CMS Flavor Highlights and Prospects

Prafulla Kumar Behera

IIT Madras, India

On behalf of the CMS Collaboration

Beauty 2020, Kavli, IPMU, Japan

September 21, 2020

Outline of the talk

- CP violation in B_s decays
- Rare decays of B_s
- Search for lepton flavor violation
- New resonance searches (mesons and baryons)
- Conclusions

CP Violation in $B_s \rightarrow J/\psi \phi(1020)$

Talk by Giacomo Feldi in CP violation and Lifetime session 2 on Wed: 23/09

$$\phi_{s} \simeq -2\beta_{s} = -2\arg\left(-\frac{V_{ts}V_{tb}^{*}}{V_{cs}V_{cb}^{*}}\right) = -36.96^{+0.72}_{-0.84} \text{ mrad.}$$
(PRD,84,033005,2011)

Trigger requires an extra Muon which increases tagging efficiency

 ϕ_s coming from interference of decay and mixing: 1 phase \Rightarrow golden decay mode

- Angular analysis to measure CP violation
- ψ_T: helicity angle of K⁺ in the φ rest frame w.r.t. the negative flight direction of B⁰_c

• θ_T : polar angle of the μ^+ in the J/ψ rest frame

 ϕ_T : azimuthal angle of the μ^+ in the J/ψ rest frame

Signal Extraction

 50.9 ± 0.1

 27.3 ± 0.1

2018

 10.5 ± 0.1

Extraction of fit parameters

Summary of fit results with uncertainties

Parameter	Fit value	Stat. uncer.	Syst. uncer.
$\phi_{\rm s}$ [mrad]	-11	± 50	±10
$\Delta\Gamma_{s} [ps^{-1}]$	0.114	± 0.014	± 0.007
$\Delta m_{\rm s} [\hbar {\rm ps}^{-1}]$	17.51	+ 0.10 - 0.09	± 0.03
$ \lambda $	0.972	± 0.026	± 0.008
$\Gamma_{\rm s} [\rm p s^{-1}]$	0.6531	±0.0042	± 0.0026
$ A_0 ^2$	0.5350	± 0.0047	± 0.0049
$ A_{\perp} ^2$	0.2337	± 0.0063	± 0.0045
$ A_{\rm S} ^2$	0.022	+ 0.008 - 0.007	± 0.016
δ_{\parallel} [rad]	3.18	± 0.12	±0.03
δ_{\perp} [rad]	2.77	± 0.16	± 0.05
$\delta_{S\perp}$ [rad]	0.221	+0.083 -0.070	± 0.048

Theoretical prediction:arXiv:1912.07621

Parameter	Values		
$\Delta m_s \ [\hbar p s^{-1}]$	18.77 ± 0.86		
$ \lambda $	1		
$\Gamma_s \rho s^{-1}$	0.910 ± 0.013		

Results using 13 TeV data

 $\phi_s =$ -11 \pm 50 (stat.) \pm 10 (syst.) mrad $\Delta\Gamma_s =$ 0.114 \pm 0.014 (stat.) \pm 0.007 (syst.) ps^{-1}

Results using 13 TeV + 8 TeV data

 $\phi_s =$ -21 \pm 45 mrad $\Delta\Gamma_s =$ 0.1073 \pm 0.0097 ps^{-1}

Consistent with SM prediction

 $\phi_s = -36.96^{+0.72}_{-0.84}$ mrad $\Delta\Gamma_s = 0.091 \pm 0.013 \ ps^{-1}$

https://arxiv.org/abs/2007.02434 and submitted to PLB

Measurement of the $B_s^0/B^0 \to \mu^+\mu^-$

Talk by Chandiprasad Kar in Rare Decays session 2 on Tue: 22/09

► Rare
$$B^0 \rightarrow \mu^+ \mu^-$$
 decays
Two branching fractions:
 $B_{SM}(B_s^0 \rightarrow \mu^+ \mu^-) = (3.57 \pm 0.17) \times 10^{-9}$
 $B_{SM}(B^0 \rightarrow \mu^+ \mu^-) = (1.06 \pm 0.09) \times 10^{-10}$
effective FCNC, helicity suppressed
(but not in models with extended Higgs sectors)
 $B^0 \rightarrow \mu^+ \mu^-$ CKM suppressed $V_{ts}| > |V_{td}|$
 $B_{s0} \rightarrow \mu^+ \mu^-$ decay-time integrated measurement
because $\Delta\Gamma_s = \Gamma_s^1 \cdot \Gamma_s^H = 0.082 \pm 0.007 \ ps^{-1}$

• SM prediction: $\mathcal{A}_{\Delta\Gamma}^{\mu^+\mu^-} = +1 \rightarrow \tau_{\mu^+\mu^-}^{SM}$ (Only the heavy mass eigenstate decays to dimuons)

•
$$\mathcal{B}_{SM}(B^0_s \to \mu^+ \mu^-) = (3.0 \pm 0.6^{+0.3}_{-0.2}) \times 10^{-9}$$

• LHCb: $au_{\mu^+\mu^-} = 2.04 \pm 0.44 \pm 0.05$ ps,

published in JHEP04(2020)188

Lepton flavor violation in $\tau^+ \to \mu^+ \mu^+ \mu^-$

- Three generation of quarks and leptons
- Quarks and neutrinos change generation
- How about charged leptons?
- Many experiments are dedicated for this LFV measurements like Mu2e, COMET..
- Various models predict Br. $\sim 10^{-8}$

Talk by Chandiprasad Kar in Rare Decays session 2 on Tue: 22/09

 \blacktriangleright World best limit: Belle $\sim 2.1 \times 10^{-8}$ at 90% CL $_{\rm (Phys.\ Lett.\ B\ 687\ (2010)\ 139)}$

The present analysis has been performed combining τ 's from W-boson and heavy mesons, B, D.

submitted to JHEP/arXiv:2007.05658

 $\rightarrow \mu \mu \mu \mu$ from W-boson decay

33.2 fb⁻¹ 13 TeV

Prafulla K. Behera

CMS Flavor Highlights and Prospects@Beauty2020

33.2 fb⁻¹ 13 TeV

Observation of the $B_s^0 o X(3872)\phi$ decay

X(3872) formation in b hadron decays $\begin{array}{c} \mathcal{B}^{-} \rightarrow \chi \left(\Delta S T2 \right) \ltimes^{-} \\ \begin{array}{c} \tilde{\mathcal{B}}^{-} & \chi \left(\Delta S T2 \right) \\ \tilde{\mathcal{B}}^{-} & \chi \left(\Delta S T2 \right) \\ \tilde{\mathcal{B}}^{-} & \chi \\ \tilde{\mathcal{B}}^{-} & \tilde{\mathcal{B}}^{-} \\ \tilde{\mathcal{B}^{-} & \tilde{\mathcal{B}}^{-} \\ \tilde{\mathcal{B}$

- X(3872) was observed in 2003 by Belle, but its nature is still unclear
- The decays of X(3872) in to $J/\psi\omega$ w.r.t $J\psi\rho$ violates isospin
- The X was never observed in B⁰_s decays

Measurement of its production in B_s^0 decays helps understanding the properties of X(3872), in particular dynamics of its formation in B hadron decays $N(B \rightarrow \psi(2S)\phi) = 15\ 359 \pm 171$

Signal Extraction: 2D fit

- Two-dimensional fit to $m(J/\psi\pi\pi)$ and m(KK)
- ▶ $N(B \rightarrow X(3872)\phi) = 299 \pm 39$
- Signal significance is more than 5σ , First Observation!

$$\blacktriangleright R = \frac{\mathcal{B}(B_s^0 \rightarrow X(3872)\phi)}{\mathcal{B}(B_s^0 \rightarrow \psi(2S)\phi)} = (2.21 \pm 0.29 \text{ (stat)} \pm 0.17 \text{ (syst)})$$

- $\blacktriangleright \quad \frac{\mathcal{B}(B_{g}^{0} \to X(3872)\phi)}{\mathcal{B}(B^{+} \to \psi(2S)K^{+}} = 0.482 \pm 0.063 \text{ (stat)} \pm 0.1037 \text{ (syst)} \pm 0.070 \text{ (B)}$
- Major systematics come from signal and background modeling
- $\frac{\mathcal{B}(B_s^0 \to \psi(2S)\phi)}{\mathcal{B}(B^+ \to \psi(2S)K^+)} = 0.87 \pm 0.10 \text{ (PDG)}$
- $\blacktriangleright \quad \mathcal{B}(B^+ \to \psi(2S)K^+) \text{ is } \sim \text{ two times larger than } \mathcal{B}(B^0 \to X(3872)K^0)$
- This result further suggests that X(3872) is not behaving like a charmonium state

Comparison to other measurements

$B_c(2S)^+$ and $B_c^*(2S)$ cross-section Measurement

Talk by Adriano Di Florio in Spectroscopy session 1 on Tue: 23/09

Particle	Predicted M(MeV)
Bc	6247 - 6286
B _c *	6308 - 6341
$B_c(2S)$	6835 - 6882
$B_{c}^{*}(2S)$	6881 - 6914

- $\blacktriangleright B_c(2S)^* \rightarrow B_c^*(B_c\gamma)\pi^+\pi^-$
- Since gamma is low energy, it is not detected $B_c^*(2S) \rightarrow B_c \pi^+ \pi^- + \text{missing energy}$

$$\blacktriangleright B_c(2S) \rightarrow B_c \pi^+ \pi^-$$

- So, We see a two peak structure in the B_cπ⁺π[−] mass distribution, with the B^{*}_c(2S) peak at a mass shifted by ΔM = [M(B^{*}_c − M(B_c)] − M(B^{*}_c(2S)) − M(B_c(2S)]
- p_T(B⁺_c) >15 GeV and |y| < 2.4</p>
- Yield($B_c(2S)^+$)= 52 ± 9 (> 5 σ)
- Yield($B_c(2S)^{*+}$) = 67± 10 (> 5 σ)

arXiv:2008.08629, submitted to PRD

$ R^{+} \equiv \frac{\sigma(B_{c}(2S)^{+})}{\sigma(B_{c}^{+})} \mathcal{B}(B_{c}(2S)^{+} \to B_{c}^{+}\pi^{+}\pi^{-}) = $						
$\frac{\underline{N}(B_{c}(2S)^{+})}{\underline{N}(B_{c}^{+})} \frac{\epsilon(B_{c}^{+})}{\epsilon(B_{c}(2S)^{+})}$						
$ R^{*+} \equiv \frac{\sigma(B_c^*(2S)^+)}{\sigma(B_c^+)} \mathcal{B}(B_c^*(2S)^+ \to B_c^{*+}\pi^+\pi^-) = $						
$\frac{N(B_c^*(2S)^+)}{N(B_c^+)} \frac{\epsilon(B_c^+)}{\epsilon(B_c^*(2S)^+)}$						
$ R^{*+}_{R^+} = 1.35 \pm 0.32 \ (p_T(B_c^+) > 15 \ \text{GeV and} \ y < 2.4) $						
	R^+	R*+	R*+/R+			
$J/\psi \pi^+\pi^-$ fit model	5.5	5.5	-			
$B_c^+\pi^+\pi^-$ fit model	5.9	2.9	2.9			
Efficiencies: statistical uncertainty	1.1	1.0	1.4			
Efficiencies: spread among years	1.8	1.6	0.9			
Efficiencies: pion tracking	4.2	4.2	-			
Decay kinematics	1.5	6.9	4.2			
Helicity angle	1.0	6.0	3.5			
Total	9.5	12.0	6.4			
No dependency on p_T	and a	absolut	e rapidity			

Di-pion Mass Measurement

Different from phase space

https://arxiv.org/abs/2005.04764, submitted to PRD

Excited Λ_b^0 baryons

 Λ_b is constructed using $J/\psi(\mu^+\mu^-)\Lambda(p\pi)$, $\psi(2S)\Lambda$, $(\psi(2S) \rightarrow \mu^+\mu^-$ and $\psi(2S) \rightarrow J\psi\pi^+\pi^-)$ Talk by Vincenzo Mastrapasqua in HF Production and Heavy lons parallel session on 22/09

- Many theoretical predictions of excited Λ_b and Σ_b
- some agree with LHCb measurements
- In CMS, we can not use Λ⁺_c due to large background (no hadron ID)
- $\Lambda_b^0 \to \psi \Lambda \ (\ \mu^+ \mu^- + \Lambda \to p \pi^$ displaced vertex)
- Additional two prompt pions from PV

- Systematics uncertainty dominated by signal and background model and mass resolution
- Broad peak at 6073 ± 5 MeV, signal yield is 301 ± 71 (~4σ) (confirmed by LHCb)
- More data will allow to explain the nature of the broad peak
- Results confirm LHCb observation of the four excited narrow states

Conclusions

- Excellent opportunity for wide spectrum of flavor physics measurements that are challenging and complementary to other experiments
- More data will improve the measurements
- No signature of physics beyond SM
- Stay tuned for more measurements using more data
- More detailed talks on the CMS measurements are in parallel sessions