\Gamma} (\approx x \sin \phi)$	2.8×10^{-4} [240]	4.3×10^{-5}	3.5×10^{-4}	$1.0 imes 10^{-5}$	-
$x \sin \phi$ from $D^0 \rightarrow K^+ \pi^-$	13×10^{-4} [228]	3.2×10^{-4}	4.6×10^{-4}	8.0×10^{-5}	-
$x\sin\phi$ from multibody decays		$(K3\pi)$ 4.0×10^{-5}	$(K_{ m S}^0\pi\pi)$ 1.2 × 10 ⁻⁴	$(K3\pi) 8.0 \times 10^{-6}$	

LHCb Upgrade Ia

• An almost new detector for Run 3 in 2021. Commissioning hit by COVID. Nevertheless, all sub-detectors progressing well.

• HLT w/ hybrid technology: HLT1 in GPU's, HLT2 in CPU's.

Biplab Dey

LHCb status, highlights, prospects

 21^{st} Sept, 2020

2020 27 / 28

SUMMARY

- Run I/II LHCb has been a fantastic success core flavor physics, spectroscopy, dark sectors, heavy ions...
- Only way to increase data collection rate was to remove L0 hardware trigger (1 MHz bottleneck).
- Versatile software HLT seen the way out \Rightarrow major uphaul of code-base for analysis flow as well.
- Updates with Run I+II data coming up for our theory colleagues.
- Looking forward to Run 3...

SUMMARY

- Run I/II LHCb has been a fantastic success core flavor physics, spectroscopy, dark sectors, heavy ions...
- Only way to increase data collection rate was to remove L0 hardware trigger (1 MHz bottleneck).
- Versatile software HLT seen the way out \Rightarrow major uphaul of code-base for analysis flow as well.
- Updates with Run I+II data coming up for our theory colleagues.
- Looking forward to Run 3...

Thank you!

Biplab Dey